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Abstract. Uveal melanoma (UM) represents the most frequent 
primary tumor of the eye. Despite the development of new 
drugs and screening programs, the prognosis of patients with 
UM remains poor and no effective prognostic biomarkers are 
yet able to identify high‑risk patients. Therefore, in the present 
study, microRNA (miRNA or miR) expression data, contained 
in the TCGA UM (UVM) database, were analyzed in order 
to identify a set of miRNAs with prognostic significance to 
be used as biomarkers in clinical practice. Patients were 
stratified into 2 groups, including tumor stage (high‑grade vs. 
low‑grade) and status (deceased vs. alive); differential analyses 
of miRNA expression among these groups were performed. A 
total of 20 deregulated miRNAs for each group were identified. 
In total 7 miRNAs were common between the groups. The 
majority of common miRNAs belonged to the miR‑506‑514 
cluster, known to be involved in UM development. The prog-
nostic value of the 20 selected miRNAs related to tumor stage 
was assessed. The deregulation of 12 miRNAs (6 upregulated 
and 6  downregulated) was associated with a worse prog-
nosis of patients with UM. Subsequently, miRCancerdb and 
microRNA Data Integration Portal bioinformatics tools were 
used to identify a set of genes associated with the 20 miRNAs 
and to establish their interaction levels. By this approach, 
53 different negatively and positively associated genes were 
identified. Finally, DIANA‑mirPath prediction pathway and 
Gene Ontology enrichment analyses were performed on the 
lists of genes previously generated to establish their functional 
involvement in biological processes and molecular pathways. 

All the miRNAs and genes were involved in molecular 
pathways usually altered in cancer, including the mitogen‑acti-
vated protein kinase (MAPK) pathway. Overall, the findings 
of the presents study demonstrated that the miRNAs of the 
miR‑506‑514 cluster, hsa‑miR‑592 and hsa‑miR‑199a‑5p were 
the most deregulated miRNAs in patients with high‑grade 
disease compared to those with low‑grade disease and were 
strictly related to the overall survival (OS) of the patients. 
However, further in vitro and translational approaches are 
required to validate these preliminary findings.

Introduction

Uveal melanoma (UM) is an uncommon type of cancer. 
However, it remains the most frequent primary tumor of the 
eye in adults. In the majority of cases, it affects the choroid (1). 
Several factors have been associated with the development 
of UM; however, its etiology remains unclear. Among these 
factors, a light skin color, eye color and chronic ultraviolet 
exposure represent the main risk factors for the development of 
this malignancy (2,3). It is known that light exposure plays an 
important role in UM development; however, UV‑associated 
mutational spectrum for UM is different from that observed 
for cutaneous melanoma (4,5).

The molecular mechanisms responsible for the carcino-
genesis of UM have been linked with oncogenic mutations 
involved in cell cycle and apoptosis. Accordingly, UMs 
exhibit an overexpression of the cell‑cycle regulatory 
protein cyclin D (CCND), implicating the involvement of the 
RAF/mitogen‑activated protein kinase kinase (MEK)/extracel-
lular signal‑regulated kinase (ERK) pathway. The activation of 
this pathway causes the phosphorylation and inactivation of 
the retinoblastoma tumor suppressor gene (6).

Mutations of the genes GNAQ and GNA11, affecting the 
RAF/MEK/ERK pathway, have been detected in approximately 
45 and 30% of UM cases, respectively. Moreover, GNAQ is 
involved in endothelin signaling, which plays a crucial role for 
melanocyte survival and expansion (7). The mutation of the 
BAP1 gene has been also identified in metastatic UM cases (8). 
Finally, the inactivation of the p53 pathway, activation of the 
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pro‑survival phosphoinositide 3‑kinase (PI3K)/AKT pathway, 
and defects in the Bcl‑2 pathway are other molecular alterations 
associated with the phenomenon of apoptosis in UM (9,10).

The diagnosis of UM is based primarily on a clinical 
examination by biomicroscopy and indirect ophthalmoscopy. 
Diagnostic procedures rarely include a histological evaluation. 
Its classification is based according to the American Joint 
Committee on Cancer (AJCC) (11). However, further diag-
nostic analyses are mandatory. In some cases, a tumor biopsy 
is useful for molecular analyses that can provide a prognostic 
value. Although improvements in the diagnosis and treatment 
of UM have been made, there is still a need for the identifi-
cation of additional early markers that can be used to define 
the diagnosis and prognosis of patients, as well as therapeutic 
targets. Among such markers, an important role is played by 
microRNAs (miRNAs or miRs), a class of small non‑coding 
RNAs with an average length of 19‑20 nucleotides, able to 
alter the expression levels of several genes, thus modulating 
several molecular and signal transduction pathways (12).

In particular, several studies have demonstrated that 
epigenetic modifications, such as miRNA de‑regulation, 
methylation or microbiota composition, play a key role in the 
regulatory mechanisms of different cellular processes, as well 
as in the regulation of carcinogenic processes (13‑16).

Over the past years, the development of novel 
high‑throughput technologies for genetics and epigenetics 
analyses has allowed researchers worldwide to collect a 
huge amount of molecular data for different types of tumors. 
To date, the majority of these data are collected within the 
public database ‘The Cancer Genome Atlas  (TCGA)’, a 
program created by the National Cancer Institute (NCI) and 
the National Human Genome Research Institute (NHGRI) that 
has generated comprehensive, multi‑dimensional maps of the 
key genomic changes in 33 types of cancer (17). Furthermore, 
to manage the enormous amounts of molecular data, each 
year, several new bioinformatics software are created to allow 
users to analyze the numerous data contained in TCGA and to 
perform different correlation studies (18).

Upon these bases, in the present study, different computa-
tional approaches were used to analyze the data contained in 
the TCGA UM (UVM) database in order to identify miRNAs 
which are able to be used as prognostic biomarkers for the 
management of uveal melanoma.

Materials and methods

Data source of UM miRNA expression profiles. The UM 
dataset of miRNA expression profiles was obtained from the 
UCSC Xena Browser (https://xenabrowser.net/) containing 
all UM molecular profiling data deposited on The Cancer 
Genome Atlas data portal (TCGA). As regards UM, the TCGA 
UVM cohort was selected for this study (https://xenabrowser.
net/datapages/). The ‘Phenotype’ and ‘miRNA mature 
strand expression RNAseq by Illumina Hiseq’ datasets were 
downloaded in order to analyze the miRNA expression levels 
according to the clinicopathological data contained in the 
‘Phenotype’ dataset and relative to 80 patients with UM. The 
datasets analyzed did not contain any normal samples.

From the ‘miRNA mature strand expression RNAseq by 
Illumina Hiseq’, the expression levels of 80 patients with UM 

were analyzed. In particular, the dataset contained the expres-
sion levels of 1,938 different mature miRNAs. However, for 
some of the 80 patients with UM some miRNA expression 
levels were missing (NA value); therefore, only miRNAs with 
the expression data of at least 50% of the patients (n=40) were 
considered for further analysis in order to avoid the analysis of 
miRNAs with non‑representative expression levels. Therefore, 
the differential analyses were performed on 795  mature 
miRNAs.

Differential analyses of miRNA expression levels according 
to tumor stage and vital status. For the differential analyses, 
the 80 patients with UM were clustered according to tumor 
stage (T3‑T4 vs. T1‑T2 or high‑grade vs. low‑grade) and 
according to the vital status (deceased vs. alive). Following 
patient stratification, the downregulated and upregulated 
miRNAs were identified by calculating the fold change 
value obtained through the differential analysis between the 
high‑grade and deceased groups compared to the low‑grade 
and alive groups, respectively. For further analyses, only 
the miRNAs differentially expressed with a P‑value <0.01 
were selected. Subsequently, as reported in our previous 
studies, the top 10 lists of the most significantly downregu-
lated and upregulated miRNAs were performed in order 
to select the 20 most representative deregulated miRNAs 
(top 20) (19‑21).

Differential analyses were conducted only taking into 
account the tumor stage and vital status of patients as other 
clinical data (e.g., the type of treatment or the recurrence‑free 
survival) were absent or fragmentary.

The annotation of the TCGA UM miRNAs was performed 
using miRBase (version  22, http://www.mirbase.org/) by 
converting the miRNA IDs ‘MIMAT00’ in ‘hsa‑miR‑’. The 
previously obtained top 20 miRNAs relative to the tumor 
stage and vital status were merged using a bioinformatics tool, 
Draw Venn Diagrams of the Bioinformatics & Evolutionary 
Genomics  (BEG) (http://bioinformatics.psb.ugent.be/webt-
ools/Venn/), for the comparison of the two top  20. With 
this approach, only the miRNAs strongly downregulated or 
upregulated and with a higher prognostic significance were 
identified.

Kaplan‑Meier estimate of overall survival (OS) in patients with 
downregulated and upregulated tumor stage‑related miRNAs. 
Overall survival was calculated from the date of diagnosis to 
patient death, or to the end of follow‑up, whichever occurred 
first. The times of follow‑up were different from patient 
to patient up to a maximum follow‑up time of 2,499 days. 
Survival curves were estimated by using the MedCalc® statis-
tical software (version 18.11.3; https://www.medcalc.org). For 
this analysis and for future ones only the deregulated miRNAs 
related to tumor stage were considered.

Correlation analysis between miRNAs and gene expression of 
the TCGA UVM datasets. In order to identify the putative genes 
and their relative expression levels altered by the tumor stage top 
20 deregulated miRNAs, the publicly available miRCancerdb 
tool was used. miRCancerdb (https://mahshaaban.shinyapps.
io/miRCancerdb/) is a free database of miRNA‑gene/protein 
expression correlation in cancer with a web interface based on 
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the data contained in TCGA and TargetScan databases (22). 
This R package allows the users to establish the correlation 
between the expression of miRNAs and genes/proteins. In 
particular, through miRCancerdb, the correlation value of 
each miRNA with different genes was obtained. The lists of 
correlated genes to each miRNA were merged using the Draw 
Venn Diagrams tool in order to identify the shared correlated 
genes among all miRNAs.

Since miRCancerdb uses miRNA interaction data 
derived only from TargetScan, in this study, the bioinfor-
matics tool microRNA Data Integration Portal (mirDIP, 
version 4.1.11.1; Database version 4.1.0.3; September, 2018) 
(http://ophid.utoronto.ca/mirDIP)  (23) was also used. In 
particular, mirDIP integrates 12 different miRNA prediction 
datasets from 6 different microRNA prediction databases 
providing the levels of interaction between a specific miRNA 
and all its target genes. With this second approach, the levels 
of interaction between the selected 20 deregulated miRNAs 
and the predicted correlated genes selected through miRCan-
cerdb were established.

Pathways analysis and Gene Ontology (GO). To better 
understand the functional role of the 20 selected miRNAs, a 
pathway prediction analysis was performed. For this purpose, 
the bioinformatics tool DIANA‑mirPath (version  3) was 
used (24). All genes and cancer‑related molecular pathways 
altered by the selected miRNAs were identified by using 

this computational approach. Furthermore, GO enrich-
ment analysis was performed using the tool GO PANTHER 
version 14.0 (http://pantherdb.org/). GO PANTHER analysis 
was conducted for the lists of genes obtained from miRCan-
cerdb and DIANA‑mirPath analyses.

Statistical analyses. The fold change values of miRNA 
expression levels were calculated through differential analysis. 
Student's t‑tests were performed to select the differentially 
expressed miRNAs with a statistical significance as reported 
in Tables I and II. For the Kaplan‑Meier survival analysis, 
log‑rank non‑parametric test was used to compare the survival 
distributions of the patients with UM according to the down-
regulation or overexpression of selected miRNAs. Data with a 
P‑value ≤0.01 (two‑tailed) were considered to indicate statisti-
cally significant differences.

Results

Identification of deregulated miRNAs according to tumor 
stage and vital status. After downloading the data matrixes 
related to the datasets ‘Phenotype’ and ‘miRNA mature strand 
expression RNAseq by Illumina Hiseq’, the 80 patients were 
clustered into the high‑grade group (n=44) and low‑grade 
group (n=36) when considering the tumor stage and in the 
deceased group (n=23) and alive group (n=57) regarding the 
vital status. After excluding miRNAs with missing expression 

Table I. Differentially expressed miRNAs in high-grade compared to low-grade uveal melanoma.

miRNA	 miRNA ID	 FC high-grade vs. low-grade	 P-value	 Number NA

Downregulated miRNAs
  hsa-miR-514a-3p	 MIMAT0002883	 -4.54	 5.14E-03	 0
  hsa-miR-508-3p	 MIMAT0002880	- 4.38	 9.44E-03	 0
  hsa-miR-509-3-5p	 MIMAT0004975	 -4.33	 2.40E-03	 3
  hsa-miR-513c-5p	 MIMAT0005789	 -3.93	 3.33E-03	 4
  hsa-miR-509-5p	 MIMAT0004779	- 3.77	 1.80E-04	 30
  hsa-miR-513a-5p	 MIMAT0002877	- 3.03	 7.84E-03	 11
  hsa-miR-507	 MIMAT0002879	- 2.74	 5.22E-03	 31
  hsa-miR-211-5p	 MIMAT0000268	- 1.76	 1.82E-03	 0
  hsa-miR-374b-5p	 MIMAT0004955	- 1.75	 1.86E-03	 0
  hsa-miR-29c-3p	 MIMAT0000681	- 1.75	 4.95E-03	 0
Upregulated miRNAs
  hsa-let-7b-5p	 MIMAT0000063	 1.48	 5.83E-03	 0
  hsa-miR-143-5p	 MIMAT0004599	 1.55	 5.79E-03	 1
  hsa-miR-452-5p	 MIMAT0001635	 1.57	 8.59E-03	 0
  hsa-miR-224-5p	 MIMAT0000281	 1.62	 6.47E-03	 0
  hsa-miR-592	 MIMAT0003260	 1.64	 7.09E-03	 10
  hsa-let-7b-3p	 MIMAT0004482	 1.65	 1.01E-03	 0
  hsa-miR-210-3p	 MIMAT0000267	 1.83	 2.18E-03	 0
  hsa-miR-767-5p	 MIMAT0003882	 1.94	 8.82E-03	 15
  hsa-miR-199a-5p	 MIMAT0000231	 2.39	 5.74E-03	 0
  hsa-miR-1247-5p	 MIMAT0005899	 2.55	 2.38E-03	 7

The miRNAs in common with those obtained in the differential analysis between the deceased and alive patients are presented in bold font. 
Number NA indicates the number of missing expression values for each miRNA.
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values in >50% of patients, the number of miRNAs decreased 
from 1,938 to 795 miRNAs.

The differential analyses performed between the 
obtained groups, namely the high‑grade vs. low‑grade and 
deceased vs. alive groups, allowed for the identification of 
20 deregulated miRNAs for each stratification. As shown 
in Tables I and II, among the 20 deregulated miRNAs according 
to tumor stage and vital status, 7 were in common between 
the two lists. In particular, the 5 miRNAs, hsa‑miR‑514a‑3p, 
hsa‑miR‑508‑3p, hsa‑miR‑509‑3‑5p, hsa‑miR‑513c‑5p, 
hsa‑miR‑513a‑5p, and the 2 miRNAs, hsa‑miR‑592 and 
hsa‑miR‑199a‑5p, were respectively downregulated and 
upregulated with similar expression levels in both stratifica-
tion groups, suggesting a potential greater involvement of 
these miRNA in defining patient prognosis.

Involvement of the 20 tumor stage‑related altered miRNAs 
in patient survival. The Kaplan‑Meier estimate of the OS 
of the patients with UM revealed that the alterations of the 
expression levels of 12 miRNAs out of the 20 computationally 
selected miRNAs were associated with a worse prognosis. 
In particular, among the 10  downregulated miRNAs, 
hsa‑miR‑211‑5p (log‑rank test P=0.0301) and hsa‑miR‑514a‑3p, 
hsa‑miR‑508‑3p, hsa‑miR‑509‑3‑5p, hsa‑miR‑513c‑5p, 
hsa‑miR‑513a‑5p (log‑rank test P<0.01) were significantly 
associated with a negative prognosis of the patients when 
downregulated  (Fig.  1A). Similarly, the overexpressed 

miRNAs, hsa‑let‑7b‑5p (log‑rank test P=0.0110), and 
hsa‑miR‑452‑5p, hsa‑miR‑224‑5p, hsa‑miR‑592, hsa‑let‑7b‑3p 
and hsa‑miR‑199a‑5p (log‑rank test P<0.01) were associated to 
a worse OS, when upregulated (Fig. 1B).

Identification of the miRNAs targeted genes and correlation 
analysis. After defining the prognostic role of the selected 
miRNAs, the miRNA targeted genes and modulated pathways 
were identified by different bioinformatics approaches. At 
first, through the miRCancerdb tool, all the genes related to 
each single selected miRNA were downloaded, reporting the 
correlation value relative to each gene. In particular, for each 
miRNA, a list of genes that varied from 6,209 to 13,906 items 
was downloaded.

Subsequently, all the lists of genes related to each miRNA 
were merged. In total, 53 genes in common between all the 
20 selected miRNAs were identified using this approach. As 
shown in Fig. 2, by stratifying miRNAs for expression levels 
and stratifying the genes for correlation levels, a clear divi-
sion between genes positively and negatively correlated to the 
identified miRNAs was obtained (Fig. 2). By considering the 
miRNAs, the highest correlation levels were observed for the 
upregulated miRNA, hsa‑miR‑767‑5p; while the highest levels 
of negative correlation were observed for the upregulated 
miRNAs, hsa‑let‑7b‑5p, hsa‑miR‑143‑5p, hsa‑miR‑452‑5p, 
hsa‑miR‑224‑5p, hsa‑miR‑592 and hsa‑let‑7b‑3p. Taking into 
account the genes instead, the AK3L1 and SDK2 genes were 

Table II. Differentially expressed miRNAs in the deceased group compared to the alive group.

 miRNA	 miRNA ID	 FC deceased vs. alive	 P-value	 Number NA

Downregulated miRNAs
  hsa-miR-508-3p	 MIMAT0002880	- 21.96	 3.02E-08	 0
  hsa-miR-509-3p	 MIMAT0002881	- 19.83	 2.13E-08	 0
  hsa-miR-508-5p	 MIMAT0004778	- 14.66	 3.12E-08	 0
  hsa-miR-514a-3p	 MIMAT0002883	- 14.13	 8.95E-08	 0
  hsa-miR-506-3p	 MIMAT0002878	- 9.12	 1.78E-07	 1
  hsa-miR-509-3-5p	 MIMAT0004975	- 8.56	 7.81E-08	 3
  hsa-miR-513c-5p	 MIMAT0005789	 -7.94	 1.66E-07	 4
  hsa-miR-513a-5p	 MIMAT0002877	- 6.70	 4.10E-08	 11
  hsa-miR-514a-5p	 MIMAT0022702	- 4.75	 1.83E-05	 25
  hsa-miR-513b-5p	 MIMAT0005788	- 4.45	 1.58E-05	 25
Upregulated miRNAs
  hsa-miR-592	 MIMAT0003260	 1.78	 1.73E-03	 10
  hsa-miR-887-3p	 MIMAT0004926	 1.81	 6.29E-03	 4
  hsa-miR-708-5p	 MIMAT0000646	 1.85	 1.03E-03	 0
  hsa-miR-142-5p	 MIMAT0004951	 1.90	 3.99E-04	 2
  hsa-miR-212-3p	 MIMAT0000269	 1.98	 1.66E-05	 0
  hsa-miR-155-5p	 MIMAT0000433	 2.08	 8.77E-03	 1
  hsa-miR-199b-3p	 MIMAT0000434	 2.19	 9.08E-03	 0
  hsa-miR-199a-3p	 MIMAT0004563	 2.63	 3.45E-05	 0
  hsa-miR-10b-5p	 MIMAT0000232	 2.63	 3.46E-05	 0
  hsa-miR-199a-5p	 MIMAT0000231	 3.08	 1.18E-05	 0

The miRNAs in common with those obtained in the differential analysis between the high-grade and low-grade uveal melanoma groups are 
presented in bold font. Number NA indicates the number of missing expression values for each miRNA.



MOLECULAR MEDICINE REPORTS  19:  2599-2610,  2019 2603

those with the highest positive correlation value with upregu-
lated miRNAs. By contrast, the RPL35A, EIF4A2 and DTWD1 
genes had lower correlation levels with upregulated miRNAs.

To further elucidate the interaction between the 20 selected 
miRNAs and their correlated genes, mirDIP analysis was 
performed to establish the interaction levels. mirDIP analysis 
revealed that 6 out of the 53 genes did not interact with the 
selected miRNAs. Notably, among these 6 genes, AK3L1 exhib-
ited no level of interaction with the 20 miRNAs, although the 
miRCancerdb analysis revealed a marked positive correlation 

with upregulated miRNAs (Fig. 3). Overall, mirDIP analysis 
demonstrated a medium interaction level among genes and 
miRNAs. However, interesting data were obtained concerning 
the SPTBN1, RREB1, MARCKS, SHE and SLC6A15 genes 
that generally exhibited elevated levels of interaction with 
almost all the miRNAs examined. Finally, among the 
miRNAs, hsa‑miR‑143‑5p exhibited lower interaction levels, 
while the miRNAs, hsa‑miR‑211‑5p, hsa‑miR‑513a‑5p and 
hsa‑miR‑224‑5p, exhibited a high interaction with several 
correlated genes (Fig. 3).

Figure 1. The overall survival (OS) of patients with uveal melanoma according to miRNA expression. (A) OS of patients with uveal melanoma according to 
the downregulation and upregulation of the top 10 downregulated related miRNAs related to tumor stage; (B) OS of patients with uveal melanoma according 
to the downregulation and upregulation of the top 10 upregulated miRNAs related to tumor stage. Only Kaplan‑Meier estimates of OS with a log‑rank test 
value of P<0.05 were reported.
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Pathway prediction analysis and GO enrichment of selected 
miRNAs and target genes. For the pathway prediction anal-
ysis, all the 20 miRNAs were entered into the search bar of 
DIANA‑mirPath. The analysis revealed that for the miRNAs, 

hsa‑miR‑508‑3p, hsa‑miR‑507 and hsa‑miR‑210‑3p, there were 
not modulated pathways and targeted gene according to the 
reference database TarBase Version 7.0 of DIANA‑mirPath. By 
performing a cumulative analysis of all the molecular pathways 
altered by the selected miRNAs, it was possible to establish 
that all the miRNAs, apart from the 3 not reported miRNAs, 
were able to modulate several cancer pathways. In detail, the 
miRNAs are able to alter 53 different pathways and 743 univocal 
genes (Table SI). Among the altered pathways, 25 were directly 
related to cancer development and progression. Among these 
25 pathways, the most affected pathways were the Proteoglycans 
in cancer (hsa05205), Adherens junction (hsa04520), FoxO 
signaling pathway (hsa04068), Pathways in cancer (hsa05200) 
and the PI3K‑Akt signaling pathway (hsa04151) modulated by 
17 miRNAs. Furthermore, Pathways in cancer (hsa05200), the 
PI3K‑Akt signaling pathway (hsa04151) and Proteoglycans in 
cancer (hsa05205) were the pathways with the highest number 

Figure 3. mirDIP gene target analysis ‑ interaction between selected miRNAs 
and the 53 genes identified through miRCancerdb. For each miRNA is 
reported the level of interaction with the 53 genes positively and negatively 
correlated. The intensity miRNA‑gene interaction is highlighted with a color 
scale ranging from dark red (very high interaction) to yellow (low interaction).

Figure 2. Heatmap of the miRCancerdb correlation analysis. The upper side 
of the heatmap reports the 20 computationally selected miRNAs. In bold 
are reported the miRNAs with prognostic significance for the definition 
of the overall survival of patients with uveal melanoma. The miRNAs in 
common between tumor stage and vital status stratification are marked with 
an asterisk. On the left side of the heatmap all the genes shared and correlated 
with all the 20 miRNAs are listed. The green squares indicate a negative 
correlation, the red squares a positive correlation.
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of modulated genes (Table III). Therefore, it is evident that all 
the selected miRNAs were strictly involved in cancer develop-
ment, including UM. The analysis of the repetition count of 
genes altered by the selected miRNAs revealed that the genes 
most frequently affected in different or repeated molecular 
pathways were CCND1 (36 counts), MDM2 (30 counts), TP53 
(28 counts), IGF1R and MYC (27 counts), CDKN1A, CTNNB1, 
MAPK1, NRAS (25  counts), CDK6 (21  counts) and BRAF 
(18  counts). Other key genes in neoplastic processes were 
PIK3CA, GSK3B, BAX, KRAS, etc., all involved in tumors as 
discussed below (data not shown).

By using the Draw Venn Diagram, the comparison of these 
last data with the list of TCGA UVM gene correlated with 
miRNA expression (miRCancerdb analysis) revealed that only 
4 genes were in common between the list of genes obtained 
from DIANA‑mirPath and that of miRCancerdb, that are 
LTBP1, ADCY3, EIF4A2 and AGAP1.

The final step of the analysis consisted of the GO enrich‑
ment analysis by PANTHER. By entering the list of 53 genes, 
the software was able to recognize only 50 genes. As shown 
in Fig. 4, the selected genes were grouped according to molec-
ular function, biological process, cellular component, protein 
class and pathway (Fig. 4). As regards the molecular function, 
it was observed that the majority of genes were involved in 
binding (GO:0005488) functions (42.9% of genes) (Fig. 4A). 

When considering the biological processes, 21.1 and 17.5% of 
genes were involved in metabolic processes (GO:0008152) and 
biological regulation (GO:0065007) (Fig. 4B). As regards the 
cellular component, the majority of genes belonged to the cell 
(GO:0005623), while the most represented protein classes were 
hydrolase (PC00121), transferase (PC00220), cell adhesion 
molecule (PC00069) and transporter (PC00227), in accordance 
with the cellular component  (Fig.  4C  and  D). Finally, the 
analysis of pathway did not reveal strong evidence. Indeed, only 
14 genes out of the 50 recognized were assigned to a molecular 
pathway (Fig. 4E). Similar results concerning the molecular 
function, biological process and cellular component obtained for 
the GO PANTHER analysis of the 743 DIANA‑mirPath‑derived 
genes (Fig. 5A‑C). However, as shown in Fig. 5D and E, respec-
tively, the most represented protein classes were nucleic acid 
binding (PC00171), enzyme modulator (PC00095), transferase 
(PC00220) and transcription factor (PC00218); the most 
represented pathways were the Integrin signaling pathway 
(P00034), the Gonadotropin‑releasing hormone receptor 
pathway (P06664), CCKR signaling map (P06959) and the Wnt 
signaling pathway (P00057) (Fig. 5D and E).

Discussion

Over the past decades, the incidence and mortality of malig-
nant melanoma have been continuously increasing despite 

Table III. Molecular pathways involved in cancer development modulated by the 20 selected miRNAs.

No.	 KEGG pathway	 P-value	 No. of genes	 No. of miRNAs

  1	 Proteoglycans in cancer (hsa05205)	 7.25E-09	 90	 17
  2	 FoxO signaling pathway (hsa04068)	 4.91E-05	 65	 17
  3	 Pathways in cancer (hsa05200)	 0.000203	 150	 17
  4	 Adherens junction (hsa04520)	 1.84E-08	 42	 17
  5	 PI3K-Akt signaling pathway (hsa04151)	 0.040504	 120	 17
  6	 Viral carcinogenesis (hsa05203)	 8.36E-11	 89	 16
  7	 Chronic myeloid leukemia (hsa05220)	 5.00E-05	 39	 16
  8	 Glioma (hsa05214)	 8.05E-05	 32	 16
  9	 TGF-beta signaling pathway (hsa04350)	 0.000203	 39	 16
10	 Prostate cancer (hsa05215)	 0.000738	 44	 16
11	 Hippo signaling pathway (hsa04390)	 3.24E-10	 70	 15
12	 Cell cycle (hsa04110)	 6.49E-10	 68	 15
13	 Endometrial cancer (hsa05213)	 0.003501	 25	 15
14	 HIF-1 signaling pathway (hsa04066)	 0.018482	 44	 15
15	 Bladder cancer (hsa05219)	 0.031409	 20	 15
16	 Non-small cell lung cancer (hsa05223)	 0.035274	 24	 15
17	 Melanoma (hsa05218)	 0.043902	 29	 15
18	 Renal cell carcinoma (hsa05211)	 1.46E-06	 35	 14
19	 p53 signaling pathway (hsa04115)	 5.19E-05	 38	 14
20	 Central carbon metabolism in cancer (hsa05230)	 0.003672	 28	 14
21	 Small cell lung cancer (hsa05222)	 7.16E-05	 45	 13
22	 Pancreatic cancer (hsa05212)	 0.000512	 35	 13
23	 Thyroid cancer (hsa05216)	 0.009723	 14	 13
24	 Transcriptional misregulation in cancer (hsa05202)	 0.031409	 66	 13
25	 Colorectal cancer (hsa05210)	 3.93E-05	 34	 12
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the development of novel pharmacological treatments and 
the adoption of screening programs (25,26). One of the main 
critical issues in the management of malignant melanoma, 
including that of the uvea, is the lack of specific prognostic 
biomarkers able to define the tumor aggressiveness and, 
consequently, the design of personalized therapeutic strate-
gies (27). Several genetic and epigenetic alterations have been 
proposed as good diagnostic and prognostic markers for both 
cutaneous melanoma and UM; however, these studies were not 
conclusive in identifying effective biomarkers for all patients 
and studies on this matter are still ongoing (28‑30). Over the 
past decade, a growing body of evidence has indicated that 

miRNAs may represent good diagnostic and prognostic 
biomarkers for several pathologies, including cancer, as well 
as for other clinical applications (31‑33).

In recent years, with the development of high‑throughput 
technologies and the development of the omics sciences, there 
has been a marked increase in genomic and molecular data 
concerning all types of tumors (34). In particular, The Cancer 
Genome Atlas consortium collected and publicly shared all 
the genomics, epigenetics, proteomics, and mutational data 
of 33 different type of cancer useful for researchers all over 
the world to perform various bioinformatics analyses (17). 
For the present study, the TCGA UVM database, containing 

Figure 4. Gene Ontology enrichment analysis by PANTHER for the 53 genes identified through miRCancerdb. (A) Distribution of genes according to molecular 
function; (B) Distribution of genes according to biological process; (C) Distribution of genes according to the type of cellular component; (D) Distribution of 
genes according to protein class; (E) Distribution of genes according to the analysis of pathway. Beside each category, the percentage of gene frequency was 
reported. The number of assigned genes may be greater than the number of recognized genes as the same gene can be included in different categories.
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24 different datasets, was analyzed. To the best of our knowl-
edge, only two recent studies have analyzed the miRNAs and 
gene expression data contained in the TCGA UVM reposi-
tory, identifying, respectively, a signature of 9‑tumor‑specific 
miRNAs and hub genes related to UM relapse (35,36). In this 
study, through several integrated bioinformatics approaches, 
it was possible to identify a set of miRNAs strictly related 
to UM patient tumor stage and vital status. In particular, the 
differential analysis of miRNA expression levels revealed that 
among the top 20 lists of deregulated miRNAs according to 
tumor stage and vital status, 7 were in common between the 
two lists, i.e., the miRNAs hsa‑miR‑514a‑3p, hsa‑miR‑508‑3p, 

hsa‑miR‑509‑3‑5p, hsa‑miR‑513c‑5p, hsa‑miR‑513a‑5p, 
hsa‑miR‑592 and hsa‑miR‑199a‑5p. These first data are 
relevant to those reported in literature as other research groups 
have well characterized the so‑called miRNA‑506‑514 cluster 
whose alteration is associated with melanocyte transformation 
and promoting melanoma growth, however contrasting data 
were generated on this matter (37,38). In this study, the miRNAs 
contained in the miRNA‑506‑514 cluster were down‑regulated 
in the high‑grade and deceased patients compared to the 
low‑grade and alive patients with UM, showing a discrepancy 
with the data obtained in the study by Streicher et al (38). 
However, the data obtained from the TCGA analysis were 

Figure 5. Gene Ontology enrichment analysis by PANTHER for the 743 genes identified through DIANA‑mir‑Path. (A) Distribution of genes according 
to molecular function; (B) Distribution of genes according to biological process; (C) Distribution of genes according to the type of cellular component; 
(D) Distribution of genes according to protein class; (E) Distribution of genes according to the analysis of pathway. Beside each category, the percentage of 
gene frequency was reported. For each Ontology the 15 most represented categories are displayed. The number of assigned genes may be greater than the 
number of recognized genes as the same gene can be included in different categories.
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concordant with that obtained in the study by Stark et al (37), 
where the downregulation of hsa‑miR‑514a was associated 
with a higher proliferation rate, and therefore with a worse 
prognosis (37). However, what is important is that this cluster 
is potentially involved in the mechanisms of progression of 
UM and therefore the miRNAs it contains (miR‑506, ‑507, 
‑508, ‑509, ‑510, ‑513 and miR‑514) can play a strong role as 
biomarkers for the prognosis of UM.

Furthermore, by considering the deregulated tumor 
stage‑related miRNAs, the downregulated miRNAs, 
hsa‑miR‑211‑5p, hsa‑miR‑374b‑5p and hsa‑miR‑29c‑3p, are 
also associated with melanoma development and metas-
tasis (37,39,40). As regards the upregulated miRNAs, these 
are all related to melanoma development, but not to the uveal 
type (41,42).

After this first analysis, the prognostic value of each miRNA 
was established. Among the 20 miRNAs, the Kaplan‑Meier 
estimate revealed that 12 miRNAs had a strong prognostic 
value in defining the OS of patients with UM. Notably, among 
these 12  prognostic miRNAs that were present, these all 
belonged to the miR‑506‑514 cluster.

The third step of the study, performed by using miRCan-
cerdb, allowed the identification of 53 genes correlated and 
in shared between the 20 tumor stage‑related de‑regulated 
miRNAs. The genes, AK3L1 and SDK2, and the genes, RPL35A, 
EIF4A2 and DTWD1, were revealed as the most positive and 
negative correlated genes with upregulated miRNAs, respec-
tively. While the SLC46A1 and KCTD17, and SLC25A30 and 
ZNF836 genes were the most negatively and positively corre-
lated with downregulated miRNAs, respectively. However, the 
mirDIP analysis revealed that no gene‑miRNAs interactions 
were deposited for the AK3L1 gene. Furthermore, none of the 
9 highly correlated genes exhibited high interaction levels with 
the selected miRNAs, but only medium levels of interaction.

Subsequently, prediction pathway analysis and GO enrich-
ment were performed in order to define the functional role 
of the 20 selected miRNAs and their 53 correlated genes. 
As expected, all the miRNAs and genes were involved 
in molecular pathways commonly altered in cancer. In 
particular, it was widely demonstrated that UM is the result 
of different altered pathways, such as the MAPK pathway, 
Hippo signaling pathway, hypoxia‑inducible factor (HIF)‑1 
signaling pathway, p53 signaling pathway, PI3K‑Akt signaling 
pathway, etc. (43‑45). The DIANA‑mirPath analysis revealed 
that all these pathways were strongly altered by the 20 the 
selected miRNAs. It is clear that the alterations of these 
pathways were associated with the development of UM, as 
well as that of other tumors, as demonstrated in other similar 
studies (19‑21,46). In this regard, the DIANA‑mirPath analysis 
revealed that the genes most frequently altered within these 
pathways are genes already associated with the processes of 
tumor progression and metastasis, including those related to 
UM. Among these genes, noteworthy are the genes, TP53, 
IGF1R, MYC, NRAS, BRAF, PIK3CA and GSK3B, for which 
several studies have described their involvement in the progres-
sion of UM, cutaneous melanoma and other cancers (28,47‑50).

Finally, through GO enrichment, it was demonstrated 
that the 53  genes correlated with the selected miRNAs 
and the 743 univocal genes derived from DIANA‑mirPath 
analysis were mainly involved in binding and catalytic activity 

molecular function and in biological regulation and metabolic 
processes. All these data demonstrated that the data mining 
of the TCGA UVM dataset can provide useful information in 
order to identify specific miRNAs whose alterations may be 
predictive of a worse prognosis for patients with UM.

Overall, through several integrated computational 
approaches performed on TCGA datasets, this study 
identified a set of 20 miRNAs strictly associated with the 
prognosis of patients with UM. Some of these miRNAs, 
i.e., hsa‑miR‑514a‑3p, hsa‑miR‑508‑3p, hsa‑miR‑509‑3‑5p, 
hsa‑miR‑513c‑5p, hsa‑miR‑513a‑5p, hsa‑miR‑592 and 
hsa‑miR‑199a‑5p, were found to more highly deregulated in 
patients with high‑grade compared to those with low‑grade 
disease. Therefore, further in vitro and in vivo evaluations 
are required to validate these preliminary bioinformatics 
data in order to propose these miRNAs as useful prognostic 
biomarkers to be used in clinical practice to address high‑risk 
patients towards more aggressive therapeutic regimens.
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