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Distinguishing lipoma from liposarcoma is challenging on conventional MRI examination. In case of uncertain diagnosis
following MRI, further invasive procedure (percutaneous biopsy or surgery) is often required to allow for diagnosis based on
histopathological examination. Radiomics and machine learning allow for several types of pathologies encountered on radio-
logical images to be automatically and reliably distinguished. (e aim of the study was to assess the contribution of radiomics and
machine learning in the differentiation between soft-tissue lipoma and liposarcoma on preoperative MRI and to assess the
diagnostic accuracy of a machine-learning model compared to musculoskeletal radiologists. 86 radiomics features were ret-
rospectively extracted from volume-of-interest on T1-weighted spin-echo 1.5 and 3.0 Tesla MRI of 38 soft-tissue tumors (24
lipomas and 14 liposarcomas, based on histopathological diagnosis). (ese radiomics features were then used to train a machine-
learning classifier to distinguish lipoma and liposarcoma. (e generalization performance of the machine-learning model was
assessed using Monte-Carlo cross-validation and receiver operating characteristic curve analysis (ROC-AUC). Finally, the
performance of the machine-learning model was compared to the accuracy of three specialized musculoskeletal radiologists using
the McNemar test. Machine-learning classifier accurately distinguished lipoma and liposarcoma, with a ROC-AUC of 0.926.
Notably, it performed better than the three specialized musculoskeletal radiologists reviewing the same patients, who achieved
ROC-AUC of 0.685, 0.805, and 0.785. Despite being developed on few cases, the trained machine-learning classifier accu-
rately distinguishes lipoma and liposarcoma on preoperative MRI, with better performance than specialized
musculoskeletal radiologists.

1. Introduction

Lipoma and liposarcoma are soft-tissue tumors of mesen-
chymal origin, often containing visible fat on MRI exami-
nation [1]. Differentiating soft-tissue lipoma from
liposarcoma on imaging is crucial for patient management,
as their follow-up, treatment, and prognosis drastically differ
(ranging from almost 100% 5-year survival for lipoma to
60–70% [2] for liposarcoma). While some radiological
features might help identifying liposarcoma (such as size
>10 cm, thick septations, globular and/or nodular

nonadipose regions, or lesion containing less than 75% fat
[3]), a significant number of benign lipoma also have im-
aging appearance mimicking liposarcoma. (e reverse is
also true; well-differentiated liposarcoma (WDL), account-
ing for 50% of common liposarcoma [4], may also resemble
ordinary lipomas with similar imaging, making the dis-
tinction difficult on MRI. Previous study showed that spe-
cialized musculoskeletal (MSK) radiologists could
differentiate between lipoma and liposarcoma with only 69%
accuracy on MRI [5]. In case of uncertain diagnosis fol-
lowing MRI, further invasive procedure (percutaneous
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biopsy or surgery) is often required to allow for diagnosis
based on histopathological examination.

Radiomics is a method designed to extract a large
number of noninvasive, quantitative, and reproducible
characteristics from radiological images, thereby enabling
data analysis and prediction [6, 7]. Coupled with machine
learning (ML) methods, this technique allows for several
types of pathologies encountered on radiological images to
be automatically and reliably distinguished, potentially in-
creasing diagnostic accuracy and allowing for better out-
come for patients [8]. Previous studies using radiomics in
soft-tissue lesions showed that it allows the distinction
between intermediate and high-grade sarcoma [9] and could
predict histopathological grading of soft-tissue sarcoma on
preoperative MRI [10]. However, these studies did not in-
vestigate whether radiomics could help distinguish benign
soft-tissue lipoma from liposarcoma nor the accuracy of
radiomics compared to specialized MSK radiologists in such
tasks.

(e purpose of our study was to train and to assess the
ability of a predictive model based on radiomic features
coupled with ML methods to distinguish lipoma and lip-
osarcoma on preoperative MRI. We also aimed to compare
the prediction accuracy of such radiomics model with those
of specialized MSK radiologists.

2. Materials and Methods

(e study protocol was approved by the ethical committee of
our State, with a waiver of the requirement to obtain in-
formed consent. (e requirement for informed consent was
waived because (1) the study is retrospective and (2) MRI
sequences used here were part of the routine MRI protocol,
and the current study did not involve either changes in
patient clinical management nor additional diagnostic
procedure. Figure 1 summarizes the different steps of our
study.

We remind that atypical lipomatous tumor and well-
differentiated liposarcoma are synonyms that are identical
morphologically and karyotypically according to the WHO
classification (2013) of tumors of soft tissue and bone [4] and
the choice of the terminology is determined by the reciprocal
comprehension between surgeon and pathologist to prevent
impropriate treatment.

2.1. Subjects. We retrospectively retrieved from our in-
stitutional database all consecutive patients referred to our
institution for soft tissue multidisciplinary board between
January 2015 and December 2017, to identify those who
underwent MRI examination and were further diagnosed
with either lipoma or liposarcoma by histopathology (used
as the gold-standard for further classification process). In-
clusion criteria were (1) patients with soft-tissue lesion re-
ferred for investigation for specialized musculoskeletal
radiologist of our institution, with imaging protocol in-
cluding an MRI study with an axial T1-weighted Spin-Echo
(T1-SE) sequence less than 1 month before percutaneous
biopsy or surgery, (2) patients with diagnosis of soft-tissue

lipoma or liposarcoma confirmed by histopathological ex-
amination, and (3) patients with no history of surgery or
other treatment in the affected area. Exclusion criteria were
(1) poor MRI image quality or (2) soft-tissue tumor in
retroperitoneal space (as investigated with different protocol
at our institution). (us, we enrolled 38 patients referred for
radiological investigation of a soft-tissue lesion further di-
agnosed as lipoma (N� 24) or liposarcoma (N� 14, with 6
myxoid liposarcomas, 2 dedifferentiated liposarcomas, 1
atypical spindle cell lipoma and 5 well-differentiated lip-
osarcomas) on subsequent histopathological examination.

2.2. Clinical Characteristics of the Patients. (e de-
mographics and radiological characteristics of the lipoma
and liposarcoma groups are summarized in Table 1. Tumor
localization is summarized in Table 2.

2.3. MRI Examination and Lesion Segmentation. All in-
cluded patients underwentMRI on a 3.0 TeslaMRI scanner 3
Tesla Achieva MRI (Philips Healthcare, Netherlands), 3
Tesla Skyra (Magnetom Siemens Healthineers, Germany)
with a protocol including axial T1-weighted SE images
without contrast enhancement. (is T1-weighted SE image
was acquired with a slice thickness varying between 2 and
5mm according to covering area and a resolution between
0.3 and 0.5mm (spacing between slices from 2.2 to 5.5mm).
MR scanning parameters of the T1-weighted SE image are as
follows: thickness 2–5 millimeters (mm), repetition time
(TR): 470–832 milliseconds (ms), and echo time (TE): 7–
27ms. (e whole MRI session also included T2-weighted
fluid-sensitive, diffusion-weighted, and postcontrast fat-
saturated T1-weighted sequences, as part of the routine
clinical protocol of our institution.

Soft-tissue lesion segmentation was performed by a
senior board certified MSK radiologist ∗∗ (10 years of ex-
perience in MSK after board-specialization) on T1-weighted
SE images, using Slicer 3D (version 4.8.1) [11]. All seg-
mentations were performed using Fast-Grow-Cut algorithm
implemented in Slicer 3D, with a manual correction in case
of segmentation errors. When segmenting the images, the
senior radiologist was blinded to the clinical and patho-
logical diagnosis. Finally, a second radiologist (2 years of
experience) performed the same segmentation steps for a
subset of the patients (N� 12, including 6malignant lesions),
to ensure that our classification results are robust to the
segmentation procedure. (e classification performance for
this subset of patients was compared between both seg-
mentations using intraclass correlation coefficient.

2.4. Radiomics Features Extraction. Eighty-six radiomics
features were extracted from all segmented soft-tissue le-
sions (see above) using PyRadiomics (version 1.3.0) [12].
Extracted radiomics features included first-order features,
shape features, gray level co-occurrence matrix (GLCM)
features, gray level size zone matrix (GLSZM) features, gray
level run length matrix (GLRLM) features, neighboring gray
tone difference matrix (NGTDM) features, and gray level
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Figure 1: Radiomics analysis pipeline.Radiomics analysis pipeline for all included patients, showing (a) acquisition of the T1-SE image,
followed by (b) soft-tissue lesion segmentation using Slicer 3D and (c) radiomics features extraction using Pyradiomics. (d) Radiomics
features were finally used to train and assess the performance of a machine-learning classifier to distinguish liposarcoma and lipoma.
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dependence matrix (GLDM) features (Supplementary Ta-
ble 1 for details of the extracted features).

2.5. Model Construction. Our classification machine-learn-
ing model was based on a support vector machine (SVM)
classifier and trained on all previously extracted 86 radio-
mics features. Our model comprised a first standardization
step designed to normally distribute radiomic features (with
0 mean and unit variance), followed by a principal com-
ponent analysis (PCA) to reduce the risk of overfitting and
potential redundancy of radiomic features, along with a final
classification step using SVM classification algorithms
(kernel� linear, penalty parameter C� 0.1). (e SVM clas-
sifier was trained with the first principal components (PCs),
explaining 97.0% of the variance, to dampen the risk of
overfitting. (e classification process was repeated with 2,
10, and all PCs, explaining 99.8%, 99.9%, and 100% of the
variance, respectively, which did not modify the results. As
our data set contains more benign than malignant lesions,
we also repeated the classification process with different class
weights to account for class imbalance ((1.71 :1) as observed
ratio of lipoma and liposacroma, as well as [2 :1] and [1 : 2]),
which did not modify the classification performance. Finally,
we assessed the performance of three other machine-
learning classifiers in distinguishing lipoma from lip-
osacroma, by replacing our SVM with naive Bayes, linear
discriminant analysis, or logistic regression algorithms, all
with default values and using the same evaluation procedure
(Section 2.6).

2.6. Model Evaluation. To assess the generalization perfor-
mance of our predictive machine-learning model, we
computed the receiver operating curve (ROC) analysis with
Monte-Carlo cross-validation (MCCV) approach, similar to

a suggestion by Shi et al. [13]. Monte-Carlo cross-validation
randomly selects some fraction of the data to form the
training and the testing data set. (e process is repeated
multiple times (N� 325) to generate new training and testing
sets: for each iteration, one lipoma and one liposarcoma
were randomly selected for validation, whereas the
remaining 36 patients were used for training the model. (is
ensures that standardization, dimension reduction, and
machine-learning model training are fit on the training data
and then assessed to the testing data, in order to prevent any
data leakage. Using the same MCCV method, we were able
to compute the area under the ROC curve (AUC), overall
accuracy, sensitivity, specificity, and log-loss. Finally, a
permutation testing was performed using the same MCCV
methods, by randomly shuffling N-times (N� 10’000) the
test set label and by computing the prediction accuracy. (is
permutation test aimed to obtain the correct prediction
distribution under a null hypothesis, while controlling for
Type I error. All classification and evaluation steps of the
machine-learning model were carried out using the SciKit-
learn package (Version 0.19.1) [14].

2.7. Comparison between Radiomics and Radiologists’
Classification. In order to compare the performance of our
radiomics approach with those of specialized radiologist in
differentiating lipoma and liposarcoma on MRI, we asked
three MSK radiologists 2 (∗∗), 5 (∗∗), and 10 (∗∗) years of
specialized MSK experience after board-certification, for
radiologists 1, 2, and 3, respectively to classify cases as
lipoma or liposarcoma based on the whole MRI session for
all patients (see available MRI sequences in Section 2.2).
(e classification was based on (1) homogeneity/hetero-
geneity, (2) presence of thick septa, (3) restriction of dif-
fusion if present, and (4) nodular enhancement. We then
used a two-tailed McNemar test to compare radiomics
model versus the three radiologists independently and
versus the consensus made by the three radiologists (i.e.,
majority voting of the three radiologists). We also com-
puted the classification agreement between radiologists
using Kappa statistics.

3. Results

3.1. Radiomics Model Evaluation. (e radiomics model
demonstrated a high level of diagnostic accuracy, at 94.7%.
(e sensitivity and specificity were 88.8% and 100%, for
positive and negative predicting values of 100% and 78.5%.
(e radiomics model achieved an AUC-ROC of 0.926
(Figure 2 and Table 3). Permutation testing revealed that our
machine-learning model performs significantly better than
chance (p< 0.001), proving that the risk of fortuitous cor-
relation between features and outcomes remains very low.
(e three other machine-learning algorithms further
assessed also yielded classification performances signifi-
cantly better than chance (p< 0.001), with naive Bayes
classifier showing a diagnostic accuracy at 79.0% and AUC-
ROC:0.809, linear discriminant analysis with an accuracy of
89.5% and AUC-ROC of 0.929, and logistic regression

Table 1: Demographic and radiological characteristics of the li-
poma and liposarcoma groups.

Lipoma Liposarcoma p

values

Mean age (±SD) 53.64
(±12.07) 61.6 (±16.63) 0.0715

Male/female 16/8 13/1 0.559
Mean size (±SD) 8.27 (±5.09) 14.02 (±7.23) 0.0032
Location superficial/
deep 6/18 2/12 0.092

Table 2: Tumor location.

Lipoma Liposarcoma
(igh 10 5
Abdominal wall 2 2
Dorsal wall 2 3
Arm/forearm 4 —
Leg/ankle 3 —
Neck 2 —
Pelvis 1 4
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classifier having a diagnostic accuracy of 73.7% and AUC-
ROC of 0.812. Finally, we observed good intraclass corre-
lation for the classification of a subset of lesion for which the
automatic segmentation was repeated by a second radiol-
ogist (ICC� 0.70).

3.2. Radiomics and Radiologist’s Comparison. Finally, we
compared the accuracy of individual radiologists and of the
consensus of the three radiologists together to the accuracy
of the radiomics model in identifying lipoma and lip-
osarcoma (Tables 4 and 5). We found that the radiomics
model performed significantly better than radiologists 1 and
2 (p< 0.05) and with a trend to perform better than radi-
ologist 3 and than the group consensus between the three
MSK radiologists (p< 0.10). Classification agreement be-
tween the three radiologists was 0.551 using kappa statistics.

Figure 3 is an illustrative example of an atypical spindle
cell lipoma, classified as liposarcoma by the three MSK
radiologists and as a lipoma by the ML algorithm.

Figure 4 is an illustrative example of a lipoma classified
as a liposarcoma by the three MSK radiologists and as a
lipoma by the ML algorithm. In that case, the ML algorithm
outperformed the MSK radiologist.

4. Discussion

Distinguishing atypical lipoma from liposarcoma is chal-
lenging on conventional MRI examination, and previous

study showed that specialized MSK radiologists achieved
only 69% accuracy in such task [5]. Here, we show that
radiomics coupled with machine-learning methods per-
formed better than specialized MSK radiologist at dis-
tinguishing lipoma and liposarcoma on preoperative
unenhanced T1-weighted MRI, achieving 94.7% diagnostic
accuracy.

Based on morphological sequences, the diagnosis is
not always easy as nodular foci, hyperintensity on T2 fat-
saturated sequence, thick septa, and nodules on T1 lack
of specificity [15]. (e presence of mesenchymal com-
ponents or fat necrosis focus can cause nodular ap-
pearance. (is overlap [16] explains that despite the
usefulness of MRI findings for the preoperative di-
agnosis, immuno-histochemical tests such as MDM2 and
CDK4 should be considered in the majority of cases [17].
(e presence (or absence) of MDM2 and CDK4 is
gathered by biopsy or resection which may be technically
difficult to perform mainly for deep lesions. In addition,
the biopsies target in general one site in the tumor, which
may be the adipose component, generating sampling
errors [18].

In an effort to be reproducible, some teams proposed
a score to differentiate lipoma from liposarcoma based
on size, depth, septal architecture, and contrast en-
hancement with an average score of 1.7 for lipoma
compared to 5.1 for WDL achieving 100% sensitivity and
77% specificity [2].

Log-loss (Monte-Carlo-CV, n = 38): 0.236
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Figure 2: A confusion matrix showing the diagnostic performance of the model.

Table 3: Accuracies of radiologists and radiomics model in identifying liposarcoma versus lipoma.

RMX (%) RAD 1 (%) RAD 2 (%) RAD 3 (%) Consensus (%)
Accuracy 94.7 65.8 81.6 79.0 81.6
Sensitivity 88.8 76.9 76.9 76.9 76.9
Specificity 100 60.0 84.0 80.0 84.0
PPV 100 50.0 71.4 66.7 71.4
NPV 78.5 83.3 87.5 87.0 87.5
AUC 0.926 0.685 0.805 0.785 0.805
RMX: radiomics model; RAD 1, 2, and 3: MSK radiologists 1, 2, and 3; consensus: group consensus between the three MSK radiologists; PPV: positive
predicting value; NPV: negative predicting value; AUC: area under the receiver operating curve.
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Differentiation of lipoma from liposarcoma using tex-
ture and shape analysis was performed by (ornhill et al.
[19]. (ey used multiple sequences (T1-weighted, T2-
weighted, T2-weighted fat suppressed, short time inversion
recovery (STIR), and contrast-enhanced sequences) at 1.5
Tesla. Textural and morphological features extracted from
T1-weighted sequences achieved an accuracy of 85%, sen-
sitivity of 96% and specificity of 91% compared to
radiologists.

(e use of T1-weighted SE sequence in this study relied
on the robustness of this sequence. Previous publications
have demonstrated that T1-weighted sequences enable stable

extraction of features and that texture analysis based on T1-
weighted sequences acquired in different machines are
similar for the same type of tumor [20, 21]. Juntu showed
that machine-learning classifiers trained with texture anal-
ysis features extracted from the tumor areas in T1-weighted
MR images are potentially valuable tools for the differen-
tiation between malignant and benign tumors and that SVM
(support vector machine) performed as good as or better
than the radiologists [22].

(is study has some limitations. First of all, the number
of included patients is limited. Despite the relatively low
number of included patients, a Monte-Carlo cross-

Table 4: Diagnosis made by the MSK radiologist and by the ML as compared to pathology.

Pathological diagnosis Radiologist 1 Radiologist 2 Radiologist 3 ML prediction ML probability
Lipoma Lipoma Lipoma Lipoma Lipoma 0.12
Lipoma Lipoma Liposarcoma Lipoma Lipoma 0.13
Lipoma Liposarcoma Lipoma Lipoma Lipoma 0.14
Lipoma Liposarcoma Lipoma Liposarcoma Lipoma 0.12
Lipoma Lipoma Lipoma Lipoma Lipoma 0.14
Lipoma Lipoma Lipoma Lipoma Lipoma 0.12
Lipoma Liposarcoma Lipoma Lipoma Lipoma 0.13
Lipoma Liposarcoma Lipoma Lipoma Lipoma 0.11
Lipoma Liposarcoma Lipoma Lipoma Lipoma 0.11
Lipoma Lipoma Lipoma Lipoma Lipoma 0.13
Lipoma Lipoma Lipoma Lipoma Lipoma 0.36
Lipoma Lipoma Lipoma Lipoma Lipoma 0.14
Atypical lipoma Liposarcoma Liposarcoma Liposarcoma Lipoma 0.13
Lipoma Liposarcoma Lipoma Lipoma Lipoma 0.14
Lipoma Lipoma Lipoma Lipoma Lipoma 0.12
Lipoma Liposarcoma Lipoma Liposarcoma Lipoma 0.08
Lipoma Lipoma Lipoma Lipoma Lipoma 0.13
Lipoma Lipoma Lipoma Lipoma Lipoma 0.12
Lipoma Liposarcoma Lipoma Lipoma Lipoma 0.18
Lipoma Lipoma Lipoma Lipoma Lipoma 0.14
Lipoma Lipoma Lipoma Liposarcoma Lipoma 0.13
Lipoma Lipoma Lipoma Lipoma Lipoma 0.14
Lipoma Lipoma Liposarcoma Lipoma Lipoma 0.12
Lipoma Lipoma Lipoma Lipoma Lipoma 0.14
Atypical spindle cell lipoma Liposarcoma Liposarcoma Liposarcoma Lipoma 0.15
Dedifferentiated liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.65
Dedifferentiated liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.91
Myxoid liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.88
Myxoid liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.65
Myxoid liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.88
Myxoid liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.90
Myxoid liposarcoma Lipoma Lipoma Lipoma Liposarcoma 0.79
Myxoid liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.87
Well differentiated liposarcoma Lipoma Lipoma Lipoma Lipoma 0.44
Well differentiated liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.81
Well differentiated liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.78
Well differentiated liposarcoma Liposarcoma Liposarcoma Liposarcoma Liposarcoma 0.78
Well differentiated liposarcoma Lipoma Lipoma Lipoma Lipoma 0.11
ML: machine learning.

Table 5: Statistical comparison of accuracies of radiologists versus radiomics model using the McNemar test.

RMX VS RAD1 RMX VS RAD 2 RMX VS RAD 3 RMX VS CONSENSUS
CHI2 9.09 3.20 4.17 3.20
P-VAL 0.003 0.074 0.041 0.074
RMX: radiomics model; RAD 1, 2, and 3: MSK radiologists 1, 2, and 3; consensus: group consensus between the three MSK radiologists.
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validation (MCCV) proved that machine learning trained on
radiomics features achieved better performances than MSK
radiologists. Monte-Carlo cross-validation gives a more
accurate estimation of prediction ability [23]. Secondly, the
diagnostic performance of radiomics was not compared with
other common advanced MRI sequences such as diffusion-
weighted imaging, apparent diffusion coefficient, or dy-
namic contrast enhancement. Future studies using multi-
parametric MRI should investigate the added values of such
sequences [9]. Lastly, no separate cohorts were used to
validate the model.

In conclusion, we showed that radiomics and machine-
learning allow for good differentiation between lipoma and
liposarcoma on preoperative MRI, with better performance
than specializedMSK radiologists, potentially decreasing the
diagnostic uncertainty in these clinical situations [8]. Fur-
ther research is however required to determine how
radiomics might help reduce the number of invasive pro-
cedures for patients with benign soft-tissue lipoma and

fasten treatment of those with liposarcoma, allowing for
better outcome for both groups of patients.

Abbreviations

ADC: Apparent diffusion coefficient
AI: Artificial intelligence
AUC: Area under the curve
CAD: Computed assisted diagnosis
CI: Confidence interval
DCE: Dynamic contrast-enhanced
DWI: Diffusion-weighted imaging
GE: Gradient echo
MRI: Magnetic resonance imaging
RLNU: Run length nonuniformity
ROC: Receiver operating characteristic
ROI: Region of interest
mm: Millimeter
ms: Millisecond

(a) (b) (c)

Figure 3: Case of an atypical spindle cell lipoma. Perineal mass in 42-year-old man, diagnosed as suspected of liposarcoma by three
radiologists and classified as lipoma by radiomics. Histological analysis concluded to an atypical spindle cell lipomatous tumor, thus
corresponding to a low-grade liposarcoma.

Figure 4: Forearm mass in a 27-year-old man diagnosed as suspected of liposarcoma by three radiologists and classified as lipoma by
radiomics. Histological analysis concluded to a lipoma.
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MSK: Musculoskeletal
STIR: Short time inversion recovery
SVM: Support vector machine
TE: Echo time
TR: Repetition time
WDL: Well-differentiated liposarcoma.
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