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Abstract

Developing reliable biomarkers of tumor cell drug sensitivity and resistance can guide
hypothesis-driven basic science research and influence pre-therapy clinical decisions. A
popular strategy for developing biomarkers uses characterizations of human tumor samples
against a range of cancer drug responses that correlate with genomic change; developed
largely from the efforts of the Cancer Cell Line Encyclopedia (CCLE) and Sanger Cancer
Genome Project (CGP). The purpose of this study is to provide an independent analysis of
this data that aims to vet existing and add novel perspectives to biomarker discoveries and
applications. Existing and alternative data mining and statistical methods will be used to a)
evaluate drug responses of compounds with similar mechanism of action (MOA), b) exam-
ine measures of gene expression (GE), copy number (CN) and mutation status (MUT) bio-
markers, combined with gene set enrichment analysis (GSEA), for hypothesizing biological
processes important for drug response, ¢) conduct global comparisons of GE, CN and MUT
as biomarkers across all drugs screened in the CGP dataset, and d) assess the positive
predictive power of CGP-derived GE biomarkers as predictors of drug response in CCLE
tumor cells. The perspectives derived from individual and global examinations of GEs,
MUTSs and CNs confirm existing and reveal unique and shared roles for these biomarkers in
tumor cell drug sensitivity and resistance. Applications of CGP-derived genomic biomarkers
to predict the drug response of CCLE tumor cells finds a highly significant ROC, with a posi-
tive predictive power of 0.78. The results of this study expand the available data mining and
analysis methods for genomic biomarker development and provide additional support for
using biomarkers to guide hypothesis-driven basic science research and pre-therapy clini-
cal decisions.
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Introduction

Large-scale sequencing efforts, headed mostly by the International Cancer Genome Consor-
tium (https://icgc.org/) and The Cancer Genome Atlas (http://cancergenome.nih.gov/), have
contributed to the development of drug treatments that selectively target genomic changes; as
for example; BCR-ABLI translocations (Imatinib)[1,2], EML4-ALK translocations (EGFR and
ALK inhibitors) [3] and BRAF:V600E mutation(BRAF inhibitors)[4]. More recently, efforts to
systematically identify genomic changes that might serve as biomarkers of therapeutic drug
susceptibility have led to collaborations between The Wellcome Trust Sanger Institute and
Massachusetts General Hospital (data for more than 700 immortalized tumor cells and 138
cancer drugs) and the Broad Institute and Novartis collaboration (profiling 24 cancer drugs
across 479 immortalized tumor cells); each effort guided, in part, by the pioneering NCI60
drug screen [5]. Although critics of these efforts often note limitations of immortalized human
tumor cells to account appropriately for tumor-stroma interactions, immune surveillance,
invasion and metastasis, angiogenesis and the role of stem cell populations[6], proponents are
testing whether genomic biomarkers derived from these screens can be used reliably to assist
hypothesis-driven basic science efforts, and clinical efforts to assign therapy, monitor response
and predict outcomes (e.g. Precision Medicine, MATCH Trial, IMPACT, I-SPY). As the pipe-
line of new drug discoveries expands, progress towards achieving more effective treatments
may be aided by research efforts that vet existing, as well as develop new methods for identify-
ing genomic biomarkers that are associated with compound efficacy.

Background

The CGP[7] and CCLE[8] reports offer compelling associations between drug sensitivity (typi-
cally measured by the log of the drug concentration for 50% growth inhibition, referred to
throughout the text as GI50) and specific genomic changes, inclusive of gene expression (GE),
gene mutation (MUT), copy number (CN), and translocations. Their results find advantages of
multi-gene, versus single-gene biomarkers, as indicators of tumor cell GI50; stemming, at one
extreme, from failures to find reliable associations between a single gene’s changes and GI50;
and, at the other extreme, from instances where GI50 appears to be mediated by diverse, some-
what unconnected, multi-gene, biological mechanisms. Moreover, their expert application of
state-of-the-art data mining and statistical methods represents a systematic approach that
yielded results consistent with drug-sensitizing translocations and MUTs known to be predic-
tive of clinical outcomes. Collectively these efforts represent a crucial step in gaining an under-
standing of cancer, based on the genomic characterization of human tumor samples against a
range of cancer drug responses that correlate with genomic change. As these and other system-
atic efforts continue, it is important to recognize that public access to the CGP and CCLE data
provides a rich and unique opportunity for independent assessments of this data[9] that might
contribute to the further development of multi-featured genomic biomarkers as guides to basic
and pre-clinical research and early clinical trials. Motivated by these goals, and building from
these previous efforts, this analysis will focus on i) vetting existing results, ii) using alternative
data mining and statistical methods for biomarker discovery, iii) providing novel interpreta-
tions of the CGP and CCLE databases and iv) assessing the use of biomarkers as predictive of
tumor cell drug response.

Methods

Data mining and statistical strategies applied to the analysis of large databases are often com-
prised of standard and user-defined (ad hoc) components which can play pivotal roles in data
interpretation. The data mining and statistical strategies applied here share many similarities
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with those used in Garnett et al.[7] and Barretina et al.[8]: inclusive of hierarchical clustering,
Elastic Net (EN) regression and pathway analysis of selected genes. Noteworthy departures
include; i) modifications of their method for hierarchical clustering of GI50 values, ii) applica-
tions of EN regressions based solely on GEs, iii) followed by assessments of roles of CN and
MUT in GI50 responses, iv) extensions of EN gene sets to include Gene Set Enrichment Analy-
sis (GSEA) to hypothesize biological pathways contributing to GI50 responses, v) applying a
global analysis of GE, CN and MUT data using a false discovery rate (FDR)-adjusted selection
of significant associations of these biomarkers with drug response and vi) applications of ROC
analysis for CGP-derived genomic biomarkers as predictors of GI50 in the CCLE data. Brief
descriptions of these alternative methods and will be discussed below. More detailed informa-
tion appears in S1 File.

Hierarchical Clustering of GI50

Absence of similar GI50 values for drugs having the same mechanism of action (MOA) pres-
ents a major hurdle for attempts to associate genomic signatures with drug response; and
extend these associations to hypothesize biological processes having roles in drug efficacy. As
noted in the CGP report[7], drugs with overlapping specificity (referred to hereafter as a MOA
class) did not always share correlated GI50 values, nor did they always share genomic signa-
tures. The hierarchical cluster analysis of Garnett et al.[7] classified drugs into clusters based on
GI50 similarity, with intra-cluster drug correlations, yielding 22 community clusters, using
measures of drug sensitivity for the ~700 tumor cells in the CGP data Supplementary Table 1
[7]). While the intention of the effort here does not seek to exhaustively sample available hier-
archical clustering methods and schemes to identify community clusters, a reasonably good
association between GI50 values for drugs of a similar MOA class could be found with slight
modifications in the clustering methodology of Garnett et al.[7]. Rather than hierarchical clus-
tering based on GI50 similarity, all pairwise GI50 correlations were used for each drug and ran-
domized resampling [10] was used to determine community clusters. This clustering
procedure, available as the CRAN installed package, pvclust[10], in the R programming lan-
guage, considers the importance of sampling error’s contribution to uncertainty in cluster
results by using a randomized resampling method to identify cases that have a high frequency
of occurring as cluster members. Additional details of this cluster analysis appear in S1 File: A.
Hierarchical Clustering of GI50, Fig A, Fig B and C. Concordance between MOA class and
EN GE.

Table 1. Genes with the most statistically significant differences between MUT or CN values in sensi-
tive and resistant tumor cells using the minimal EN model of cisplatin.

MUT p-value
EWS_FLI1_MUT 0.006181
PTEN_MUT 0.007763
ERBB2_MUT 0.011771
KRAS_MUT 0.012336
APC_MUT 0.022302
CN

KDM5C.JARID1C_CN 0.005804
SSX2_CN 0.006626
KDM6A_CN 0.023417

doi:10.1371/journal.pone.0127433.1001
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Elastic Net Regression of Gene Expression

Elastic Net (EN) regression is a statistical procedure that fits a generalized linear model of
observations (genomic data) to GI50 values across a set of tumor cell. As an alternative to
grouping all the genomic data (GE, CN and MUT) into the EN analysis[7], the results here will
focus on EN analysis derived only from GEs measured in the CGP tumor cells; followed by
assessments of CN and MUT status for these EN-derived genes. EN analysis has been com-
pleted using the glmnet package[11] in the R-programming language. Glmnet provides an
adjustable parameter, o, that allows EN regression to range from a lasso (o = 1) to a ridge (a0 =
0) regression. The latter application typically generates an exact fit (GI50pedictea) Of the GI50
data (GI50,pserved) using all of the GEs for all tumor cells with a GI50 measurement, while the
lasso instance models GI50 using a reduced set of GEs to yield a less than perfect fit between
GI50pcdicted and GI50,pserved. Clearly, a model that fits GI50 perfectly, while using all of GEs,
provides no reduction in the numbers of genes for assessing their potential role as biomarkers
for a compound’s GI50. Selecting an appropriate balance between the goodness of the EN mod-
el’s fit to the data and the numbers of genes selected in the EN regression can be determined
from results obtained at different values of o.. For example, the upper panel in Fig 1 plots the
correlation coefficient (GI504pserved and GI50,redictea) Versus EN gene count for o, = 0.7. Evident
from this result is the tendency to obtain a better EN model fit with larger numbers of EN
genes. Conversely, EN results that use only a few genes appear to have a reduced capacity to
accurately predict GI50. The lower panel in Fig 1 plots the average correlation coefficient ver-
sus the average number of EN genes (with the EN regression converging for 129 of the 138
drugs) for o ranging from 0.2 to 1.0. As expected, the trend of better EN model fits using larger
numbers of genes (lower values of o) is evident. This result finds a general grouping at the
lower left corner fora in the range of 0.6 to 1.0. Using this result, a heuristic selection of a0 = 0.7
was chosen as a reasonable balance between goodness of EN fit and reduced numbers of EN
genes. Choosing o = 0.7 yielded an overall fitting accuracy of ~0.5 (r*), using an average of 75
EN genes. Analyses based on slightly lower or higher choices for o did not appear to strongly
influence the results to follow.

A typical output from the glmnet calculation, using the example of PD-0325901 (a MEK1/2
targeting compound), appears in Fig C 3. This figure displays the EN gene count versus the
model Mean-Squared Error (MSE). For this example, the model reached a minimum MSE
using 103 genes, representing a reduction of 99.2% from the 13,325 gene expressions within
the set of 514 tumor cells having a GI50 response to PD-0325901. EN regression yields a corre-
lation of 0.84 between GI50pserved aNd GI50, cdictea- Fig 2 displays the heatmap (using heat-
map.2 in the R programming language) for the 103 gene expressions across 514 tumor cells for
PD-0325901. The rightmost edge of this image displays a barplot for GI50,pserveq for these 514
tumor cells. Patchwork blocks of red and blue in the heatmap represent relatively over and
under expressed genes, respectively, exhibiting a qualitative association of these GE patterns
with the barplot of GI50 for each tumor cell displayed at the left edge. Heatmaps of EN GEs
will be used, qualitatively, for visual comparisons of over and under expressed genes associated
with drug sensitivity and insensitivity.

Concordance between MOA class and EN GE

EN regression genes can be subjected to a hierarchical cluster analysis to assess concordance
between drugs of similar MOA classes and their EN gene expressions (used to model GI50).
Concordance will be measured by determining whether a) EN genes appear as cluster neigh-
bors for drugs (i.e. MOA classes) and b) whether these EN genes are relatively unique to each
MOA class. Answering part a) will establish whether MOA concordance based on similarity in
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Fig 1. Upper panel. Plot of correlation coefficient (GI50predicted @gainst GI50,pservea) VErsus number of genes in the converged EN regression
model for a = 0.7. These results yield an average correlation of 0.69 (+0.12) between Gl50opserved @Nd GI50predictea With @ mean number of 75(+44) EN
gene expressions for 129 drugs where the EN regression converged. Lower panel. Plot of the average correlation between EN model fits versus their
average number of EN genes. Results representa ranging from 0.2 to 1.0. Error bars represent standard error of the mean. Boxed region in the lower right
displays results for a > = 0.5).

doi:10.1371/journal.pone.0127433.9001
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Fig 2. Heatmap of EN model (alpha = 0.7) for PD-0325901 (a MEK1/2 targeting compound). Figure plots the 103 gene expressions (x-axis) for the 514
tumor cells of EN model (y-axis). Results depict only tumor cells having a GI50 measurement against PD-0325901.Heatmap is ordered along each axis
according to the dendrograms displayed at the top and left edge. Over and under expressed genes are indicated by red and blue colors, respectively.
GI1500pserved for these 514 tumor cells appears as a bar graph at the right edge of the image. Bars to the left and right correspond to sensitive and insensitive
GI50 responses, respectively.

doi:10.1371/journal.pone.0127433.9002

GI50,pserved also exists when using the expression of EN genes used to model GI504pserved-
Answering part b) is pivotal for developing gene expressions as biomarkers of GI50 response to
specific MOA classes of drugs and extending these results to hypothesize biological pathways
involved in drug efficacy. A more detailed description of this analysis appears in S1 File; C.
Concordance between MOA class and EN GE:)

GSEA analysis of EN derived GEs

Following Garnett et al.[7], examination of EN genes for the most and least sensitive tumor
cells can be used to prioritize GI50-EN gene associations. Towards this end, the EN genes for
each drug were filtered by conducting a Student’s t-test to identify statistically significant

PLOS ONE | DOI:10.1371/journal.pone.0127433 July 1,2015 6/28



@‘PLOS | ONE

Mining Drug Screening Data for Biomarkers of Drug Response

Color Key

PD-0325901

Minimal EN Tumor Cells

GI50

Minimal EN Genes

Fig 3. Heatmap for minimal EN gene expressions (x-axis) versus the upper and lower 10" percentile of sensitive and resistant tumor cells (y-axis)
for PD-0325901. Relative over and under expression is denoted by red and blue, respectively. GI50 values for PD-0325901 are imbedded in the heatmap,
located as the column near the middle, labelled as GI50. GI50 values for sensitive and resistant tumor cells are indicated by blue and red colors, respectively.

doi:10.1371/journal.pone.0127433.9003

(p<0.05) EN GEs between the top most and bottom least 10 percentile of tumor cell drug
responses (this model will be referred to hereafter as the ‘minimal EN model’ for each drug).
Fig 3 displays the heatmap for the minimal EN model of the PD-0325901 example shown in
Fig 2. Rather than display GI50 as a bar graph at the edge (as in Fig 2), the GI50 data is embed-
ded into the heatmap (see column labelled ‘GI50’ located near the center of the image), where
the most sensitive cells, identified in dark blue, appear in the upper and lower portions of the
heatmap and the most resistant cells, with their GI50 values identified in red, appear in the
middle portion of the heatmap. In this example, an overall reduction of 82% (1-94/514) in
tumor cell count and a 11% reduction (103 down to 94 genes) in PD-0325901’s EN gene set
remain in its minimal EN model.

EN regression represents a means to identify a reduced set of genes whose expressions are
sufficient to yield a reasonable model of each drug’s GI50 response (cf. Fig 1) and can be used
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to hypothesize biological pathways that might play a role in a drug’s response. Many computa-
tional tools currently exist for pathway analysis (GSEA, DAVID, Ingenuity, etc.). Included in
cautionary warnings for these methods is that results can lead to over interpretations, when
genes are shared between many pathways, or yield no information, for cases either lacking sta-
tistically significant pathways or where large numbers of pathways are found that do not reveal
a consistent biological theme. GSEA[12] offers a heuristic hedge against these warnings by lim-
iting results to only pathways with at least 2 shared genes and applying a False Discovery Rate
(FDR) against a chance finding at the typical threshold of 0.05. The former requirement avoids
instances of large numbers of pathways with only one EN gene, while the latter requirement
limits the chance occurrence of pathways with many shared, and frequently occurring, genes.
Based on these considerations, GSEA, using minimal EN-derived GEs, was used to hypothesize
biological processes that might be related to drug response. GSEA reporting will be restricted
to only the topmost significant (FDR score) pathways, limited to no more than 10 cases.

Reporting of GSEA results will emphasize recurrent biological themes for significant path-
ways rather than individual pathways. As an illustration, GSEA[12] pathways, derived from
the KEGG, BIOCARTA and GO gene subsets, using the minimal EN GEs for the MEK inhibi-
tor, PD-0325901, are listed in Table C. These results find DNA_REPAIR as the GSEA pathway
with the best statistical significance, with RESPONSE_TO_DNA_DAMAGE_STIMULUS and
DNA_METABOLIC_PROCESS as the next most significant pathways. Further down the list
are three pathways related to SIGNALLING. The general themes of these GSEA results indicate
that the tumor cell response to PD-0325901 would be hypothesized to involve DNA and SIG-
NALLING. Evidence of an association between MEK-ERK signaling and DNA_REPAIR has
been reported by Sato et al.[13] and Marampon et al.[14], leading to the proposal of using
MEK inhibitors to increase tumor cell radiosensitivity by down regulating DNA repair signals.
More recently Pei et al. [15] have proposed a combination therapy for multiple myeloma using
a CHK1 inhibitor to prevent cells from arresting in stages of the cell cycle that facilitate the
repair of DNA damage and a MEK inhibitor to prevent cells from activating a variety of pro-
teins that regulate DNA repair processes while promoting the accumulation of pro-death pro-
teins. The GSEA findings here, of pathway themes related to DNA repair or damage and cell
signalling, are consistent with hypothesizing a role of PD-0352901 in signals related to DNA
maintenance.

Considerable caution must be applied when interpreting these results. For example,
although the other three MEK1/2 inhibitors, CI-1040, AZD6244 and RDEA199, appear within
the same cluster, based on GI50 (Table A) and EN GEs (Table B and Fig D), only AZD6244
shares some of its GSEA pathways with PD-0325901, while CI-1040 and RDEA119 do not.
Collectively, these results, while supporting a general consistency within these MEK1/2 inhibi-
tor’s GI50 profiles (Table A), with a sufficiently unique set of EN genes for them to appear
within common clusters (Table B and Fig D), yield EN genes sufficiently different from each
other to generate non-overlapping GSEA pathways. A plausible factor contributing to these
EN-gene GSEA differences may be cellular potency, where PD-0325901 is, on average, more
than an order of magnitude more potent than the other three MEK1/2 inhibitors for the CGP
tumor cells. Apparently the EN genes for PD-0325901 are sufficiently unique to reveal its role
in DNA maintenance and signaling not found for the other MEK1/2 inhibitors. These results
emphasize the likelihood that although compounds may share a putative MOA target and gen-
erate similar GI50 responses, GSEA of minimal EN genes represents only a hypothetical associ-
ation between unique sets of EN genes and specific biological processes related to each drug’s
GI50. While existing literature support will be provided for GSEA selected pathways, biological
confirmation will clearly be required.
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Global analysis of CN and MUT for minimal EN GEs

The results for individual drugs can be extended to include a global analysis of the CGP data
describing MUT's and CN changes that potentially play a role in drug response. Analogous to
the earlier analysis, where minimal EN genes were identified based on having a statistically sig-
nificant difference in GE between the most and least sensitive tumor cells, significant gene
MUTs and CN changes can be determined in an identical manner. Selecting each drug’s mini-
mal EN tumor cells, a two-tailed Student’s t-test was used to calculate all the p-values based on
MUT or CN differences between the most sensitive and resistant tumor cells. These results
were filtered by using a Benjamini-Hochberg (B-H)[16] false discovery rate of 0.1 to identify
significantly different biomarkers. The t-statistic for these comparisons provides a convenient
measure for hierarchical clustering of significant results. Heatmap visualizations can be color-
coded from blue to red to indicate the strength of statistical significance, where the red portion
of the spectrum reflects cases where the resistant tumor cells exhibit higher biomarker
responses when compared to the sensitive tumor cells and the blue portion of the spectrum
represents the case of higher biomarker values in the sensitive tumor cells when compared to
the resistant tumor cells. The numbers of significant MUT's are sufficiently small to associate
subsets of genes to specific GSEA pathways. In contrast, the numbers of genes with significant
CN changes are sufficiently large to require further hierarchical clustering of GSEA pathways
for ease of interpretation.

GSEA analysis of significant MUTs and CNs

Heatmap visualizations of the statistically significant MUTs and CNs that pass the BH-adjusted
threshold for statistical significance can be used for a globally-based GSEA. The cluster dendro-
grams of significant CN and MUT's can be cut to yield small groups of genes for GSEA. These
results generate a globally-derived FDR-adjusted significance score for biological pathways
associated with sub-clusters of minimal EN GEs. Clustering of these globally-derived scores
can be used to associate GI50 responses with biomarkers having statistical significance between
resistant and sensitive tumor cell responses.

ROC analysis of CGP GEs as predictive of CCLE drug response

‘Signature’ genes are commonly used to assess whether a subset of gene expressions are suffi-
ciently comparable to indicate a likelihood of a similar biological condition or therapeutic
response [17,18]. Minimal EN GEs may also be proposed as signature genes for predicting
drug response. In order to test this premise, the minimal EN GEs developed for the CGP set of
drugs were used to select for non-CGP tumor cells with matching GEs as predictors of drug
efficacy for test drugs. Failure to achieve any success with this method could influence future
applications of this approach. However, moderate success may offer motivation for devising
more optimal steps for achieving favorable outcomes with this approach. The CCLE dataset
(24 drugs tested against 479 tumor cells) shares 16 drugs with the CGP datasets. Using the
CGP-derived minimal EN model for each of the 16 matching drugs, GEs between these two
datasets will be compared (using their mean squared error, MSE) and used to rank the com-
plete set of CCLE’s tumor cells. In order for the ‘test’ biomarker to have predictive utility, MSE
scores must correctly rank a CCLE tumor cell’s drug response within the top (sensitive) or bot-
tom (resistant) of all CCLE tumor cells. Only the top 5™ percentile of MSE scores for the CCLE
tumor cells will be selected. It is noteworthy to re-emphasize that the minimal EN model uses
GEs to predict GI50. Thus sensitivity and resistance are integral parts of this model. Standard
assessment of false/true-positives/negatives using ROCS will be used to evaluate results.
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Results
Hierarchical clustering of G150

The concordance between drugs of the same MOA class and GI50 finds reasonably good agree-
ment. Using a modified hierarchical clustering (pvclust) and a modified metric (all-to-all corre-
lations of GI50), over half (16/30 = 0.53) of the drugs that share a MOA class also appear
within the same community cluster; with 4 of the 5 SRC agents common to one cluster. This
analysis was extended to determine the concordance between MOA and co-clustering of EN-
derived GEs (see S1 File. - C. Concordance between MOA class and EN GE for more details).
Filtering the 129 drug’s EN regressions that converged and yielded greater than 10 EN genes
yielded fewer than ~2k of the original 13,325 GEs for the 87 drugs that share at least 2 EN
genes. Hierarchical clustering of the gene expression for these filtered genes (Fig D) finds that
greater than two-thirds (59/87 = 0.68) of the EN gene expressions for drugs with a shared
MOA appear in the same cluster. These results indicate that hierarchical clustering, based on
GEs derived from EN-regression models of GI50, yields a higher concordance within MOA
drug classes when compared to clustering based on GI50 similarity alone. The average overlap
of only 1.67 between EN-genes for each drug suggests that EN-genes are relatively unique for
each drug. Collectively, the relatively high concordance, using either GI50 or EN-derived GEs
that model GI50, and the existence of relatively few shared genes in each drug’s EN model, sup-
port the potential application of gene-based measures as unique biomarkers for GI50.

Minimal EN regression

Each drug’s minimal EN model yields a reduced set of genes that may play a role in its GI50.
Following the report of Garnett et al.[7], the minimal EN GEs, CNs and MUTs with the great-
est statistical significance between sensitive and insensitive tumor cell response can be exam-
ined for consistency with literature reports, as well as hypothesizing novel biological roles in
each drug’s response. Results for selected compounds will be reported.

Cisplatin. The first example, using the DNA cross-linker, cisplatin, confirms the results of
Garnett et al.[7] Seventy EN genes and 108 tumor cells define its minimal EN model. Statistical
analysis of significant differences in CN and MUT status of only the minimal EN genes for the
cisplatin sensitive and resistant tumor cells (listed in Table 1) finds that sensitivity to cisplatin
is associated with MUTs in EWS_FLI1, PTEN, ERBB2 and APC (http://cancer.CGP.ac.uk/
CGP/gene/overview?In=APC and Niedner et al.[19]). Not included in the CGP report [7] is the
appearance of KRAS_MUT as a potential biomarker of cisplatin sensitivity. Support for this
additional perspective appears recently in Lin et al.[20], where KRAS_MUT was found to be a
predictor of sensitivity to the cisplatin analog oxaliplatin. KRAS overexpression by mutant vec-
tors caused excision repair cross-complementation group 1 (ERCC1) down regulation in pro-
tein and mRNA levels, and enhanced oxaliplatin sensitivity. The importance of XRCC1 in
cisplatin sensitivity is further supported by Xu et al.[21] where the protein expression of
XRCC1 was significantly increased in cisplatin-resistant cells and independently contributed to
cisplatin resistance. The results in Table 1 also extend the cisplatin analysis to hypothesize
roles in cisplatin sensitivity for CN changes of two histone lysine demethylases (KMD6A_CN
and KMD5C.JARDIC_CN). Epigenetic roles of histone lysine demethylases are beginning to
emerge as important in breast and ovarian cancers [22].

Bortezomib. The minimal EN regression model for bortezomib consists of 44 genes and
64 tumor cells (Fig E), which modeled GI50,perveq With a correlation coefficient of 0.69. Statis-
tical results for the top most significant differentially expressed minimal EN genes between sen-
sitive and insensitive tumor cells are listed in Table 2. The appearance of NQO2 at the top of
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Table 2. GEs with the greatest statistical significance for comparisons between the sensitive and
resistant tumor cells from the minimal EN model of bortezomib.

Gene p-value

NQO2 6.41E-06
HTRA1 1.20E-05
TLR3 1.82E-05
EGR1 1.86E-05
PARVA 2.35E-05
PRKAG1 3.26E-05
EGR3 6.30E-05
ITM2B 1.40E-04
C100RF56 1.75E-04
HEAB 4.29E-04

doi:10.1371/journal.pone.0127433.t002

this list may offer exploitable information about bortezomib therapy. NQO?2 is a flavoprotein,
functioning as a quinone oxidoreductase, known to protect cells against radiation and chemical
induced oxidative stress. The 20S proteasome and NQO?2 both interact with myeloid differenti-
ation factor C/EBPalpha [23]. Another quinone oxidoreductase, NQO1, was found by CCLE
[8] to be the top predictor of sensitivity to the Hsp90 inhibitor 17-AAG. Hsp90 plays a role in
the assembly and maintenance of the proteasome [24]. Simultaneous inhibition of Hsp90 and
the proteasome enhances antitumor activity of both drugs[25]. Although the exact mechanism
for this observation is not yet resolved, the result presented here suggests a dual role for qui-
none oxidoreductase biomarkers (NQO2, NQO1) in the use of HSP90/proteasome targeting
agents as single and combined therapies[25].

Temsirolimus. The next example, for the mTOR targeting agent temsirolimus, yielded a
minimal EN model consisting of 67 genes and 108 tumor cells. A Student’s t-test for CN differ-
ences between the sensitive and resistant tumor cells of temsirolimus’ minimal EN model finds
the most significant difference (p<0.00044) for the DNA helicase protein, WRN. Diseases
affected by abnormal ribosome biogenesis via modulation of components which impact on Pol
I transcription [26] include Blooms and Werner Syndrome [27]. There have been numerous
clinically approved drugs whose therapeutic affect is mediated, at least in part, through disrupt-
ing ribosome biogenesis, including actinomycin D, cisplatin, irinotecan/topotecan, mitomycin
C, 5-fluorouracil and temsirolimus [26]. In the case of temsirolimus, rRNA synthesis is inhib-
ited by interfering with mTORCI activity [26]. The results here find that an increased CN for
WRN corresponds to enhanced temsirolimus sensitivity and may provide a biomarker for sen-
sitivity to temsirolimus. Previous studies by Zoppoli et al.[28] and CCLE[8] have found that
another DNA/RNA helicase, Schlafen-11 (SLEN11), sensitizes cancer cells to DNA-damaging
agents. These results suggest an expanded role for DNA helicases in drug sensitization and
their potential use as predictors of drug effects for agents targeting ribosome biogenesis.

No genes are shared between the minimal EN model for the mTOR targeting agents, rapa-
mycin and temsirolimus. While this appears to be a surprising result, given that both agents
have the same putative target, none of their minimal EN model tumor cells are common to
both drugs. In addition, none of the CN data for the rapamycin resistant versus sensitive tumor
cells achieve statistical significance, while three MUTs have relatively weak statistical signifi-
cance (CDKN2a_MUT; p = 0.031, FBXW7_MUT; p = 0.048 and MYCN_MUT; p = 0.025).
Collectively, these results add further support to the earlier finding with MEK1/2 inhibitors
that each drug generates a relatively unique minimal EN regression model, both in terms of its
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Fig 4. Heatmap for minimal EN GEs (x-axis) versus the upper and lower 10" percentile of sensitive and resistant tumor cells (y-axis) for ABT-888.
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doi:10.1371/journal.pone.0127433.9004

genes, sensitive and resistant tumor cells and roles for metadata (e.g. CN and MUT) in drug
efficacy.

ABT-888 and Dasatinib. The next two examples will continue to focus on combining
GSEA with heatmap results using minimal EN GEs. The heatmap of the minimal EN genes for
ABT-888 is displayed in Fig 4. The GI50 values for the 108 tumor cells appear as the 3™ col-
umn from the left edge of the heatmap. Clustering of ABT-888’s EN genes places ARF4,
C200RF43, GANLT10 and CCND1 together with ABT-888s GI50 profile, with greater sensi-
tivity associated with relative under expression of these genes. GSEA for these 28 EN genes
finds only the CELL_PROLIFERATION (GO:0008283) pathway (P<4.50e-7). Noteworthy in
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this heatmap is the correspondence of ABT-888 sensitivity with under expression of ARF4.
Recently Woo et al. [29] identified ADP-ribosylation factor 4 (ARF4) as a suppressor of N-
(4-hydroxyphenyl) retinamide-induced cell death. Their yeast-based functional screening for
inhibitors of Bcl-2-associated X protein (Bax)-induced cell death, identified ADP-ribosylation
factor 4 (ARF4) as a novel anti-apoptotic gene. Their result is consistent with the minimal EN
heatmap whereby under expression of ARF4 would mitigate its anti-apoptotic role, perhaps
contributing to enhanced ABT-888 sensitivity and hypothesizing ARF4 as a potential bio-
marker for ABT-888 sensitivity.

The dasatinib minimal EN heatmap (Fig 5) reveals a distinct set of seven tumor cells, all
lymphomas(MEG-01:908126:CML:blood, LAMA-84:907783:CML:blood, EM-2:906855:CML:
blood, CTV-1:753548:AML:blood, EoL-1-cell:906856:haematopoietic_neoplasm_other:blood,
BV-173:910710:CML:blood and BL-70:910707:Burkitt_lymphoma:blood), that exhibit the
greatest sensitivity to dasatinib, with its GI50 indicated by the dark blue vertical band in the
central portion of the image. GSEA for the minimal EN genes associated with dasatinib sensi-
tivity are listed in Table D. While the CASPASE and APOPTOTIC pathways would be
expected, as found in the CGP report[7], three of these GSEA pathways involve molecular traf-
fic. Previous studies have demonstrated that SRC Family Kinases (SFKs) influence nuclear
EGEFR translocation and expression[30]. More recently Brand et al.[31] report that inhibition
of nuclear EGFR translocation leads to a subsequent accumulation of EGFR on the plasma
membrane, which has been observed to enhance sensitivity of triple negative breast cancer cells
to cetuximab [32]. The studies of Brand et al. [31] suggest that targeting both the nuclear
EGFR signaling pathway, through the inhibition of its nuclear transport, and the classical
EGEFR signaling pathway, with cetuximab, may be a viable approach for the treatment of
patients with triple negative breast cancer. These results follow earlier studies by Kahn et al.
[33] supporting the role of transport in the effectiveness of SRC targeting agents. EGFR down-
regulation was found to involve trafficking of activated receptor molecules from the plasma
membrane, through clathrin-coated pits, and into the cell for lysosomal degradation, where
oxidative stress was found to play a role in transporting EGFR to a perinuclear location, where
it is not degraded and remains active. Thus, drugs affecting tumor growth may involve factors
that activate EGFR and factors that modulate EGFR trafficking from the plasma membrane to
sites within the cell.

Global analysis of CN and MUT in minimal EN GEs

The previous sections illustrate the analysis of minimal EN genes, directly, to identify GEs that
correlate with each drug’s GI50, and indirectly, via GSEA, to propose testable hypotheses about
pathways involved in drug response. This approach can be extended to provide a global analy-
sis of the CGP data describing MUT's and CNs that potentially play a role in drug response.
The results for significant gene MUT's will be discussed first. Thirty-three percent of the 85
genes with mutation data (28 /85 MUTs = 0.33) for 41 of the 138 drugs screened achieved B-H
adjusted statistical significance. Table E summarizes the total counts for a gene MUT appear-
ing in these 41 drugs, as well as the total counts for a drug appearing in these 28 MUTs. Sum-
marizing these results, a maximum of 24 drugs had CDKN2a.p14_MUT, while only single
MUTs were found for SMAD4, MDM2, EGFR and CDH1. Drugs AZD7762, CEP-701 and
camptothecin had greater than 8 significant gene MUTSs, while only single MUT's were found
for RDEA119, PD-173074, PD-0325901, NU-7441, Embelin, CI-1040, Bexarotene, AZD6244,
AP-24534 and ABT-263. These results indicate the existence of shared MUT's across drugs
from different MOA classes and the possibility for combinations of MUTs playing roles in
drug response.
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doi:10.1371/journal.pone.0127433.9005

Fig 6 displays the heatmap for the drug-MUT combinations achieving B-H adjusted statisti-
cal significance across all compounds tested in the CGP database. The metric used for cluster-
ing this data is based on the t-statistic generated from the Student’s t-test, where shades of red
or blue indicate cases where the MUT appears predominately within the sensitive or insensitive
tumor cells, respectively. To summarize these results, the row (drugs) and column (MUTs)
dendrograms in Fig 6 have been collapsed into 5 and 6 meta-clades, respectively, labelled a-e
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doi:10.1371/journal.pone.0127433.9g006

and A-F, appearing as bars at the base of each dendrogram. Clustering of the drugs (i.e. rows)
will be considered first. The row dendrogram at the left edge divides the drugs into a lower
branch (row-clades a and b) and an upper branch (row-clades ¢, d and e); distinguished mainly
by the presence or absence of CDKN2a_MUT and CDKN2a.p14_MUT. The upper branch is
turther divided into sub-branches that either lack other significant MUTs (row-clade c) or
have at least one significant MUT (row-clades d and e). The lower branch of drugs, lacking
CDKN2a_MUT or CDKN2a.p14_MUT, is divided into those with BRAF_MUT (row-clade a)
and without BRAF_ MUT (row-clade b). Row-clade a is comprised of tumor cells sensitive to
six drugs (PD-0325901, RDEA119, CI-1040, AZD6244, Embelin and PLX4720). Row-clade b,
which lacks either BRAF_MUT or CDKN2a.p14_MUT, is comprised of twelve drugs (681640,
NU-7441, BAY_61.3606, AZD-2281, camptothecin, PD-173074, DMOG, methotrexate, IPA-3,
ABT-263, gemcitabine and bicalutamide) and consists of a mixture of MUT's with significant
differences between sensitive and resistant tumor cells. Significant MUT' in row-clade b appear
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primarily at the right most columns in Fig 6 and are associated with MLLT3_MUT, NRAS_-
MUT, EWS-FLI1_MUT and NOTCH_1_MUT (column-clade F in upper dendrogram). Con-
sistent with the CGP results [7], camptothecin sensitive tumor cells have EWS-FLI1_MUT, a
feature also shared by tumor cells sensitive to AZD-2281 and BAY-61-3606 (row-clade b and
column-clade F). Within column clade F, NOTCH-1_MUT appears to be important for sensi-
tivity to ZM_447439, etoposide and AZD_7762 (row-clade d), and 681640, DMOG, metho-
trexate, IPA-3 and ABT-263 (row-clade b). Also consistent with the CGP results [7] is
lapatinib’s (row-clade d) sensitivity to tumor cells with ERBB2_MUT (column-clade E), which,
according to these results, is also accompanied by MUTs in CCND1, NF2 and SMAD4. The
importance of these co-existing mutations has been previously discussed in the CGP report|[7],
where enhanced sensitivity to ERBB2/EGEFR targeting agents appears to be related to elevated
EGER expression in tumor cells with SMAD4_MUT. The results of Fig 6 suggest potentially
important co-mutations for a majority of the drugs achieving B-H adjusted statistical signifi-
cance. Overall 60% (9 of 15 genes) of the gene MUTs independently identified in the CGP data-
set by Ding et al.[34] appear as significant MUTs in this analysis.

The column dendrogram at the top edge of Fig 6 divides the MUT genes into those found
predominately in the sensitive tumor cells (column-clades A, B and in the right-most branch of
column clade F, with the middle clades (column-clades C,D and E) are associated with MUT's
existing primarily in resistant tumor cells. Noteworthy is the co-clustering of mutated genes
MYC, KRAS, APC and PIK3CA in column-clade C and the co-clustering of RB1 and TP53 in
column-clade D. The co-existence of PIK3CA_MUT and KRAS_MUT has been observed in
non-small cell lung cancer [35]. Co-existing APC_MUT and oncogenic KRAS_MUT have
been found to enhance Wnt signaling [36] and are associated with specific chromosomal aber-
rations in colorectal adenocarcinomas [37]. In addition, an independent analysis of combinato-
rial patterns of somatic gene mutations in the CGP data also finds the co-existence of
TP53_MUT with RB1_MUT [38]. The general observation made from Fig 6 is that while
selected gene MUT's in sensitive tumor cells may contribute to drug sensitivity, of potentially
equal importance may be the contribution of co-mutated genes to drug resistance for many of
these compounds (as described above with ERBB2_MUT and SMAD4_MUT for lapatinib sen-
sitivity). To further emphasize this finding, the case of PLX4720 can be examined. PLX4720
appears as the bottom row of Fig 6 (row-clade a), with MUTs in sensitive tumor cells for
BRAF_MUT (column-clade A) and resistant tumor cells for MUTs in KRAS, APC and NF1
(column-clades C and E). Ding et al. [34] support these results with the finding of somatic
mutations in primary lung adenocarcinoma for several tumor suppressor genes involved in
other cancers, including APC and NFI1. Ahlquist et al. [39] find that RAS signaling in colorectal
carcinomas originates through alterations of RAS, RAF, NF1, and/or RASSF1A. Consistent
with the roles of MUTs in the response of PLX4720 for lung and colon cancer, analysis of the
minimal EN model for PLX4720 finds that 20% of its resistant cells to be derived from lung
cancers and 17% originating from colon cancers. Other reports find melanomas with BRAF_-
MUT are sensitive to PLX4720. Consistent with this observation, the minimal EN model for
PLX4720 finds that 36% of PLX4720 sensitive tumor cells are derived from malignant mela-
noma. Collectively, and consistent with the CGP report[7], this global analysis supports combi-
nations of MUT's to be potentially exploitable as predictive biomarkers of sensitive and
resistant drug responses.

The heatmap in Fig 7 displays the results from the analysis of CN changes that are signifi-
cantly different between sensitive and resistant tumor cells for the minimal EN models of each
drug. These results find 426 genes, from a total of 433 CNs measured in the CGP dataset, with
significant CN differences for only 38 drugs (B-H adjusted q value = 0.1). Remarkably, nearly
all of the measured CNs achieve statistical significance for at least one of these 38 drugs. As
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Fig 7. Heatmap for genes (y-axis) with significantly different CN changes between sensitive and resistant tumor cells for the minimal EN models of
each drug versus drugs (x-axis). These results find 426 genes with significant CN differences for only 38 drugs (B-H adjusted q value = 0.1). Blue and red
colors indicate CN changes occurring within resistant and sensitive tumor cell populations, respectively. Bars adjacent to left and top dendrograms identify
sub-clades members, respectively (Upper-case A-J for gene_CN and lower-case letters a-j for drugs).

doi:10.1371/journal.pone.0127433.9007

with the MUTSs results, the CN results will be summarized by referencing the collapsed clades
shown as bars at the base of each dendrogram in Fig 7. The genes in row-clades A through J
are listed in Table F. Thirty-three of these drugs are shared with the MUT results discussed
above (33/41 = 0.8, Fig 6). Inspection of Fig 7 reveals three distinctive features of these global
CN results. First, significant CN differences are nearly completely segregated between those
occurring primarily in the sensitive tumor cells (shades of red, column-clades g, h, i and j) and
those occurring primarily in the resistant tumor cells (shades of blue, column-clades a, b, ¢, d, e
and f). Second, CN changes significantly greater for the sensitive tumor cells exist only for
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1. PLX4720:BRAF (column-clade g),
2. Lapatinib:ERBB2, Bicalutamide:Androgen receptor, MG-132:Proteasome (column-clade h),

3. Bexarotene:Retinoic acid receptor, CHIR-99021:GSK3B, AZD-0530:SRC,ABL1 (column-
clade i)

4. GW_441756:NTRK1, NU-7441:DNAPK (column-clade j).

Third, the remaining 29 drugs have CN changes primarily within resistant tumor cells.
GSEA of these 426 genes with significant CN differences between sensitive and resistant
tumor cells strongly identifies pathways involved in cancer, either in their metabolic or biosyn-
thetic nuclear processes, DNA binding or transcription. Table G summarizes the top 10 GSEA
processes using these 426 genes. These results are consistent with what would be expected for

actively dividing tumor cells.

The number of genes with CN differences for each drug (i.e. number of non-zero cells for
each column in Fig 7) finds as the top four drugs; PLX4720 (n = 188 CN differences), bicalua-
mide (n = 177), MG-132 (n = 174) and lapatinib (n = 124). The following sections will expand
on the results for 3 of these drugs.

PLX4720’s EN genes have the most significant CN differences, based on their t-statistic,
ranking KIAA1549_CN, BRAF_CN and CREB3L2_CN at the top of the list. The occurrence of
BRAF_CN as the second ranking member in this set is consistent with strong literature support
for the PLX4720-related compound vemurafenib targeting BRAF in the treatment of mela-
nomal40]. The top ranked member, KIAA1549_CN, represents a novel finding. The protein
encoded by KIAA1549 has been found to be fused to the BRAF oncogene in many cases of pilo-
cytic astrocytoma. The fusion results from 2Mb tandem duplications at 7q34 (provided by
RefSeq, Oct 2012). Less is known about the third ranking CN gene, CREB3L2 (cAMP respon-
sive element binding protein) in PLX4720 sensitivity. The recent discovery of a novel
CREB3L2-PPARgamma fusion mutation in thyroid carcinoma with t(3;7)(p25;q34), demon-
strated that a family of somatic PPARgamma fusion mutations exist in thyroid cancer [41].
Four of the 26 CGP tumor cells exhibiting sensitivity to PLX4720 are thyroid in origin. The
extent to which CN changes in CREB3L2 influence PLX4720 sensitivity will require further
study. Alternatively, studies have shown that the PLX4270 analog, vemurafenib, is a potent
inducer of endoplasmic reticulum stress-mediated apoptosis[42]. CREB3L2, also known as
BBF2H?7, is an ER-resident transmembrane protein with the bZIP domain in the cytoplasmic
portion that is cleaved at the membrane in response to ER stress. The cleaved fragments of
BBF2H7 translocate into the nucleus and can bind directly to cyclic AMP-responsive element
sites to activate transcription of target genes[43]. Notably, BRAF and CREB3L2 are both in the
KEGG pathway for prostate cancer, thus raising the possibility that PLX4720 may also play a
role in interfering with CREB3L2 binding to DNA and impacting transcription, possibly in
prostate cancer. Only 5 tumor cells of prostate origin are included in the CGP data.

Lapatinib’s EN genes (column-clade j, Fig 7) with CN changes having the greatest statistical
significance are all located in row-clade I and consist of HOX family members HOXAJ9,
HIXA11 and HOXA13. Gilbert et al.[44] report that HOXA9 regulates BRCA1 expression to
modulate a human breast tumor phenotype. Their study identified homeobox A9 (HOXA9) as
a gene frequently down regulated in human breast cancers, and noted that reduced HOXA9
transcript levels are associated with tumor aggression, metastasis, and patient mortality.
Restoring HOXA9 expression repressed growth and survival and inhibited the malignant phe-
notype of breast cancer cells in culture and in a xenograft mouse model. Gilbert et al.[44] spec-
ulate that HOXAY restricts breast tumor aggression by modulating expression of the tumor
suppressor gene BRCAL. The finding here supports the use of HOXA9_CN as a predictor of
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lapatinib sensitivity. Increases in EGFR_CN for lapatinib sensitive tumor cells are also located
in row clade I, placing 9™ in the gene rankings, based on their t-statistic. EGFR_CN has been
proposed as a predictor of lapatinib sensitivity in HER2-positive metastatic breast cancer [45].

Bicalutamide (target:androgen receptor) appears in column-clade j (Fig 7), with EN genes
having the most significant CN changes all located in row-clade D. The genes with the most
significant CN changes are TSC1, CD74, APC and NOTCH-1. GSEA results place these genes
in pathways associated with NEGATIVE REGULATION OF CELLULAR PROCESSES and
CELL PROLIFERATION. These 4 genes have indirect and direct associations with autophagy.
For the case of TSCI, the interaction is indirect. Androgen deprivation, or treatment with the
anti-androgen bicalutamide, has been reported to promote autophagy[46]. This effect could be
dramatically reduced after depletion of Atg5 and Beclin-1, two canonical autophagy genes, and
was associated with inhibition of the androgen-induced mTOR pathway, with a significant
increase in bicalutamide-induced cell death. The mTOR complex functions as a nutrient/
energy/redox sensor and controller of protein synthesis. Most of the variables required for pro-
tein synthesis affect mTOR activation by interacting with the GTPase activating TSC1/TSC2
protein complex. Elevated CN changes in TSC1 support its role in autophagy-induced cell
death. The second most significant gene with CN differences, CD74, represents another indi-
rect association with the androgen receptor. Macrophage migration inhibitory factor (MIF: a
pluripotent cytokine with important roles in many cellular processes including cell prolifera-
tion, angiogenesis, and tumorigenesis[47]) binds to CD74 to transduce signals for the secretion
of TNF-o as well as play a role in cell autophagy. Increased CD74_CN may also play a role in
bicalumide-induced cell death. Involvement of the 3" and 4™ most significant genes, APC and
NOTCH-1, in autophagy, as reported by Shimobayashi and Hall [48], find emerging evidence
into the control of mTOR by other pathways such as Hippo, WNT and NOTCH signaling.
Notably, WNT activates mTOR through loss of APC, whereas NOTCH signaling may affect
WNT signaling as an indirect regulator of autophagy[49]. These results identify a connection
between bicaluamide sensitivity and CN changes for genes involved in autophagy.

A noteworthy feature of the heatmap in Fig 7 is the complete lack of genes with significant
CN changes for the 4 drugs in column clade f (Dasatinib, WH-4_023, AP_24534 and Midos-
taurin), with the exception of CN increases in CDKN2A and CDKN2a.p14, only for resistant
tumor cells. This result hypothesizes a link between resistance to these drugs and increased
CDKN2A_CNs.

GSEA analysis of significant MUTs and CNs

Genes within row-clades A-J of Fig 7 can be examined collectively by GSEA to identify associa-
tions between CN changes and biological pathways. Fig 8 displays the heatmap for the 52 most
significant GSEA pathways derived from CN genes selected from row-clades A-J (cf. Fig 7).
The metric used for clustering is the log of the FDR qg-values determined from each GSEA
result. The tabular listing of the heatmap values appears in Table H. Column-clades H, A and
F of Fig 8 have the most significant FDR g-values among this set and are clustered as the first
three columns at the left. The CN genes for these clades identify pathways associated primarily
with

1. nucleic-acid regulation of biological processes (NUCLEUS, NUCLEIC_ACID_METABO-
LIC_PROCESS, TRANSCRIPTION, RNA_BIOSYNTHETIC_PROCESS, TRANSCRIP-
TION_DNA_DEPENDENT, RNA_METABOLIC_PROCESS, TRANSCRIPTION_
ACTIVATOR_ACTIVITY, DNA_BINDING, TRANSCRIPTION_FACTOR_ACTIVITY),
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doi:10.1371/journal.pone.0127433.g008

2. cellular metabolism (REGULATION_OF_CELLULAR_METABOLIC_PROCESS, REGU-
LATION_OF_METABOLIC_PROCESS, POSITIVE_REGULATION_OF_CELLULAR_-
PROCESS, POSITIVE_REGULATION_OF_BIOLOGICAL_PROCESS)

3. signal transduction (SIGNAL_TRANSDUCTION).

These results are consistent with the previous GSEA results for the complete set of 426
genes with significant CN differences between sensitive and resistant tumor cells.

Column-clade C in Fig 8 represents a unique sub-clade, with genes identifying GSEA path-
ways for

1. kinase activity (PROTEIN_TYROSINE_KINASE_ACTIVITY, PROTEIN_KINASE_AC-
TIVITY, PHOSPHOTRANSFERASE_ACTIVITY, KINASE_ACTIVITY, TRANSFERA-
SE_ACTIVITY_TRANSFERRING_PHOSPHORUS_CONTAINING_GROUPS),
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2. regulation of transcription (TRANSCRIPTION, TRANSCRIPTION_DNA_DEPENDENT,
TRANSCRIPTION_ACTIVATOR_ACTIVITY)

3. regulation of gene expression (REGULATION_OF_GENE_EXPRESSION).

Inspection of Fig 8 finds that CN changes for the genes in Fig 7, row-clade C, affect resis-
tance (blue shaded t-statistic) and sensitivity (red shaded t-statistic) depending on the drug. In
particular, Fig 7, row-clade C, column-clades g and h represent CN increases involved in drug
sensitivity for PLX4720 and lapatinib. The most frequently shared genes in the GSEA pathways
associated with column-clade C of Fig 8 are KIT, KDR, PDGFR1 and PDGFRA. The combined
analysis of kinase genes with statistically significant CN differences and their associated GSEA
pathways support a connection between kinase CN and tumor cell sensitivity for drugs that tar-
get kinase activity.

Fig 8 column-clades D, B, G, and column-clades I, E, ] are grouped as neighboring sub-
clades. Column-clade E, I and G are associated with helicase activity, nucleic acid binding and
DNA damage/repair, respectively. Column-clade B is associated with BIOCARTA pathways
for FCER1, AT1R and PYK2; each with roles in PKC-dependent Ca+ signaling. Noteworthy is
the absence of any significant GSEA pathways for column-clade J, which includes the
CDKN2A and CDKN2A.p14 genes.

Discussion

The results of this analysis find that minimal EN GEs, MUTs and CNs can potentially be used
as biomarkers of drug response. Choosing which biomarker provides the best indicator of drug
response represents a major challenge to their effective use. Evident from the global analysis is
that GE, MUT or CN, separately or in combination, may appear both as indicators of sensitiv-
ity or resistance, and can do so as a result of relatively high or low values, depending on the test
drug. To illustrate this point, Fig 9 plots the t-statistic for 64 cases of minimal EN genes that
collectively share statistically significant CN changes and MUTs between sensitive (t-stat >0)
and resistant (t-stat<0) tumor cells for genes in their minimal EN model. These results, repre-
senting only 17 genes and 28 compounds, can be examined for cases where MUT and CN
changes track together versus in opposite directions. Twenty-three cases exist where statisti-
cally significant CN and MUT results co-exist within the sensitive tumor cells (t-stat >0, n =6,
upper right quadrant) or resistant (t-stat<0, n = 17, lower left quadrant) tumor cells. The
lower-left quadrant is composed of MUT and CN changes for BRAF, MYC, KRAS, APC,
PIK3CA, MDM2, EGFR, CDK4, ERBB2, CCND1. The upper-right quadrant is composed of
MUT and CN changes for BRAF, APC, PIK3CA, ERBB2, CCNDI. The co-occurrence of
BRAF, APC, PIK3CA, ERBB2 and CCND1 in both quadrants indicates that their genomic
changes have roles in sensitivity and resistance, at least for the CGP drugs. The drugs associated
with these two quadrants are mutually exclusive, to suggest that apparent associations between
MUT and CN changes and drug response most likely represent distinct biological processes.
The majority of cases (n = 42, lower-right quadrant) find a discordance between CN and MUT
results such that MUT's appear in the sensitive tumor cells while CN changes appear in the
resistant tumor cells. The origins of this observation, and its consequences, will require further
study. Nonetheless, these results support relatively unique associations between a drug’s
response and MUT or CN status. In support of these findings, examination of the raw
GDS-COSIMC data, regardless of selecting subsets based on resistance or sensitivity, finds that
fifty-two cases exist where MUT and CN changes exist for a gene. One-third of these cases

(n =17) are significantly (p<0.05) anti-correlated while the remaining 35 cases are signifi-
cantly positively correlated. The 17 anti-correlated genes all appear in the lower right quadrant
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Fig 9. Plots of the t-statistic for genes sharing statistically significant CN changes and MUTs between sensitive (t-stat >0) and resistant (t-stat<0)
tumor cells for their minimal EN model. The table of tstat(CN) and tstat(MUT) values is listed in Table I.

doi:10.1371/journal.pone.0127433.g009

of Fig 9. These results suggest that the general trend of both concordance and discordance for
MUT and CN changes observed above exists within the raw data.

Genes that co-exist either as MUTs or CNs and their minimal EN GEs may offer a degree of
redundancy that strengthens their individual utility as biomarkers. Table 3 lists the 28 cases
(15 drugs and 21 genes) where a gene co-exists within each drug’s minimal EN model and has
a statistically significant difference in their MUT or CN values between sensitive and resistant
tumor cells. Cases of CN changes dominate these results, most likely because of the larger num-
bers of CN changes versus MUTs within the CGP dataset. These results suggest that the co-
existence of EN GEs, MUT's and CNs may offer strategies for prioritizing drug selection based
jointly on these three measurements. Notable in Table 3 is the occurrence of only 4 instances
where a gene is present in the minimal EN model and has a statistically significant difference in
both the gene’s MUT and CN values;

1. AZD-2281:CCND1
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Table 3. CN and MUT values that are significantly (B-H q value of 0.1) different between resistant and sensitive tumor cells. Column 1: Drug, column
2:gene_CN, column 3:gene_MUT, column 4:Drug Target.

Drug CN MUT Target
AZD-2281 CCND1 CCND1 PARP1/2
AZD-2281 IDH1 - PARP1/2
AZD-2281 IL21R - PARP1/2
AZD-2281 LMO2 - PARP1/2
AZD7762 CDK6 - CHK1/2
AZD7762 FLI1 - CHK1/2
AZD7762 PDE4DIP - CHK1/2
BAY_61-3606 KLK2 - SYK
BAY_61-3606 - TP53 SYK
Camptothecin HOXD11 - TOPA1

CEP-701 CBL - FLT3, JAK2, NTRK1, RET
CEP-701 - ERBB2 FLT3, JAK2, NTRK1, RET
Cytarabine CDKN2A CDKN2A Ara-Cytidine
Etoposide MAF - TOP2
Gemcitabine BCL10 - DNA replication
Gemcitabine JAK3 - DNA replication
Gemcitabine PDE4DIP - DNA replication
Lapatinib ERBB2 ERBB2 EGFR, ERBB2
Methotrexate IKZF1 - DHFR
Methotrexate LMO2 - DHFR
Nutlin-3a CDKN2A CDKN2A MDM2
PD-0332991 CDKN2A CDKN2A CDK4/6
PD-0332991 - RB1 CDK4/6
PF-02341066 BRAF BRAF MET, ALK
PLX4720 GAS7 - BRAF
PLX4720 IDHA - BRAF
ZM-447439 PPARG - AURKB
ZM-447439 WTH - AURKB

Dashes represent absence of statistical significance. Listing is sorted by drug target.

doi:10.1371/journal.pone.0127433.t003

2. Cytarabine, Nutlin-3a and PD-0332991:CDKN2A
3. Lapatinib:ERBB2
4. PF-02341066:BRAF.

This observation is consistent with the above noted importance of MUTs and CNs in
BRAF, ERBB2, CDKN2A and CCNDI1 for these drugs.

ROC analysis of CGP GEs as predictive of CCLE drug response

The CCLE dataset can be used to assess whether minimal EN GEs developed for the CGP set of
drugs may be used separately to select for other tumor cells with matching GEs; inferring that
tumor cells with the best matching GEs might also share the test drug’s response. Failure to
achieve any success with this method could influence future applications of this approach.
However, moderate success may offer motivation for devising more optimal steps for achieving
tavorable outcomes with this approach. The CCLE dataset (24 drugs tested against 479 tumor
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cells) shares 16 drugs with the CGP datasets. A strong positive correlation was reported in both
CN and GEs between the CGP and CCLE datasets[8]. Using the CGP-derived minimal EN
model for each of the 16 matching drugs, gene expressions between these two datasets will be
compared (using their mean squared error, MSE) and used to rank the complete set of CCLE’s
tumor cells. In order for the ‘test’ biomarker to have predictive utility, MSE scores must cor-
rectly rank a CCLE tumor cell’s drug response within the top (sensitive) or bottom (resistant)
of all CCLE tumor cells. The result of this analysis selects only the top 5 percentile of MSE
scores for the CCLE tumor cells. It is noteworthy to re-emphasize that the minimal EN model
uses gene expressions to predict GI50. Thus sensitivity and resistance is an integral part of this
model. Application of this test finds 1341 instances where CCLE tumor cells are found within
the top 5™ percentile rankings for the 16 drugs jointly appearing in the CGP and CCLE data-
sets. Fig 10 plots the Receiver Operator Curve (ROC) for this calculation; where true positives
and true negatives correspond to cases where the CGP tumor cell’s drug response and the drug
response of the best MSE-ranked CCLE tumor cells are either both sensitive or both resistant,
respectively (true positive: CGP(-):CCLE(-), true negative: CGP(+):CCLE(+), where - and +
indicate sensitive and resistant responses, respectively). False positives and false negatives cor-
respond to cases where the CGP tumor cell’s drug response and the CCLE tumor cells with the
best MSE scores for EN GEs do not agree (false positive; CGP(+):CCLE(-), false negative; CGP
(-):CCLE(+)). The AUC of 0.64 for this ROC is highly significant (p = 5.2e-17) when compared
to the null model (HO:) of no selectivity or specificity. The predictive power of 0.78 for sensitiv-
ity is an indication that within this test set of 1341 cases, ~ % of the instances of tumor cell
drug sensitivity in the CGP results also correspond to drug sensitivity for CCLE tumor cells
having similar expressions for genes in the minimal EN model of each drug. The predictive
power for resistant tumor cells is 0.54; suggesting that this approach performs slightly poorer
when predicting resistance. Collectively, these results are consistent with the greatest deviation
of the ROC from HO: occurring for cells having sensitivity to the test drug (blue to green por-
tion of the color spectrum displayed along the ROC and at the left side of the image), with the
least deviation from HO: occurring for drug resistant responses (yellow to red portion of the
color spectrum). While these findings are preliminary, they support future applications of min-
imal EN GEs models, using a ‘test’ set of tumor cell’s GEs, as an a priori means of assessing pos-
sible drug response of an untested tumor cell.

Summary

The results presented here support the shared conclusion of Garnett et al.[7] and Barretina

et al.[8] that the CGP and CCLE datasets are information-rich, yet complicated, resources that
may play pivotal roles in proposing research strategies and therapeutic decisions based on
genomic biomarkers. Confirmations of many previously reported individual drug response-
genomic biomarker associations are reported, with extensions that hypothesize, for example,
roles of i) DNA maintenance in the sensitivity to MEK1/2 inhibitors, ii) IL-8 on the sensitivity
of proteasome targeting agents, iii) autophagy on the sensitivity of mTOR targeting agents, iv)
molecular trafficking on the sensitivity of SRC targeting agents and v) the HOX gene family on
sensitivity to EGFR targeting agents. Global comparisons of biomarker associations across vari-
ous MOA classes support existing and reveal novel perspectives for roles of combinations of
GEs, MUT's and CNs in tumor cell drug sensitivity and resistance. Applications of CGP-
derived genomic biomarkers to predict the drug response of CCLE tumor cells finds a highly
significant ROC, with strong positive predictive powers for sensitivity and resistance. The ret-
rospective use of GEs, MUTs and CNs as genomic biomarkers can be expected to play strong
roles as hypothesis-generating engines for designing basic science studies, and when
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doi:10.1371/journal.pone.0127433.9010

appropriately vetted as pre-therapy biomarkers for drug selection. The collective results pre-
sented here lend support to the application and further development of biomarker discoveries
using a research model that applies novel data mining and analysis tools to link to drug
response to various aspects of the cancer genome.
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