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ABSTRACT

We introduce a data structure called a superword
array for finding quickly matches between DNA
sequences. The superword array possesses some
desirable features of the lookup table and suffix
array. We describe simple algorithms for construct-
ing and using a superword array to find pairs of
sequences that share a unique superword. The
algorithms are implemented in a genome assembly
program called PCAP.REP for computation of over-
laps between reads. Experimental results produced
by PCAP.REP and PCAP on a whole-genome dataset
show that PCAP.REP produced a more accurate and
contiguous assembly than PCAP.

INTRODUCTION

To compute quickly overlaps between reads, existing genome
assembly programs locate every pair of reads that share one or
more unique words of length w and compute an overlap
between the reads in the pair (1–8). A word of length w is
highly repetitive if the number of its occurrences in the reads is
greater than a cut-off and is unique otherwise. The word length
w is a constant number between 12 and 32. For example, the
word length is 32 for the Atlas program, 24 for the Arachne
program, 20 for Celera Assembler, 17 for the Phusion program
and 12 for the PCAP program, where PCAP uses two close
12-base word matches to tolerate an insertion/deletion sequen-
cing error between the word matches. Using the constant word
length is less effective at finding true overlaps between repet-
itive reads. For instance, a pair of repetitive reads share no
unique words of length 24, but share a unique superword of
length 72. A superword is a segment whose length is a multiple
of w. In other words, a superword is obtained by concatenating
one or more words. Because a data structure to be presented later
requires that the words be of the same length, superwords are
introduced to represent segments that are longer than words.

Using superwords of variable sizes for seeding overlaps
leads to an overlap computation method that is sensitive
and specific in unique regions, and specific in repetitive
regions. Since short superwords occur with low frequencies
in unique regions, using short unique superwords allows the
method to achieve a high level of sensitivity at an acceptable
level of specificity. On the other hand, in repetitive regions,
short superwords occur with extremely high frequencies and
hence it is not efficient to use short superwords for seeding
overlaps in those regions. Some repetitive regions contain long
superwords with low frequencies. Thus, using long unique
superwords allows the method to maintain an acceptable
level of specificity in those regions.

Unique superwords in a set of reads are found by using a
superword array for the set of reads. A combined sequence is
obtained by concatenating the sequences of the reads with a
special symbol at every read sequence boundary. The concat-
enation allows each read position to be represented by a unique
number, which is the location of the read position in the
combined sequence. A superword array for the set of reads
is an array of positions of the combined sequence that are
lexicographically sorted by the superwords starting at the posi-
tions, where the special boundary symbol ranks before the
characters in the read alphabet.

The superword array is introduced to inherit desirable
features of the lookup table (9–11) and the suffix array
(12). The lookup table is easy to code and can be extended
to tolerate base mismatches in word matches (13). The suffix
array is effective at finding long exact segment matches
(14,15).

We describe simple algorithms for constructing and using a
superword array to find pairs of reads that share a unique
superword. The algorithms are implemented in a genome
assembly program called PCAP.REP for computation of over-
laps between reads. Experimental results produced by PCA-
P.REP and PCAP on a whole-genome dataset show that
PCAP.REP produced a more accurate and contiguous assem-
bly than PCAP. The PCAP.REP program is freely available for
academic use at http://seq.cs.iastate.edu.
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MATERIALS AND METHODS

Definition of a superword array

We define a superword array for a set of reads as follows. Each
read sequence consists of characters from the alphabet
S ¼ {A, C, G, T, N}. Let Cseq denote the concatenation of
all read sequences in the set with a special boundary character
(denoted #) inserted at every sequence boundary. Let n be the
length of Cseq, where the positions of Cseq are numbered
1, 2, 3, . . . , n.

A word of length w is a string of w characters. The code of a
word free of the characters N and # is obtained by converting
the word into a base-4 number of w digits and converting the
base-4 number into a decimal number (16). The code of a word
with N or # is �1. Two words form an exact match if and only
if the two words have the same code and the code is non-
negative. Thus, two words with the same code of �1 are not
considered as a match. Let Code (p) denote the code of a word
starting at position p of Cseq. Assume that Code (p) ¼ �1 for
any p > n � w + 1.

A superword at word level h is a string of length h · w that
is obtained by concatenating h words. The code of a superword
at word level h starting at a position p of Cseq is a tuple of h
components, hCode (p), Code (p + w), Code (p + 2w),. . .,
Code (p + (h � 1) · w)i. For any k with 1 < k < h, the
k-th component code of the position p is Code (p +
(k � 1) · w). A lexicographic order of superwords at word
level h is defined to be a lexicographic order of their codes with
the following rules for resolving the order of superwords with
the same code or with component code of �1 at the same rank.

For two superwords at word level h from different positions
of Cseq, if the superwords have the same code with non-
negative component code at each rank, then the order of
the superwords is based on their positions in Cseq. If the
superwords have the same component code from rank 1 to
rank k with k being the smallest rank such that the component
code at rank k is �1, then the order of the superwords is based
on their positions in Cseq. For example, a superword of code
h3, 2, 4i from position 5 of Cseq is before a superword of code
h3, 2, 4i from position 13 of Cseq, and a superword of
code h3,�1, 4i from position 37 of Cseq is after a superword
of code h3,�1, 8i from position 25 of Cseq.

A superword array SW for the set of reads is an array of the n
positions of Cseq that are sorted based on a lexicographic order
of the superwords at word level wlcut starting at the positions.
The parameter wlcut is a cut-off on the number of word levels.

Figure 1 shows an example superword array for a combined
sequence of two short reads.

Construction and use of a superword array

The array SW is constructed by a simple method. In this
method, SW [i] is initialized to i for each i from 1 to n.
Then SW is sorted at word level wlev for each wlev from 1
to wlcut. The sorting at word level wlev is performed by using
a lookup table. The details of the method are given in Sup-
plementary Data.

The whole dataset is partitioned into a number of subsets of
similar sizes (5). Every subset is assigned to a separate pro-
cessor for computation of overlaps between reads in the subset
and reads in the whole dataset. The subset is kept in the main
memory of the processor, whereas the whole dataset is kept on
the disk. A superword of a read from the whole dataset is
unique with respect to the subset if the number of its occur-
rences in the subset is at most pncut. The parameter pncut is a
cut-off on the number of occurrences of every unique super-
word. For every read f from the whole dataset, every read
g in the subset that shares a unique superword with the
read f is located for computation of an overlap between the
reads f and g.

A superword array SW is constructed for the subset and kept
in the main memory of the processor. The array SW is used to
locate the occurrences of the superwords from the whole data-
set in the subset as follows. The reads in the whole dataset are
processed one at a time. The current read is compared with the
subset by using the array SW for the subset. The positions of
the current read are considered one at a time in increasing
order. Let q be the current position. If a superword starting at
the position q at a word level between 1 and wlcut is free of the
characters N and #, and is unique with respect to the subset,
then the minimum word level wlev and a section of SW are
computed such that the section contains the positions of all
unique occurrences of the superword at word level wlev start-
ing at the position q. Otherwise, the empty section is reported
for the position q. The details on using the array SW are given
in Supplementary Data.

A special feature of the methods given above is that the
methods are easy to implement because of the use of a lookup
table. The use of a lookup table by our method in construction
of a superword array is related to the Manber–Myers algorithm
(12) for constructing a suffix array. In the Manber–Myers
algorithm, a lookup table is used once to sort all segments

Sequence         C  A  T  C  G  T  G  A  #  A  T  C  G  T  G  T  #

Position         1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17

Word code        4  3 13  6 11 14  8 -1 -1  3 13  6 11 14 11 -1 -1

Superword array  8  9 16 17  2 10  1  4 12  7 15  5 13  3 11  6 14

Superword code  -1 -1 -1 -1  3  3  4  6  6  8 11 11 11 13 13 14 14
                 3 13 -1 -1  6  6 13 14 14 -1 -1  8 11 11 11 -1 -1
                 6 11 -1 -1 14 14 11 -1 -1 13 -1 -1 -1  8 11  3 -1

Figure 1. An example superword array for a combined sequence of two short reads. The combined sequence is given on the top row. For each base of the combined
sequence, the position of the base is shown below the base on the second row and the code of the word of length 2 starting at the position is shown below the position
on the third row. The ordered sequence positions in the superword array are shown on the fourth row. For each sequence position in the superword array, the code of
the superword at word level 3 starting at the position is given as a column of three word codes on the bottom three rows.
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of variable lengths by their leftmost word whereas in our
method, a lookup table is used repeatedly to sort superwords,
first by their rightmost word, second by their second rightmost
word, and so on. Our method on using the superword array also
depends on a lookup table to locate quickly all superwords
with the same leftmost word.

Existing methods on suffix trees (14), for example, as imple-
mented in the programs REPuter (17) and MUMmer3 (18),
provide easy access to segments of variable lengths for seeding
overlaps. If the suffix tree is annotated appropriately, then it is
easy to check the number of occurrences of a segment in the
reads. This is even simpler in enhanced suffix arrays (19),
which require only half of the space of suffix trees and provide
direct access to occurrence counts. A comprehensive imple-
mentation of enhanced suffix arrays is provided by the soft-
ware tool Vmatch at http://www.vmatch.de.

RESULTS

The algorithms for constructing and using SW are implemen-
ted in a genome assembly program named PCAP.REP. The
PCAP.REP program considers reads with unique superwords
in construction of an assembly, whereas the PCAP program
considers only reads with unique words in construction of an
assembly. The PCAP.REP and PCAP programs were com-
pared on a whole genome dataset from Histoplasma capsu-
latum strain G217B. More than 30% of the genome is occupied
by repeat elements, some of which are longer than reads. In
other words, a significant number of reads in the dataset con-
tain no unique words of length 12.

The dataset consists of 1 178 375 reads along with 562 071
forward–reverse read pairs. A read pair is produced by sequen-
cing both ends of a subclone, where a read is generated from
the 50 end of each strand of the subclone. A sequencing project
for the genome is currently finished up to a set of 261
sequences with a total size of 39.3 Mb. The reads in the dataset
have a total of 544 Mb bases with a quality value of at least 20,
which corresponds to an average coverage depth of 13.6 for
the genome of estimated size 40 Mb.

The two programs were run on the dataset with the follow-
ing values for their superword/word parameters: (PCAP.REP
and PCAP) 12, word length; (PCAP.REP) 110, cut-off on the
number of occurrences of a unique superword; (PCAP.REP)
10, cut-off on the number of word levels; (PCAP) 500, cut-off
on the number of occurrences of a unique word. For each
program, 100 jobs were submitted for computation of over-
laps, where each job computes overlaps between the whole set
of reads and a subset of reads on a separate processor of
2.4 GHz with 2.5 GB of main memory. The 100 jobs of
PCAP.REP produced a total of 272 million overlaps, whereas
the 100 jobs of PCAP produced a total of 16 million overlaps.
Each PCAP.REP job took 132 min with only 2 s spent on
construction of a superword array with 11.6 million positions,
whereas each PCAP job took about 36 min. The PCAP.REP
job was slower than the PCAP job because the PCAP.REP job
computed many more overlaps between repetitive reads than
the PCAP job.

PCAP.REP used 974 421 (83%) of the 1 178 375 input reads
in its assembly, whereas PCAP used 820 902 (70%) of the
input reads in its assembly. In addition, 426,807 (76%) of the

562 071 input read pairs are satisfied in the PCAP.REP assem-
bly, whereas 323,824 (58%) of the input read pairs are satisfied
in the PCAP assembly. A read pair is satisfied in an assembly if
one read in forward orientation comes before the other read in
reverse orientation in the assembly and the distance between
the reads in the assembly is close to the estimated size of the
subclone.

The PCAP.REP and PCAP assemblies were evaluated in
contiguity by computing the N50 lengths of contigs and super-
contigs. The contigs in each assembly were partitioned into
three groups as follows. Group one was formed by selecting
the contigs in order of decreasing length such that the total
length of contigs in the group is 20 Mb. Group two was formed
by selecting the remaining contigs in order of decreasing
length such that the total length of contigs in the group is
19 Mb. Group three contained the remaining contigs, which
are very short. The total length of the contigs in groups one and
two is 39 Mb, which is the total length of the finished
sequences. The N50 length of contigs in a group is the max-
imum length L such that 50% of all nucleotides are in contigs
of length at least L from the group. The N50 lengths of contigs
in groups one and two are reported in Table 1. The supercon-
tigs in each assembly were similarly partitioned into three
groups. The N50 length of supercontigs in a group is similarly
defined. The N50 lengths of supercontigs in groups one and
two are reported in Table 2. Tables 1 and 2 show that the
PCAP.REP assembly is better than the PCAP assembly in
contiguity.

Each of the PCAP.REP and PCAP assemblies was assessed
in accuracy through comparison with the set of finished
sequences. Reciprocally best matches between the assembly
and the finished sequences were found with Cross_Match
(P. Green, unpublished data), where a match is reciprocally
best if for each of the two regions in the match, the match is the
highest-scoring match among all matches involving the
region. The reciprocally best matches were used to find dif-
ferences between the assembly and the finished sequences at
the base level and at the sequence level, which are defined
as follows.

Table 1. The numbers and lengths of contigs in top two groups for each of the

assemblies produced by PCAP.REP and PCAP

Group Program Number N50
length (bp)

Maximum
length (bp)

Total
length (Mb)

One PCAP.REP 110 188 832 747 209 20
One PCAP 136 162 560 461 995 20
Two PCAP.REP 696 47 730 91 678 19
Two PCAP 8981 1859 64 190 19

Table 2. The numbers and lengths of supercontigs in top two groups for each of

the assemblies produced by PCAP.REP and PCAP

Group Program Number N50
length (bp)

Maximum
length (bp)

Total
length (Mb)

One PCAP.REP 14 1 365 435 2 314 423 20
One PCAP 23 978 523 2 076 521 20
Two PCAP.REP 101 321 449 888 557 19
Two PCAP 7164 4396 387 574 19
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There are three types of difference at the base level: sub-
stitution, deletion from a finished sequence and insertion into a
finished sequence. The substitution rate in the reciprocally best
matches is the number of substitutions in the matches divided
by the total length of the matches. The deletion and insertion
rates are similarly defined.

Differences between the assembly and the finished sequences
at the sequence level are classified into global and local
misassemblies. A global misassembly occurs when a supercon-
tig and a finished sequence with a best match contain different
regions of length at least 50 kb, where the cut-off of 50 kb was
used in detection of global misassemblies in a chimpanzee gen-
ome assembly. Local misassemblies are further partitioned into
three types: misordering, interruption and missing.

A misordering event occurs when reciprocally best match-
ing contigs and regions between a supercontig and a finished
sequence are in different orders, respectively. For example, a
misordering event is detected based on reciprocally best
matches if ordered contigs A.4, A.5, A.6, A.7 and A.8 in a
supercontig A have reciprocally best matches to a finished
sequence in the order A.4, A.7, A.6, A.5 and A.8. If contigs
A.5, A.6 and A.7 are very short, it is difficult to determine their
order in the supercontig.

An interruption of a supercontig occurs when reciprocally
best matches indicate that a gap between two adjacent contigs
in the supercontig can be filled with a contig in another super-
contig. For example, a gap between adjacent contigs A.5 and
A.6 in a supercontig A can be filled with a contig B.1 in
another supercontig B if the three contigs have reciprocally
best matches to a finished sequence in the order A.5, B.1
and A.6.

A contig in a supercontig is missing when its neighbours
have reciprocally best matches to a finished sequence, but the
contig has no reciprocally best match to the finished sequence.
For example, for ordered contigs A.4, A.5, A.6, A.7 and A.8 in
a supercontig A, contigs A.4, A.5, A.7 and A.8 have recip-
rocally best matches to a finished sequence in this order, but
contig A.6 has no reciprocally best match to the finished
sequence.

Three difference rates at the base level between the set of
finished sequences and each of the PCAP.REP and PCAP
assemblies are reported in Table 3. No global misassembly
was detected in any of the two assemblies. Three local mis-
assembly rates are reported in Table 4. Tables 3 and 4 show

that the PCAP.REP assembly is more accurate than the PCAP
assembly.

DISCUSSION

Many existing genome assembly and comparison programs
quickly find pairs of sequences with a potential similarity
by locating sequences with exact or approximate word
matches (1–8,13,20–24). Word matches between sequences
are commonly found by using a lookup table and a hashing
technique. The lookup table is easy to code and allows approx-
imate word matches. A few existing programs use a suffix tree
(17,18,25,26) or enhanced suffix array (http://www.vmatch.
de) to locate quickly pairs of sequences with maximal exact
segment matches. Methods based on the suffix tree and array
use long segment matches to select highly similar pairs of
repetitive sequences. The superword array possesses some
desirable features of the lookup table and the suffix tree/
array. The superword array is easy to code and can be extended
to allow approximate superword matches. The number of
words in a superword is determined based on the frequency
of the superword in the set of sequences.

We have presented an application of a superword array in
genome assembly, where the superword array is used to find
overlaps between reads with unique superwords. Experimental
results produced by PCAP.REP and PCAP on a whole-genome
dataset show that a more accurate and contiguous genome
assembly was produced by using unique superwords instead
of unique words. The construction of the superword array by
PCAP.REP was very fast. On the other hand, PCAP.REP spent
more time on computation of overlaps between repetitive
reads with unique superwords, whereas PCAP spent no
time on any overlap between repetitive reads. The cut-off
on the number of occurrences of a unique superword was
set to a large value because the maximum coverage depth
of the genome might be high. A large value for this parameter
causes the PCAP.REP job to consider a large number of super-
word occurrences.

We expect that the superword array will also be useful for
locating quickly pairs of similar sequences in genome com-
parisons. Fast comparison methods based on the superword
array would be able to find more orthologous matches in
repetitive regions than those based on the lookup table at a
slight increase in computation time. Note that the cut-off on
the number of occurrences of a unique superword can be set to
a value much lower than that used in genome assemblies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Table 3. Three difference rates between the set of finished sequences and the

set of contig consensus sequences for each of the assemblies produced by

PCAP.REP and PCAP

Program Substitution rate Deletion rate Insertion rate

PCAP.REP 0.001376 0.000089 0.000040
PCAP 0.002194 0.000164 0.000136

Table 4. Numbers of local misassembly events per Mb in three categories for

each of the assemblies produced by PCAP.REP and PCAP

Program Misordering Interruption Missing

PCAP.REP 0.536441 0.387430 0.298023
PCAP 0.947530 13.265424 0.411969
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