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Abstract

Medical imaging provides information valuable in diagnosis, planning, and control of therapies. In this paper, we develop a
method that uses a specific type of imaging—the magnetic resonance thermometry—to identify accurate and
computationally efficient site and patient-specific computer models for thermal therapies, such as focused ultrasound
surgery, hyperthermia, and thermally triggered targeted drug delivery. The developed method uses a sequence of acquired
MR thermometry images to identify a treatment model describing the deposition and dissipation of thermal energy in tissues.
The proper orthogonal decomposition of thermal images is first used to identify a set of empirical eigenfunctions, which
captures spatial correlations in the thermal response of tissues. Using the reduced subset of eigenfunction as a functional
basis, low-dimensional thermal response and the ultrasound specific absorption rate models are then identified. Once
identified, the treatment models can be used to plan, optimize, and control the treatment. The developed approach is
validated experimentally using the results of MR thermal imaging of a tissue phantom during focused ultrasound sonication.
The validation demonstrates that our approach produces accurate low-dimensional treatment models and provides a
convenient tool for balancing the accuracy of model predictions and the computational complexity of the treatment models.
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Introduction

In ultrasound (US) thermal therapies, the goal is to selectively

heat the treatment target without excessively elevating the

temperature in healthy tissues intervening in the path of transmitted

US energy and surrounding the target. In recent years, temperature

measurements obtained by MR thermometry has played an

increasingly important role in planning and control of thermal

therapies. A number of techniques have been developed to obtain

MR temperature maps, with water proton resonance frequency

(PRF) method being the most widely used in practice [1]. Several

studies [2–4] have demonstrated that MR-thermometry can be used

as a feedback in automatic treatment control systems. If we view

images as a collection of pointwise measurements associated with

each pixel and use these data to obtain models to plan, optimize and

control therapies, the dimension of the resulting models will be high.

For example, the pointwise utilization of 512|512 voxels in MR

thermal images would lead to a treatment model with over 250,000

states. This presents a problem of a very high computational

demand when a model must be used in real time during the therapy,

as in the case of a model-based and optimizing treatment control

systems, such as the one described in [4].

In this paper, we develop and validate methods that avoid

pointwise utilization of imaging data, leading to a highly efficient

compression of MR thermometry images and the identification of

a low-dimensional dynamic treatment models. Fundamentally, a

low-dimensional representation of MR thermal images is possible

because the image voxels are spatially correlated, reflecting the

dependence of temperature distribution in the treatment target on

the specific absorption rate (SAR) of the ultrasound and the heat

dissipation by conduction and convection. Furthermore, a time

series of MR thermal images are correlated temporally because of

the causal dependance of temperatures on the heating history and

temperatures at the preceding times. In the developed approach,

we apply proper orthogonal decomposition (POD) to identify

orthonormal basis functions fwigN
i~1 which capture spatial

correlations in the ensemble of N MR thermal images. Each

element wi is identified to capture the maximum amount of spatial

correlations that have not yet been explained by a subset of

previously identified basis elements. We then select the reduced

basis fwigM
i~1, M%N, consisting of the first M basis elements,

such that the desired balance between accuracy and complexity is

obtained. The selected reduced basis is then used to:

N Approximate each image acquired during therapy in the

reduced set of basis functions. This step may be viewed as a

real time image compression, which exploits spatial correla-

tions of image voxels, as well as the image filtering step since
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high-frequency spatial valuations, which usually correspond to

MRI measurement noise, are removed.

N Identify the ultrasound specific absorption rate and the dynamic

model that captures temporal correlation in the series of images

and provides a prediction the evolution of the ultrasound

treatment.

The developed approach is validated experimentally, using an in

vitro MRI tissue phantom heated by a focused ultrasound

transducer. The results show that the identified low-dimensional

models predict the SAR and the temperature response of the

target with the expected accuracy, which can be controlled by

selecting the order M. Even with a very low-dimensional model,

suitable for use in model-predictive treatment control systems,

thermal images in the verification set were accurately approx-

imated and the predictions of the SAR and the phantom’s thermal

response closely agreed with the MRI measurements.

Methods

Identification of basis functions using POD method
The proper orthogonal decomposition is a technique often used

to extract a set of basis functions for an approximate, modal-like

representation of an infinite-dimensional, distributed parameter

system (DPS). It was previously shown [5] that POD is the most

efficient way to obtain dominant modes of a known infinite-

dimensional dynamic system, which makes it a popular approach

in a variety of applications, including image processing [6]. Often,

a numerical solution of a given partial differential model at

different times (known as snapshots) is used as the input to the

POD algorithm to produce the desired basis functions. The

identified basis is then used in combination with the projection

methods to obtain a finite-dimensional approximation of the

original known infinite-dimensional DPS model [7].

In this paper, we use a time series of images to identify an

orthonormal basis of an unknown infinite-dimensional model,

characterizing the heat transport in the target due to noninvasive

ultrasound heating. The following brief outline gives the exposition

to the POD method in the context of our objectives. Further

theoretical and algorithmic details are available in [5,7–9].

Consider a set of MR thermal images (snapshots)

S~fTm(r,ti) : 1ƒiƒN,r [Vg. Here, Tm(r,ti) is an image of the

region of interest (ROI), characterized by a vector of coordinates r

inside the spatial domain V and acquired at time ti. The problem

is to obtain a function w(r), which is the best at capturing the

spatial distribution of temperatures in the ensemble S of snapshots

Tm(r,ti). Mathematically, the problem is to find w(r), such that the

projections of all snapshots Tm(r,ti) onto w(r) are maximized:

max
w,Sw,wT~1

l~
1

N

XN

i~1

STm(r,ti),w(r)T2 ð1Þ

where Sf ,gT~
Ð
V f (r)g(r)dr denotes the inner product of square

integrable functions f (r) and g(r) defined in V. The normalization

condition Sw,wT~1 is imposed to ensure uniqueness of the solution.

The optimization problem (1) is difficult to solve in the general

case. The problem is simplified if, following [10], we seek the

solution under an additional assumption that w(r) can be

expressed as a linear combination of snapshots:

wk~
XN

i~1

vk
i Tm(r,ti), k~1, � � � ,N ð2Þ

and all basis functions wk(r) are orthonormal:

Swl ,wmT~
1 l~m

0 l=m

�
ð3Þ

In this case, it can be shown [11] that the solution of the

optimization problem is reduced to the solution of the following

matrix eigenproblem:

Cwk~lkwk ð4Þ

where C~fcijg is the covariance matrix of all snapshots with

elements

cij~
1

N

ð
V

Tm(r,ti)Tm(r,tj)dr,i,j~1, . . . ,N ð5Þ

For a strictly positive definite matrix C, equation (4) is satisfied by

N orthogonal eigenvectors wk~½wk
1 wk

2 � � � wk
N �

T
of dimension N

and the corresponding distinct eigenvalues lk, where k~1, . . . ,N.

The elements wk
i of an eigenvector wk are the coefficients in the

sought linear decomposition (2), and thus determine the k-th

eigenfunction wk. The requirement that Swk,wkT~1 of problem

(1) is enforced by normalizing all eigenvectors, such that

Swk,wkT~
1

Nlk

.

Assuming that all eigenvalues are ordered (l1§l2§:::§lN ),

the eigenfunction w1, corresponding to l1, is the desired solution w
of the maximization problem (1). The normalized eigenfunctions

fwgN
i~1~fw1,w2, � � � ,wNg form an orthonormal basis of the image

ensemble, S. The amount of information, captured by the

projection of S on the i-th eigenfunction, is characterized by the

corresponding eigenvalue:

li~
1

N

XN

j~1

STm(r,tj),wi(r)T2 ð6Þ

Consequently, w1 is the best at explaining spatial correlations in S,

followed by w2 as the next most informative direction, and so on.

When the complete set of the identified eigenfunctions is used to

represent images in S, there is no loss of information. There is no

benefit either since the basis order N is equal to the number of

images in S. The question is how to select a reduced basis of order

M%N to obtain the desired accuracy of the image approximation

in the reduced basis. To answer this question, we start by defining

the ‘‘energy’’ of an image ensemble as

E~
1

N

XN

i~1

ð
V

Tm(r,ti)T
T
m (r,ti)dr ð7Þ

It is easy to show that

E~
XN

i~1

li ð8Þ

Therefore, we can use the eigenvalues to guide the selection of the

reduced-order POD basis. One approach is to select M such that a

predetermined fraction e (ƒ1) of the total energy of the ensemble

S is captured. Specifically, we may wish to select the smallest M
such that

Models from Images
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PM
i~1 liPN
i~1 li

we ð9Þ

where e is selected by a user. The reduced-order basis fwj(r)gM
j~1

can then be used to parsimoniously approximate all images in the

ensemble S, as well as all new images acquired during ultrasound

treatment. In the sequel, this reduced basis is also used to identify

low-dimensional patient- and site-specific ultrasound SAR and

thermal treatment models based on the information captured by

MR thermometry images.

Image representation in the reduced basis
Consider a thermal image Tm(r,tk), collected at time tk, which

reflects the spatial temperature distribution in the region of interest

r [V in response to the sonication history over the time tƒtk. Thermal

effect of sonication is described by the power deposition, Q(r,t), which

relates to the ultrasound specific adsorption rate (in W/kg) as

Q(r,tk)~r(r)SAR(r,tk) ð10Þ

The problem for approximating a new image can be viewed as the

minimization problem of finding projections T̂Tm(t) of an image

Tm(r,tk) into the manifold, spanned by a reduced basis of empirical

eigenfunctions fwjgM
j~1:

min
T̂Tm

j

Tm r,tkð Þ{
Xm

j~1

wj rð ÞT̂Tm
j tkð Þ

�����
����� ð11Þ

The solution of (11) is reduced to finding the best solution (in an

appropriately selected norm) of the following equation:

W(r)T̂Tm(tk)~Tm(r,tk) ð12Þ

where W(r)~½w1(r) w2(r) . . . wM (r)� is a row vector of eigen-

function. We will now take into account that r takes only discrete

values in V due to image pixelation (finite spatial resolution).

Therefore, each basis function, formed according to equation (2), is

given by its values in the spatial locations of image voxels, or

wj(r)&½wj(r1) wj(r2) . . . wj(rNvox )�T , where rl is the coordinate of l-

th voxel and Nvox is the total number of voxels. With finite spatial

resolution, a vector of function W becomes the Nvox|M matrix,

which transforms (12) into a system of Nvox linear equations in M

unknown, and by solving (12) in the least squares sense,

the projection vector T̂Tm(tk)~½T̂Tm
1 (tk) T̂Tm

2 (tk) � � � T̂Tm
M (tk)�T is

obtained. Note that the repeated solution of (12) for each acquired

image can be accelerated by parameterizing matrix W (for example,

by calculating its LU decomposition).

With the described procedure, the temperature measurements

Tm(r,tk) are completely encoded, to the desired accuracy, by a low-

dimensional vector of projections T̂Tm of dimension M, where

M%Nvox. Note that only projections T̂Tm(tk) must now be sent from

the MRI scanner, which reduces communication traffic. The

storage requirements are also reduced because only a M-

dimensional vector of projections must be saved for each newly

acquired thermal image of Nvox (&M ) voxels.

Our previous results [11] indicate that by ignoring the contribution

of higher order eigenfunctions fwgN
i~Mz1 in image representation

spatial noises in MR thermometry images are filtered.

Representation of ultrasound power deposition
The temperature distribution measured by MR thermometry

depend on the power deposition in tissue, Q (in W:m{3), caused

by sonication. Therefore, it is reasonable to expect that fwgM
i~1,

identified using the acquired images, is also an adequate basis to

represent Q(r,tk). Similarly to equation (12), for known Q(r,tk),
the projection of the power deposition into the reduced basis,

ûu(tk)~½ûu1(tk) ûu2(tk) � � � ûuM (tk)�T , can be found as the least

squares solution of the following linear equation:

Q(r,tk)~W(r)ûu(tk) ð13Þ

Identification of the projection models of thermal
response

Our objective is to to identify an ultrasound thermal treatment

model in a low-dimensional projection form with the state vector,

T̂T , corresponding to the projection of measurements, T̂Tm. A low-

dimensionality is required to enable real time utilization of

treatment models for such tasks as intra-operative prediction of

specific sonication parameters on temperature distribution and to

design efficient model-based treatment controllers. Figure 1 shows

a block diagram of a control system that uses projections T̂Tm(tk)
(instead of full-dimensional images, Tm(r,tk)) in its feedback and

determines control inputs, ûu, using low-dimensional treatment

model in projection form. This figure illustrates that during

ultrasound therapy the images from the MRI scanner are sent to

the control system in low-dimensional form of image projections

T̂Tm, and the controller uses this information to generate ûud (tk),
which describes Qd (r,tk) – the desired power deposition which we

wish to apply to the patient at the current time; ûud (tk) and the

corresponding Qd (r,tk) are the control inputs sent to the

ultrasound subsystem. The best approximation of Qd (r,tk)

Figure 1. Treatment control system uses low-dimensional projection models of the therapy and the SAR.
doi:10.1371/journal.pone.0026830.g001
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implementable with the available ultrasound transducers or

transducer array system, Q(r,tk), is then applied to the patient.

As desired, the described control system entirely avoids high-

dimensional (pointwise) computations.

We seek to identify the low-dimensional treatment model in the

following form:

T̂T(tkz1)~YT̂T(tk)zCûu(tk) ð14Þ

where ûu is the projection of the ultrasound power deposition,

Q(r,tk); matrices Y and C are unknown, and must be identified

from the images Tm(r,t) in the training ensemble, S. The state

vector T̂T is the predicted temperature projection; given T̂T , the

predictions of the temperature distribution in the region of interest

(ROI) can be obtained as

T(r,tkz1)~W(r)T̂T(tkz1) ð15Þ

It is straight forward to show that all linear PDE models, traditionally

used to describe temperature evolution in biological tissues during

thermal treatments (such as the convection-diffusion model and its

different approximations), can be adequately approximated by model

(14). Consider, for example, the following popular Pennes’ bioheat

transfer equation (BHTE) [12], which is written in terms of the

temperature increase T(r,t) above the equilibrium:

rC
LT

Lt
~+:(k+T){WbCbTzQ ð16Þ

where r (kg/m3) and k (W/m0C) are the tissue density and thermal

conductivity, C and Cb are the specific heat of tissue and blood (in J/

kg0C), respectively. Equation (16) does not require the detailed

information on tissue vascularity or blood flow but instead uses an

empirical blood perfusion-related parameter Wb (kg/m3s). After using

T(r,t)~W(r)T̂T(t) and Q(r,t)~W(r)ûu(t) in equation (16), and

approximating time derivative using backward-difference approxima-

tion, the BHTE takes the following form:

XM
j~1

wj(r)
½T̂Tj(tkz1){T̂Tj(tk)�

Dt
~
XM
j~1

k

rC
+2wj(r)T̂Tj(tk)

{
XM
j~1

WbCb

rC
wj(r)T̂Tj(tk)z

XM
j~1

1

rC
wj(r)ûuj(tk)

ð17Þ

where Dt is the time discretization step. The weak Galerkin

formulation of the Pennes’ model is obtained by taking the inner

product of equation (17) with the elements wi(r) of the reduced basis,

yielding the following system of discrete-time dynamic equations:

T̂Ti(tkz1)~T̂Ti(tk)z
XM
j~1

Dt½Swi(r),a(r)+2wj(r)T{

Swi(r),b(r)wj(r)T�T̂Tj(tk)

z
XM
j~1

Dt½Swi(r),c(r)wj(r)T�ûuj(tk)

ð18Þ

where a(r)~
k

rC
, b(r)~

WbCb

rC
, c(r)~

1

rC
and we took into the

account the orthonormality of the basis functions. The compact

form of the M-dimensional projection model (18) is exactly the

same as equation (14) with matrices Y~faijg, C~fbijg defined by

their elements as:

aij~Dt½Swi(r),a(r)+2wj(r)T{Swi(r),b(r)wj(r)T�zdij ð19Þ

bij~Dt½Swi(r),c(r)wj(r)T� ð20Þ

where dij is the Kronecker-delta, and i,j~1, . . . ,M. Note that for a

constant tissue density and heat capacity, C is a diagonal matrix

cDtIM|M .

Matrix Y characterizes the heat dissipation in the target due to

conduction and blood flow, while the affine term Cûu(tk) describes

the effect of the ultrasound power deposition Q on the evolution of

projected temperature responses T̂T(tk).
The problem is to identify Y, C and ûu such that projections

T̂T(tk), predicted by the model (14) and used to reconstruct

temperature distribution as T(r,t)~W(r)T̂T(t), give the best

agreement with the acquired series of images Tm(r,t) [S.
Identification of matrix Y. In order to decouple the

problems of identifying Y, C and ûu, the system matrix Y is

identified first by utilizing only thermal images Tm(r,tk) acquired

during tissue cooling (Q~0) to thermal equilibrium. With zero

power input ûu~0, the projection model (14) describes the decay of

temperature projections to thermal equilibrium T̂T~0 from non-

zero initial conditions:

T̂T(tkz1)~YT̂T(tk) ð21Þ

This equation is in the form of a first-order multivariate

autoregressive (AR) model, which allows us to identify Y using

the standard system identification techniques [13].
Identification of the affine term. The specific absorption

rate of an ultrasound transducer depends on tissue properties and

other variable factors, which can change with treatment site and

from patient to patient. At the same time, the knowledge of the

patient- and site-specific SAR is critically important for treatment

safety and its precise control.

Within the developed approach, the identification of the SAR is

accomplished easily. Once the system matrix Y is determined, the

time-varying affine term Cûu can be identified at each sampling

instant tk as:

Cûu(tk)~T̂Tm(tkz1){YT̂Tm(tk) ð22Þ

where T̂Tm(tk) and T̂Tm(tkz1) are the projections of the consecutive

thermal images, collected during sonication of the target. Since C
(cf. equation 20) depends only on the MRI scan time Dt, the

identified eigenfunctions, and the relatively little-changing tissue

density and heat capacity (both often assumed equal to the water

values), the matrix C in the projection model can be considered as

known. With this assumption, ûu(tk) can be found as a least squares

solution of the linear equation (22). The corresponding estimates

of Q(r,tk) and the SAR then be obtained by using equations (13)

and (10).

Results

The developed approach to identifying low-dimensional models

of ultrasound therapies was tested experimentally using MR

measurements of the thermal response of a tissue phantom to

focused ultrasound (FUS) sonication. The cubic 11|11|11 cm

Models from Images
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phantom was prepared following the recipe of Madsen et al. [14].

The T2 relaxation time of the phantom was modified by adding

one millimole-per-liter of copper sulfate to the recipe. After

preparation, the phantom was allowed to solidify inside of an

acrylic box with a Mylar ultrasound treatment window on the

bottom surface. The ultrasound power deposition field was created

by a single, spherically focused, air backed ultrasound transducer

with aperture diameter of 10 cm and radius of curvature of

approximately 18 cm, and resonating frequency of 1.5 MHz. The

transducer was placed in a bath of degassed and deionized water

inside the MR compatible ultrasound positioning system (Figure 2

and [4]), which was designed to move the focal zone in three

dimensions. After initial alignment, the transducer position

remained fixed in the current experiments. The transducer was

driven by a function generator (Stanford Research System, model

DS345), amplified using RF amplifier (ENI, model A150). The

electrical impedance of the transducer was matched to the output

impedance of the amplifier using an external LC matching circuit.

The electrical power applied to the transducer (direct and

reflected) was measured using power meters (Hewlett-Packard,

model 435A/B). Further details of driving circuitry and position-

ing system are given in [15].

Temperature increase, Tm(r,tk), inside the phantom was

measured using Siemens Trio 3T Magnetom scanner. A custom

receive-only surface coil was used to improve the temporal and

spatial resolution of the acquired thermal images. The coil created

a localized sensitivity pattern, which minimized the interferences

and improved the signal-to-noise ratio (SNR). Gradient-echo

sequence (GRE) with the following acquisition parameters

was used to obtain temperature measurements: repetition

time TR~30 ms, echo time TE~10 ms, field of view

FOV~25:6|25:6 cm and flip angle ~250. The voxel size of

thermal images was 2|2|3 mm. The scan time was 2.45 s with

the phase resolution of fifty percent to increase the sampling rate.

The overall image size was Nvox~128|64 and the k-space data

were zero-filled to form a 128|128 data matrix.

Following the PRF shift method [16], the phase difference Dw
between the two consecutive phase images was used to calculate

the relative temperature change Tm as

Tm~
Dw

acgB0
:TE

ð23Þ

where a~{0:01 ppm C{1 [17] is the coefficient of PRF shift for

aqueous tissue, cg is the gyromagnetic ratio, B0 is the strength of

the main magnetic field, and TE is the echo time. Sequential

complex MR images Sm(r,tk) and Sm(r,tkz1) were used to

calculate Dw(r,tkz1) as the phase of the following product:

Dw(r,tkz1)~%(Sm(r,tkz1)S�m(r,tk)) ð24Þ

where � denotes the complex conjugate operator.

Figure 3 gives a representative temperature image in the US

transducer’s focal plane (gradient scale is in 0C). The phantom

appears as a rectangular object above the ultrasound positioning

system containing a clearly visible 450 ultrasound mirror. The

selected ROI (r~(x,y) [V) is the region of an appreciable

temperature elevation, which has pixel coordinates 53ƒxƒ58
and 34ƒyƒ59. The number of voxels in the ROI is 6|26; its

actual dimension is 1:2 cm|5:2 cm. As expected, the maximum

temperature rise is observed on the line of focal symmetry, x~56.

Validation Results
A step increase from zero to either 3.5, 4.8 or 6.5W of total

electrical power (direct minus reflected) was applied to the FUS

transducer while keeping all other experimental conditions the

same. The phantom was allowed to reach thermal equilibrium

before changing the power input.

MRI thermal images collected for the case of 6.5W of applied

electrical power were used as a training (estimation) dataset to

identify the reduced-order basis, and the corresponding models of

the thermal response and the ultrasound SAR. The validation

datasets, consisting of the images collected during the experiments

with the other two power levels, were used to assess the adequacy

of the identified basis functions and the accuracy of the

temperature predictions obtained with the identified ultrasound

treatment model.

A total of 499 MR thermal images were acquired to

characterize temperature evolution during each power step test.

The estimation dataset included images collected when the power

was kept constant at 6.5W (0vtƒ773 seconds) and when the

tissue was cooling back to equilibrium (773vtƒ1225) after the

power was switched off. Figure 4(a) shows the measured

temperature elevation within the ROI at t~773 s when the

temperature reaches its peak value. The temporal evolution of

temperatures in the selected locations on the line of ultrasound

beam symmetry is shown in Figure 4(b). The highest temperature

was observed at (x,y)~(56,54), where the maximum temperature

increase from ambient temperature was *17:50C.

Identification of the reduced-order basis. All 499 images

in the estimation dataset were used to identify the orthonormal

basis following the described method. Figure 5 shows the first four

identified eigenfunctions and the corresponding eigenvalues,

which rapidly decay for the higher order wi’s. Using the

criterion (9), it was determined that the first eigenfunction

captures approximately 98:93% of the spatial correlations in the

collection of 499 images, while w2(r) captures only 1:01%.

Selecting e~99:9%, we conclude that high accuracy of image

approximations in the reduced POD basis fwgM
i~1 is achieved with

only two basis functions (M~2). Note that the shape of w1,

identified to maximize the explained spatial correlations in

thermal images, is similar to the shape of temperature

distribution, as expected. Further note that eigenfunctions wi,

i~3,4, . . . capture information at increasingly higher spatial

frequencies, and that ignoring their contribution in image

representation (15) has the effect of a spatial filtering of imaging

data.

Identification of thermal response and SAR

models. Thermal images, collected during tissue cooling after the

Figure 2. MR-compatible ultrasound transducer and position-
ing system.
doi:10.1371/journal.pone.0026830.g002
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initial sonication at 6.5W of constant applied power, were used to

identify the system matrixY of the projection model (14). The result of

Table 1 was obtained by, first, using Matlab’s System Identification

Toolbox [13] to obtain the autoregressive model of the cooling process

and then converting it into the state space form of equation (21).

Handbook values of heat capacity and density (C~4186 J/

(kg0C and r = 1000 kg/m3) [18]) were used to calculate c in

equation (20). Sequential thermal images were used in equation

(22) to estimate the power deposition projection ûu. The identified

vector ûu (Table 1) was then used in equations (13) to estimate Q(r);
the corresponding SAR(r) was obtained using equation (10). The

result (SAR3), scaled with the total applied power of 6.5W, is

shown in Figure 6(a). A high degree of correlation between the

shapes of the measured temperature distribution (Figure 4a) and

the SAR is an expected result for the unperfused phantom.

The prediction of the thermal response to different power inputs

is based on the assumption that the shape of the SAR remains

constant for the fixed relative transducer-patient position, but the

SAR values are scaled with the applied electrical power. This

assumption of the linear SAR-power dependence was tested by

comparing the predicted SAR pattern for 3.5 and 4.8W of applied

power, obtained by scaling SAR3 by 3.5/6.5 and 4.8/6.5, with the

directly identified SAR distribution (SAR1 and SAR2). The direct

identification of SAR1 and SAR2 followed the same method used

to identify SAR3 (i.e. a new reduced POD basis and the

corresponding thermal model were obtained in each case;

equation (22) was used to calculate a new ûu; then SAR1 and

SAR2 were reconstructed using equations (13) and (10)).

Figures 6(b) and (c) shows the difference between the predicted

and the directly identified SAR1,2, both scaled to 1W of the

Figure 4. Model estimation data set. (a) MRI measurements of temperature increase in the ROI at t~773 s. (b) Temporal evolution of
temperature increase on the line of focal symmetry x~56 measured by MR thermometry.
doi:10.1371/journal.pone.0026830.g004

Figure 3. Coronal MRI map of temperature elevations inside the phantom heated by focused ultrasound transducer.
doi:10.1371/journal.pone.0026830.g003
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applied power. The maximum pointwise absolute prediction

errors are 10:03 and 8:34 (in W/kg), respectively. Low prediction

errors confirm that in our experiments the specific absorption rate

changed linearly with the applied power.

Validation of the thermal response model. The accuracy

of the identified reduced-order treatment model was assessed in

projection manifold and in terms of temperature predication

errors. In projection space, the prediction of the temperature

projection vector T̂T(t), obtained with the same two-dimensional

state space model of Table 1 and the appropriately scaled ûu, was

compared with the projection of the actual thermal images

Tm(r,t), acquired during the experiments with three different

power levels. Image projections, T̂Tm(t), were found as the least

squares solution of equation (12).

Figure 7 shows an excellent agreement between the predictions,

T̂T(t), and measurements, T̂Tm(t). The agreement is the best for

6.5W of applied power – the case used as the estimation dataset.

The plot of T̂T1(t) is similar in shape to the pointwise temperature

evolutions (cf. Figure 4b), which indicates that the first component

of the vector T̂T(t) captures most of the slow temporal variations in

the series of thermal images.

When used in equation (15), the model-generated T̂T(t) gives the

prediction of the temperature elevation, T(r,t), in the ROI, which

can be compared with imaging data, Tm(r,t). Figure 8 shows the

spatial mean and standard deviation (STD) of the temperature

prediction errors for all pixels in the ROI. The prediction errors

are small, including the two validation cases shown in subplots (a)–

(d). The maximum pointwise temperature prediction errors do not

exceed 10C, which is of the same order as the measurement noise

of MRI thermometry.

Discussion

The developed approach was shown to be effective in identifying

low-dimension but accurate models of ultrasound thermal therapies.

At a pre-treatment stage, a set of MR thermometry images,

characterizing the response of the target and the surrounding

normal tissue to thermal excitation, is collected and then used to

identify the reduced POD basis, which capture spatial correlations

in images. A simple criterion for selecting an appropriate number of

basis functions is provided which allows a user to balance the

computational complexity of a predictive treatment model with its

computational complexity. The selected reduced basis is then used

to parsimoniously approximate newly acquired images, thus

minimizing storage and data traffic. As an additional benefit, image

approximation in the reduced basis filters high-frequency spatial

noises in MR images.

Figure 5. Identified eigenfunctions for the ROI.
doi:10.1371/journal.pone.0026830.g005

Table 1. The identified SAR and the thermal response model.

Y C ûu

0:9824 {0:0330

{0:0070 0:9673

� �
0:5878|10{6|I2|2 1:1703

0:4273

� �
|103

doi:10.1371/journal.pone.0026830.t001
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The SAR and thermal response models identified following the

developed approach are patient- and site-specific and can be used as

predictive models in real time (e.g., treatment control) and off line (such

as treatment planning) applications. The identification procedures are

well suited to perform continuous re-identification of treatment models

during the therapy. Such intra-treatment adaptability helps to mitigate

the effect of changing tissue properties (such an US absorption) and

blood perfusion, caused by elevated temperatures, on the accuracy of

model predictions, which is particularly important when the identified

low-dimensional models are used to efficiently implement model-

based, optimizing treatment controllers that utilize images in the

feedback. A family of related results used to identify continuous-time

treatment models is described in reference [19].

The developed methods were validated during in vitro MR

experiments with a tissue phantom heated by a focused ultrasound

transducer. The experimental results indicate that the SAR and

thermal response during the treatment can be accurately predicted

by the identified projection models with only two states. The low-

dimensionality of the identified models substantially minimizes

computational requirements of implementing a model-based

treatment control system and communication traffic between the

MRI scanner and the treatment controller.

Figure 6. Model identification results. (a) The identified SAR pattern for 6.5W of the applied power. The result is shown after pointwise scaling of
SAR3 with 6.5. (b) The prediction error of the scaled SAR pattern for 3.5W of applied power. (c) The prediction error of the scaled SAR pattern for 4.8W
of applied power.
doi:10.1371/journal.pone.0026830.g006

Figure 7. Comparison of measures and model predicted temperatures in projected form. The projections, T̂Tm, of the acquired images are
compared with model predictions, T̂T , obtained with the identified thermal response model. The value of ûu listed in Table 1 was used to make
predictions for the case of 6.5W of applied power (plots (a) and (b)). Predictions for the power inputs of 3.5W (plots (c), (d)) and 4.8W are made by
scaling ûu by 3.5/6.5 and 4.8/6.5, respectively.
doi:10.1371/journal.pone.0026830.g007
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Though our emphasis is on thermal therapies, the developed

approach has a broader applicability in image-based identification

and image-guided control of therapies. After straightforward

modifications, this approach can be used with images acquired in

multiple planes and with three-dimensional MR measurements.
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