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Abstract
To aid surgeons in more complete and safe resection of brain tumors, adjuvant technologies have been developed 
to improve visualization of target tissue. Fluorescence-guided surgery relies on the use of fluorophores and spe-
cific light wavelengths to better delineate tumor tissue, inflammation, and areas of blood–brain barrier breakdown. 
5-aminolevulinic acid (5-ALA), the first fluorophore developed specifically for brain tumors, accumulates within 
tumor cells, improving visualization of tumors both at the core, and infiltrative margin. Here, we describe the back-
ground of how 5-ALA integrated into the modern neurosurgery practice, clinical evidence for the current use of 
5-ALA, and future directions for its role in neurosurgical oncology.
Maximal safe resection remains the standard of care for most brain tumors. Gross total resection of high-grade 
gliomas (HGGs) is associated with greater overall survival and progression-free survival (PFS) in comparison to 
subtotal resection or adjuvant treatment therapies alone.1–3 A major challenge neurosurgeons encounter when 
resecting infiltrative gliomas is identification of the glioma tumor margin to perform a radical resection while 
avoiding and preserving eloquent regions of the brain. 5-aminolevulinic acid (5-ALA) remains the only optical-
imaging agent approved by the FDA for use in glioma surgery and identification of tumor tissue.4 A multicenter 
randomized, controlled trial revealed that 5-ALA fluorescence-guided surgery (FGS) almost doubled the extent of 
tumor resection and also improved 6-month PFS.5 In this review, we will highlight the current evidence for use of 
5-ALA FGS in brain tumor surgery, as well as discuss the future directions for its use.

Keywords 

fluorescence-guided surgery | 5-aminolevulinic acid, 5-ALA | extent of resection | glioma |  
metastasis

applyparastyle "fig//caption/p[1]" parastyle "FigCapt"
applyparastyle "fig" parastyle "Figure"

5-ALA Background and Clinical 
Information

5-aminolevulinic acid is a metabolic precursor agent that is 
taken up by tumor cells and enters the mitochondrion heme bi-
osynthesis pathway, where it is metabolized to protoporphyrin 
IX (PpIX). Due to deceased ferrochelatase enzyme activity 

which converts PpIX to heme, PpIX accumulation occurs in 
tumor cells. A lack of efflux of PpIX out of tumor cells through 
the transporter ATP-binding Cassette Subfamily B Member 2 
(ABCG2) is also responsible for PpIX intratumoral accumula-
tion. 5-ALA uptake and metabolism to PpIX readily occurs in 
glioma cells, particularly HGGs.6 A recent study by Mischkulnig 
et  al. found significantly decreased ABCG2 mRNA and pro-
tein expression in fluorescing tumor specimens compared to 
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Table 1 Landmark Clinical 5-ALA Papers—Glioma

Date  
Published 

Paper PMID Study 
Type 

Number Pts Outcomes Measured Result of Study 

10/8/21 Schupper 
et al.

34624862 Case 
series

69 Primary: KPS de-
cline, EOR, and 
residual enhancing 
tumor volume.

5-ALA fluorescence has high sensi-
tivity and positive predictive value 
for HGG; 5-ALA is well-tolerated; 
there was no excess neurological 
morbidity.

10/8/21 Black et al. 34625597 Case 
series

128 Primary: correlating 
PpIX concentration 
with fluorescence 
intraoperatively.

PpIX concentration correlates with 
proliferation indices, WHO grade, 
and fluorescence visibility.

5/21/21 Hosmann 
et al.

34064222 Case 
series

59 Primary: PFS, OS, 
5-ALA fluorescence, 
EOR in WHO II 
glioma.

5-ALA fluorescence presence is 
correlated with poor PFS and OS; 
5-ALA correlated to IDH-wildtype 
tumors; higher EOR correlates to 
increased OS.

10/1/19 Kaneko et al. 31058995 Case 
series

68 Primary: quantifica-
tion of fluorescence 
intensities and cor-
relation with tumor 
PpIX concentrations.

5-ALA fluorescence is present 
longer than 4–5 h after administra-
tion.

6/18/16 Cordova 
et al.

26463215 Case 
series

30 Primary: EOR and 
RTV; Secondary: PFS 
and OS

Age predicts EOR and RTV; tumor 
surface area, preop tumor volume, 
and SAVR predict RTV; MGMT 
status predicts PFS, RTV, SAVR, and 
MGMT predict OS

5/1/16 Lau et al. 26544781 Case 
series

59 Primary: correlation 
of 5-ALA fluores-
cence with tumor 
cellularity

Bright 5-ALA fluorescence is highly 
predictive of tumor; negative-
predictive value is low; 5-ALA is 
predictive of tumor cellularity when 
fluorescence is present; reactive 
changes in the brain may lead to 
5-ALA fluorescence.

2/17/16 Teixidor 
et al.

26885645 Case 
series

85 Primary: safety data; 
Secondary: EOR, 
PFS, and OS

5-ALA has good safety profile; GTR 
in 54%; PFS at 6 months 58%; OS 
was 14.2 months.

4/1/14 Diez Valle 
et al.

23870657 Cohort 251 Primary: EOR and 
PFS.

5-ALA use was associated with 
increased EOR and PFS in HGG, 
compared to non-use.

3/1/14 Stummer 
et al.

24335821 Case 
series

33 Primary: correla-
tion of patholog-
ical samples and 
5-ALA fluorescence 
and comparison to 
contrast-enhanced 
MRI.

5-ALA has high correlation with 
tumor and is more useful for 
indicating residual tumor com-
pared to contrast-enhanced MRI 
and spectrometry.

2/1/14 Coburger 
et al.

24484256 Case 
series

45 (33 HGG 11 
Mets)

Primary: correla-
tion of pathological 
samples and 5-ALA 
fluorescence

Mets: no benefit of 5-ALA for visu-
alization; border zone: 5-ALA has 
higher sensitivity and lower speci-
ficity for tumor than contrast MRI; 
infiltrating tumor: 5-ALA better in 
both sensitivity and specificity.

5/28/13 Zhao et al. 23723993 Review 
and Meta-
analysis

10 studies sys-
tematic review; 
5 studies meta-
analysis

Primary: OR of 
diagnosis of HGG, 
Secondary: EOR, 
PFS, and OS

Level 2 evidence that 5-ALA is 
more effective than WL surgery; 
increased diagnostic accuracy, in-
creased PFS, increased OS

3/11/11 Stummer 
et al.

20397896 Ran-
dom-
ized 
Control 
Trial

349 Long-term follow-up 
of phase III trial of 
5-ALA.

Higher residual tumor volume 
in WL group; 5-ALA group more 
neuro def at 48 h--pts at risk were 
unresponsive to steroids; less 
cumulative incidence of repeat 
surgery in 5-ALA group; incom-
plete resections had quicker neuro 
deterioration
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nonfluorescing samples from adult patients with diffuse 
gliomas (WHO grade II–IV) after 5-ALA administration.7 
They also found up-regulation of heme biosynthesis en-
zyme protein expression in fluorescing tumor specimens 
suggesting heme biosynthesis pathway activity in general 
is enhanced in fluorescing gliomas with up-regulation of 
PpIX generating enzymes and decreased ABCG2 mediated 
PpIX efflux.

PpIX emits violet-red (~635  nm) fluorescence after ex-
citation with blue light in the absorption spectrum of 
375–440 nm, (Figure 1).8 Dosing of oral 5-ALA at 20 mg/kg 
2–4 h before induction of anesthesia was performed with 
the 2006 randomized, controlled trial.5 Rodent preclin-
ical studies revealed peak fluorescence occurred 6 h after 
5-ALA administration6 and therefore the 2–4 h window was 
established to allow time for anesthesia induction and the 
craniotomy completion so that the neurosurgeon would 
have access to peak fluorescence during the tumor re-
section portion of the surgery.8 More recent studies, how-
ever, have found that 5-ALA PpIX fluorescence may have 
a longer window with a delayed peak response than pre-
viously seen in early rodent studies. Kaneko et al. found 
in a cohort of 201 tumor samples a maximal intensity at 

7–8  h postadministration, with a weaker peak signal at 
8–9 h.9 Maragkos et al. found in a retrospective study of 16 
patients with HGG who received 5-ALA over 4 h before in-
duction of anesthesia, which all patients’ tumors displayed 
adequate fluorescence even up to 28  h.10 This extended 
time window appears true for not only HGGs, as Kaneko 
et al. recently showed that low-grade gliomas (LGGs) also 
demonstrated peak fluorescence 7–8  h after administra-
tion.11 By broadening the administration window, the pro-
drug may become easier to administer, as it may be useful 
in the operating room even with unforeseen delays in sur-
gical start times.

Beyond identifying tumor fluorescence, the next level 
of information for tumor surgeons is quantifying fluores-
cence. Quantifying fluorescence levels may be useful in 
cases where there are lower levels of PpIX accumulation 
that are visible to the eye, such as in LGG tissue. Valdés 
et al. found that 45% of LGG tumors that visibly demon-
strated no fluorescence accumulated significant levels 
of PpIX, and were able to be quantitatively detected.12 
Confirming these results, Widhalm et al. found that 50% of 
LGG samples showed no visible fluorescence yet signifi-
cant PpIX concentration, and that there was no difference 

Date  
Published 

Paper PMID Study 
Type 

Number Pts Outcomes Measured Result of Study 

3/1/11 Roberts 
et al.

20380535 Case 
series

11 Primary: difference 
in tissue fluores-
cence

Significant relationship between 
preop contrast enhancement on 
MRI and intraoperative fluores-
cence; tumor aggressiveness and 
fluorescence correlates.

3/1/11 Diez Valle 
et al.

20607351 Cohort 36 Primary: correla-
tion of pathological 
samples and 5-ALA 
fluorescence; Sec-
ondary: immediate 
neurological and 
mortality outcomes

5-ALA has 100% positive-predictive 
value for histological tumor; 
1-month postop: no mortality, 8.2% 
neurological morbidity.

12/1/09 Nabavi et al. 19934966 Case 
series

36 Primary: correla-
tion of pathological 
samples and 5-ALA 
fluorescence

5-ALA has high-predictive value for 
histological tumor; prior radiation 
and chemotherapies do not inter-
fere with 5-ALA use.

1/14/09 Hadjipanayis 
et al.

30644008 Review NA NA Discussion of FDA approval of 
5-ALA

10/1/08 Eljamel et al. 17926079 Random-
ized Con-
trol Trial

27 Primary: 5-ALA 
and photodynamic 
therapy for GBM, 
OS, KPS, and KPS.

5-ALA and photodynamic therapy 
were associated with increased 
OS, PFS, and KPS compared with 
controls.

3/22/08 Hefti et al. 18363116 Case 
series

74 Primary: correla-
tion of pathological 
samples and 5-ALA 
fluorescence

5-ALA has high-predictive value for 
histological tumor; prior radiation 
and chemotherapies do not inter-
fere with 5-ALA use.

5/7/06 Stummer 
et al.

16648043 Random-
ized Con-
trol Trial

322 Primary: contrast 
enhancement 
on postop MRI, 
6-month PFS. Sec-
ondary: volume 
postop MRI, OS, 
neuro def, and toxic 
effects

65% versus 36% GTR contrast 
tumor; 41% versus 21.1% 6 month 
PFS. No difference in adverse 
events.

PMID, PubMed identification number.

  

Table 1 Continued



S55McCracken et al. Turning on the light for brain tumor surgery
N

eu
ro-

O
n

colog
y

  
Table 3 Landmark Clinical 5-ALA Papers—Metastases

Date  
Published 

Paper PMID Study Type Number 
Pts 

Outcomes  
Measured 

Result of Study 

9/27/19 Marhold 
et al.

31561223 Case 
series

154 Fluorescence 
presence, quality, 
homogeneity, and 
histopathology

66% fluoresced (34% strong, 32% weak), most 
were heterogeneous. Melanomas showed least. 
Ductal breast cancer the most.

2/3/21 Mercea 
et al.

33546427 Case 
series

88 Peritumoral tissue 
samples looking 
at fluorescence, 
infiltration, and 
angiogenesis. Re-
currence and 1 y 
survival.

69% of samples fluoresced, associated with an-
giogenesis and poor survival

11/28/07 Utsuki 
et al.

18095131 Case 
series

11 PpIX fluorescence 
in tumor and 
peritumoral tissue

Fluorescence present in peritumoral tissue free 
of tumor likely due to leak

12/10/18 Kamp 
et al.

30535595 Case 
series

218 Degree of resec-
tion, local pro-
gression, overall 
survival

Degree of resection did not correlate with 
fluorescence. Higher local progression in 
nonfluorescent mets. When fluorescence 
present, local progression and overall survival 
were significantly better.

8/11/20 Hussein 
et al.

32850007 Cohort 175 Comparing regular 
white light versus 
5-ALA for in-brain 
recurrence and 
mortality

5-ALA had lower recurrence and mortality but 
neither achieved significance

PMID, PubMed identification number.

  

  
Table 2 Landmark Clinical 5-ALA Papers—Meningiomas

Date Pub-
lished 

Paper PMID Study 
Type 

Number 
Pts 

Outcomes Measured Result of Study 

6/1/07 Kajimoto 
et al

17564181 Case 
series

24 Intraop fluorescence of nearby 
structures after resection

83% fluoresced. Venous, dural, and skull 
edges each demonstrated strong fluo-
rescence, suggesting utility in invasive 
lesions for initial resection

6/10/10 Coluccia 
et al.

20535506 Case 
series

33 Intraop fluorescence 94% fluorescence. Did not correlate with 
grade, edema, or steroid use

12/1/14 Cornelius 
et al.

25117928 Case 
series

31 Qualitative and quantita-
tive intraop fluorescence, 
histopathologic correlation, and 
degree of resection

94% fluorescence, correlation with grade, 
improved extent of resection especially in 
grades 2 and 3

2/18/16 Puppa et al 24410157 Case 
series

12 Intraop fluorescence of both 
tumor and bone invasion

Tumor and bone fluoresced 100%. 
Good tool to identify bone invasion but 
hyperostotic bone may limit absorption.

3/25/16 Millesi 
et al.

27015401 Case 
series

190 Intraop fluorescence in the body 
of tumor, dural tail, and adja-
cent tissues

Fluorescence 91% of lesions as well as 
satellite lesions and infiltrated bone flaps; 
however, not in dural tail. No long-term 
outcome data.

9/1/16 Foster & 
Eljamel

27235278 Meta-
analysis

206 Intraop fluorescence 95% of meningiomas light up. No correla-
tion to grade.

5/2/20 Kaneko 
et al.

32361907 Cohort 12 Fluorescence intensity and PpIX 
5–6 h after administration. Also 
compared to 229 glioblastomas

Meningiomas had higher-fluorescence 
intensity and PpIX concentration. PpIX 
cleared faster in meningiomas.

7/1/20 Wadiura 
et al.

32608510 Case 
series

191 Fluorescence of banked tissue 
samples from tumor, bone, 
arachnoidea, and dura

Fluorescence of tumor was 100%, bone 
flap 92%, arachnoidea 83%, dura 75% but 
absent from nearly all adjacent cortical 
samples

PMID, PubMed identification number.
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A B

Fig. 2 Fluorescence-guided surgery of a HGG using 5-ALA. (A) demonstrates white light visualization of the surgical resection cavity and (B) 
shows the surgical field under blue light (635 nm), with the red and pink fluorescence representing tumor cell density, compared to the normal 
brain appearing blue (devoid of fluorescence). (Permission from Hadjipanayis CG, et al. Fluorescence Guided Brain Tumor Surgery. Youmans & 
Winn Neurological Surgery, 8th ed. Chapter 157B. New York, NY: Elsevier; 2021).
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Fig. 1 Fluorescence emission wavelengths of the most commonly used fluorophores used in glioma surgery. AM, amplitude modulation; FM, 
frequency modulation; ICG, indocyanine green. (Permission from Hadjipanayis CG, Stummer W. Fluorescence Guided Neurosurgery. New 
York, NY: Thieme Medical Publishers; 2018).
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in mean PpIX concentration between HGG and LGG tu-
mors.13 Despite the reliability of visible fluorescence with 
5-ALA, using tools to quantify PpIX concentration in tumor 
cells may permit greater detection in tumors such as LGGs.

FDA Approval

While 5-ALA has been widely used throughout Europe since 
2007, it has more recently become a commonly used surgical 
adjunct in the US. Following the 2006 randomized controlled 
trial by Stummer et al. as well as multiple other multicenter 
European studies,14–16 US neurosurgeons sought FDA ap-
proval of 5-ALA, specifically for use as intraoperative optical 
agent in suspected HGG surgery.4 Other primary brain tu-
mors, such as LGGs, metastases, and benign tumors, such 
as meningiomas, are not included in the current FDA ap-
proval. After a multiyear effort, 5-ALA gained FDA approval 
in 2017, making it the first intraoperative imaging agent 
approved by the Food and Drug Administration for use in 
glioma surgery.14 Since FDA approval, 5-ALA FGS has been 
rapidly used throughout the US as an intraoperative adjunct 
for HGG surgery, and the results of the first US multicenter 
clinical trial were recently published, affirming safety, and 
efficacy of 5-ALA in HGG tumors.17

5-ALA and High-Grade Gliomas

To date, many studies have affirmed that 5-ALA is able to 
reliably differentiate between normal brain and glioma 
tissue in HGGs (Table 1). Recent analyses have shown a 
sensitivity and specificity ranging from 83%–87% to 89%–
100%, respectively.18–21 In the recent US multicenter study, 
5-ALA was found to have a sensitivity of 96.5%, with a pos-
itive predictive value of 95.4% and accuracy of 92.4%.17 In 
addition, 5-ALA can help indicate the tumor cell density by 
its fluorescence intensity, with a violet-red fluorescence 
often demonstrating the tumor core and a less robust pink 
emission in regions of infiltration near the tumor margin 
(Figure 2).22,23 Prior studies have shown 5-ALA fluores-
cence discrimination in cell density as low as 10%–20%, al-
lowing for resection beyond the contrast-enhancing border 
identified with MRI.24,25 Beyond improved detection of low-
tumor cell density, 5-ALA intensity has also been shown to 
correlate with histological grading and malignant charac-
teristics such as Ki-67 and MIB-1 index.26,27

By improving the rate of complete resection of 
enhancing tumor (CRET), 5-ALA FGS has been assessed 
for not only improvement tumor extent of resection, but 
patient outcomes as well. In a study of 52 glioblastoma 
patients undergoing 5-ALA FGS, patients with no residual 
contrast on postoperative MRI had significantly improved 
overall survival.27 To date, 5-ALA is the only fluorescent 
agent that has been studied in a large phase III randomized 
controlled trial. In 2006, Stummer et al. found that 322 pa-
tients (half undergoing 5-ALA FGS) had significantly higher 
rate of CRET, and improved 6-month PFS (41% vs 21.1%).5 
As part of this trial, patients had an average CRET rate of 
65%, which has continued to improve over the past decade 
with the use of 5-ALA intraoperative fluorescence.28–30 
To further improve the rate of CRET in eloquent-region 

tumors, multiple studies have combined brain mapping 
with 5-ALA FGS, and found that combining mapping with 
FGS improves the rate of GTR compared to literature con-
trols, with a favorable safety profile in terms of long-term 
postoperative morbidity.29,30

Beyond its evidence for improve surgical and patient out-
comes, 5-ALA has shown to be safe for use. Administered 
orally 3–4 h before induction of anesthesia (per FDA guide-
lines), Gleolan® (NXDC Corporation) is dosed at 20 mg/kg. To 
date, since first approved by the European Medicines Agency 
in 2007, thousands of patients have safely ingested 5-ALA as 
part of their presurgical preparation. Numerous clinical trials 
have confirmed patient safety, and have found only mild, re-
versible adverse effects, including transient liver enzyme ele-
vations, skin photosensitivity, and nausea.5,17,31

Neurologic deficits may transiently increase after 5-ALA 
FGS. With greater extent of tumor resection, there may be 
an increase in patient morbidity, particularly in the case of 
tumors near eloquent regions of the brain. In the 2006 ran-
domized controlled trial as well as the US multicenter trial, 
postoperative functional declines were seen in both co-
horts undergoing 5-ALA FGS 48 h after surgery. However, 
in both studies, this decline improved and the patients 
were back to baseline functional status 6 weeks following 
surgery.5,17 These findings suggest that 5-ALA FGS per-
mitted surgeons to resect up to eloquent areas, but not 
disrupt these regions, and therefore avoid permanent neu-
rological deficits.

5-ALA has been shown to be safe and effective in recur-
rent HGG resection as well as newly diagnosed tumors. 
Similar to new HGG cases, 5-ALA fluorescence is sensitive 
for detection of recurrent tumor tissue, making it an effec-
tive surgical adjunct in these tumors that have undergone 
adjuvant therapies (radiation and chemotherapy).25,32–34 
Despite its affinity for HGG tissue, 5-ALA false positive 
fluorescence has been found in gliotic tissues and other 
postradiation changes.35–38

5-ALA and Low-Grade Gliomas

While the evidence for 5-ALA FGS of HGGs is firmly estab-
lished by a number of studies, the use of 5-ALA for LGG 
has been less robust. LGG tumors are well known to be 
difficult to delineate from surrounding tumor tissue due 
to their lack of more defining features HGG tumors pos-
sess (low vascularity, low cellularity, and more infiltration). 
While 5-ALA FGS has the potential to really help neurosur-
geons identify these tumors during surgery, detection of 
fluorescence in LGGs occurs in <20% of these tumors with 
currently used visualization devices.39,40 A reliable method 
of identifying which LGGs will fluoresce has not been es-
tablished. A  new study by Müther et  al. has found that 
preoperative MRI contrast enhancement of intermediate 
grade gliomas (WHO grade II and III gliomas) strongly cor-
relates with visible fluorescence during surgery.41 They 
also found observed fluorescence with MIB-1 index but 
not with isocitrate dehydrogenase (IDH) status, 1p19q 
codeletion, or methylguanine DNA methyltransferase pro-
moter (MGMT) methylation.

Recent studies have confirmed that LGG tumors with no 
significant contrast enhancement actually have anaplastic 
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foci present characterizing malignant transformation. 
5-ALA fluorescence can detect these areas of higher pro-
liferation and malignancy for proper characterization of 
tumors.42–44 Furthermore, Hosmann et al. determined that 
patients with LGG that demonstrated fluorescence had sig-
nificantly shorter PFS and OS compared to nonfluorescing 
LGG tumors, and that intraoperative fluorescence may 
be a predictor of outcome for these patients.41 As dis-
cussed earlier, PpIX fluorescence can be detected in LGG 
tumors by novel new visualization technologies. Our 
current microscope technologies, however, may not be 
useful in detecting fluorescence in LGGs which do not 
contrast–enhance.

5-ALA and Meningiomas

Meningiomas are a new tumor type rapidly gaining in-
terest for 5-ALA FGS (Table 2). In the largest single study 
to date, Millesi et al. identified 5-ALA fluorescence in 91% 
of cases in 204 lesions in 190 patients undergoing menin-
gioma resection. In that study, they also found fluores-
cence and tumor presence with meningioma dural tails 
and overlying hyperostotic bone.45 In a series of 12 patients 
with bone-invading meningiomas, Della Puppa et al. found 
100% fluorescence in both tumor and bone invasion, with a 
sensitivity of 89% and 100% specificity for bony invasion.46 
Several other studies have assessed 5-ALA fluorescence in 
meningiomas, and have found fluorescence rates between 
83% and 94%.47,48 Interestingly, PpIX fluorescence kinetics 
appear to differ between meningioma and glioblastoma, 
with meningiomas demonstrating a higher intensity and 
rate of clearance, with no differences between samples 
from 2 atypical to 10 benign meningiomas.49

5-ALA and Brain Metastases

Cerebral metastases are the most common malignant 
brain tumor in adults with hundreds of thousands of cases 
a year. In many patients, resection of symptomatic brain 
metastases in combination with adjuvant stereotactic 
radiosurgery can improve patient outcomes.50 Gross total 
resection remains the gold standard for large, sympto-
matic metastatic tumors, particularly in cases where there 
is cerebral compression, and mass effect.51 Complete re-
sections are necessary, as subtotal resection can lead to a 
significant local tumor recurrence.52 To maximize the rate of 
CRET, fluorescence may be useful in these cases (Table 3). 
Due to the heterogeneity of metastatic lesions originating 
from many different primary cancers, 5-ALA does not fluo-
resce in all cases. To date, primary cancers with cerebral 
metastases known to fluoresce with 5-ALA are epithelial in 
origin and include lung, breast, colon, bladder, and mela-
noma.7 However, in a study of 154 patients with 157 met-
astatic tumors, Marhold et al. found a visible fluorescence 
rate of 66%, with 84% of cases showing heterogeneous 
fluorescence.53 Mercea et  al. saw visible fluorescence in 
69% of metastatic tumor samples, and found that 5-ALA 
fluorescence was associated with angiogenesis and 
subsequent poorer patient survival.54 5-ALA-induced 

fluorescence has also been shown in areas of edema sur-
rounding metastatic tumors and therefore must be used 
with caution in these cases.55,56

5-ALA and Radiotherapy

For malignant gliomas, local recurrence most commonly 
occurs within 2  cm of the primary tumor location.57 
Brachytherapy, a type of internal radiation therapy, at-
tempts to solve this problem, by locally placing focal ir-
radiation in the tumor-treated field. In previous studies, 
brachytherapy has been shown to have added survival 
benefits in recurrent glioblastoma.58,59 In a prospective 
study of 17 patients receiving salvage fluorescence-guided 
re-resection, high-dose brachytherapy, and temozolomide, 
patients experienced an increased survival benefit of 
3  months compared to temozolomide controls.57 In this 
study, 5-ALA was thought to improve the efficacy of adju-
vant therapies, such as brachytherapy, by improving the 
possibility of gross total resection.

The role between 5-ALA and radiation therapy has yet to 
be fully established. PpIX has been shown to increase re-
active oxygen species byproducts of ionized radiation, and 
in a recent in vivo study, mouse models treated with 5-ALA 
before radiotherapy experienced slower tumor progression 
and tumor regression compared to radiotherapy alone.60 
In a review of 11 studies on 5-ALA radiodynamic therapy 
(RDT), primarily consisting of in vitro and in vivo studies 
with several case reports, Nordmann et al. found that RDT 
offers a promise for adjuvant therapy in HGG, however, 
further clinical investigation is warranted.61 Future clinical 
studies should assess the role of intraoperative photody-
namic therapy with brachytherapy, to assess the utility of 
this potential synergism that has been shown in preclinical 
models.

Future Directions

While 5-ALA has undoubtedly transformed the care of pa-
tients with HGGs in the setting of traditional microscopic 
resection,62 future directions revolve around improving the 
versatility of this tool, both in terms of precision/quantifi-
cation of PpIX as well as increasing its compatibility with 
new surgical tools. Although HGGs often appear pink at 
the tumor margins under microscopic visualization, cur-
rent methods lack quantitative specificity that may facili-
tate decision-making in eloquent areas where metabolite 
concentrations may be below the visualization threshold.63 
As such, several novel techniques have been proposed 
to identify PPIX, and may provide a future benefit in 
challenging cases.

Raman spectroscopy involves the use of monochromatic 
light to create a molecular identification profile for spe-
cific compounds. At present, several pilot studies have ex-
plored the ability of this technology to identify PpIX within 
brain tissue in both in vivo as well as ex vivo settings. 
Desroches et  al. developed an in-human Raman spec-
troscopy system that was integrated with a brain biopsy 
tool. The authors examined this for 3 patients undergoing 
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stereotactic needle biopsy and were able to collect spectra 
that clearly differentiated tumor from normal brain.63 
Future uses of this technology may revolve around incor-
poration of Raman spectroscopy within intraoperative 
handheld tools.64 Contact of this tool with the tumor-brain 
interface could offer a mechanism of identifying residual 
tumor that was not previously visualized, and potentially 
increase the extent of resection in both HGGs and LGGs.

Other technologies have been developed for similar pur-
poses. Optical sectioning microscopy is an adjunct tool 
that can elicit subcellular foci of fluorescence in areas that 
are traditionally challenging to detect, such as for LGG and 
HGG-brain parenchyma interfaces.65 Meza et al. analyzed 
samples from 7 patients with LGG using dual-axis confocal 
microscopy, demonstrating consistent detection of PPIX 
throughout the samples, with resolution that was compa-
rable to histologic samples.66 Other authors have explored 
similar technologies, with potential future translation to 
human models. Belykh et  al. employed a scanning fiber 
endoscope (SFE) to optimize PPIX detection, and demon-
strated that this tool had improved sensitivity when com-
pared to the operating microscope in rats with gliomas.67 
Further investigations of these instruments in patients 
undergoing resection will be important in clarifying their 
role within the clinical workflow.

The increased versatility and precision of 5-ALA detec-
tion may consequently improve its utility for other tumor 
types. LGGs are known to accumulate PPIX, and extent 
of resection remains critically important to maintaining 
successful outcomes in these patients. Other lesions with 
previously reported intraoperative fluorescence include 
hemangioblastomas, CNS lymphomas, meningiomas, 
metastatic tumors, and subependymomas.12 Due to the 
heterogeneous nature of fluorescence among these tumor 
types, the use of PPIX quantification may be particularly 
useful in harnessing the full utility of 5-ALA.

Conclusion

In the present era, tumor surgeons are held to the high 
standard of near total resection, when feasible, with min-
imal associated morbidity. Fluorescence-guided surgery, 
and particularly 5-ALA PpIX fluorescence, has been es-
tablished as a reliable surgical adjunct to delineate tumor 
tissue from the surrounding brain during resection. 5-ALA 
has been shown to be safe and effective in multiple tumor 
types and has been most widely studied in the HGG pop-
ulation. Improving technologies to more precisely detect 
5-ALA PpIX fluorescence will further advance our detection 
of brain tumors in the operating room.
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