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Nearest-neighbor Projected-Distance Regression (NPDR) is a feature selection
technique that uses nearest-neighbors in high dimensional data to detect complex
multivariate effects including epistasis. NPDR uses a regression formalism that allows
statistical significance testing and efficient control for multiple testing. In addition, the
regression formalism provides a mechanism for NPDR to adjust for population structure,
which we apply to a GWAS of systemic lupus erythematosus (SLE). We also test
NPDR on benchmark simulated genetic variant data with epistatic effects, main effects,
imbalanced data for case-control design and continuous outcomes. NPDR identifies
potential interactions in an epistasis network that influences the SLE disorder.

Keywords: epistasis, feature selection, GWAS, machine learning, nearest-neighbors

INTRODUCTION

An important challenge for machine learning in GWAS is to perform computationally efficient
screening for variants involved in complex genetic models, including epistatic effects. The
identification of interactions in GWAS may lead to an increased understanding of pathogenic
mechanisms and potential therapeutic targets, but low minor allele frequencies and the curse
of dimensionality make interaction detection difficult. Machine learning methods also face the
challenge of identifying statistical thresholds that limit false discoveries and handling the intricacies
of biomedical studies such as covariates and population structure.

Recently we developed a flexible nearest-neighbor-based machine learning feature selection
method called Nearest-neighbor Projected Distance Regression (NPDR) to address these challenges
(Le et al., 2020). NPDR integrates a regression formalism to allow statistical significance testing with
projected nearest-neighbor machine learning to enable detection of complex multivariate models
in high dimensional data. The projection of nearest neighbors from high dimensions onto single
feature dimensions allows NPDR to detect features involved in complex patterns with other features
in high-dimensional data that influence phenotypic variance. The regression formalism of NPDR
maintains the ability to detect interactions while providing a statistical basis for feature selection
thresholding and control of false discoveries due to multiple hypothesis testing.

In the current study, we demonstrate the capabilities of the NPDR framework to detect variants
involved in complex genetic models and to adjust for population structure. We compare the

Frontiers in Genetics | www.frontiersin.org 1 July 2020 | Volume 11 | Article 784

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2020.00784
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fgene.2020.00784
http://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2020.00784&domain=pdf&date_stamp=2020-07-22
https://www.frontiersin.org/articles/10.3389/fgene.2020.00784/full
http://loop.frontiersin.org/people/898492/overview
http://loop.frontiersin.org/people/33363/overview
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00784 July 20, 2020 Time: 12:22 # 2

Arabnejad et al. NPDR GWAS

performance of NPDR with random forest and univariate
analysis on a panel of benchmark simulated genetic variant
data described by Urbanowicz et al. (2018). We analyze data
with multivariate main effects and multiple epistatic effects and
outcomes with balanced and imbalanced cases-control ratios as
well as continuous variation. Consistent with our previous studies
(McKinney et al., 2009; Le et al., 2020), we show that random
forest is able to detect interactions when the number of predictors
is small but its power diminishes with the dimensionality of the
data. NPDR is less susceptible to the curse of dimensionality as we
show it is able to detect interactions with statistical significance in
both low and high dimensional contexts.

In addition to adjustment for multiple testing, NPDR enables
the adjustment for covariates such as sex, age, or population
structure – due to population stratification or cryptic relatedness.
Population structure leads to linkage disequilibrium (LD) and
this deviation from independence may increase false associations
(McCarthy et al., 2008; Chen et al., 2016). The confounding effect
of population structure may be exacerbated for complex models
involving interactions between variants. Covariate adjustment is
challenging for many machine learning methods that have the
flexibility of being model free (Le et al., 2020). NPDR is model
free in its use of nearest neighbors for detecting interactions,
but it includes a statistical model for the projected distance for
each feature. This generalized linear model (GLM) of projected
distances then allows for the inclusion of projected distance
covariates such as principal components (PCs).

Systemic lupus erythematosus (SLE) is an autoimmune
inflammatory disease characterized by antinuclear autoanti
bodies, complement and interferon activation, and tissue
destruction. It predominantly affects women. Numerous
immune-related genes and genes with other functions have been
shown to predispose to SLE (Harley et al., 2008; Gregersen and
Olsson, 2009), but there is a need to identify other genomic
factors that may be interacting with each other as pairs or in
a higher-order network to influence the development of this
complex disease (Davis et al., 2013; Tyler et al., 2019). We
use NPDR to enrich for interactions in the systemic lupus
erythematosus genetics (SLEGEN) GWAS, which consists
of females of European ancestry (720 SLE and the 2,337
controls) (Harley et al., 2008). Although the SLEGEN data is
a homogeneous sample, we demonstrate the ability of NPDR
to adjust for possible cryptic relatedness by including PCs as
covariates. Identifying additional interacting variants may lead
to a better understanding of the pathways affecting SLE.

MATERIALS AND METHODS

Nearest-Neighbor Projected-Distance
Regression
Relief-based methods are known for their ability to identify
interactions with computational efficiency but generally do not
account for statistical significance of the attributes that may lead
to high misclassification rate. In order to control false discoveries
and adjust for covariates, we developed NPDR to use the GLM
to perform regression between nearest-neighbor pair distances

projected onto each predictor dimension (Le et al., 2020). We
define the NPDR neighborhood set N of ordered pair indices of
subjects as follows.

In NPDR, instance (e.g., subject) i is a point in p attribute
(e.g., variant) dimensions, and the topological neighborhood of
i is labeled by Ni. This neighborhood is a set of other instances
trained on the dataset Xm×p of m instances and p attributes and
depends on the type of Relief neighborhood method (e.g., fixed-
k or adaptive radius) and the type of metric (e.g., Manhattan
or Euclidean). If instance j is in the neighborhood of i (j ∈ Ni),
then the ordered pair is in the overall neighborhood ((i, j) ∈ N )
for the projected-distance regression analysis. The ordered pairs
constituting the overall neighborhood can then be represented as
nested sets:

N = {{
(
i, j
)
}

m
i=1}{j6=i:j∈Ni}.

The cardinality of the set {j 6= i : j ∈ Ni} is ki, the number
of nearest neighbors for subject i. In the analyses in the current
study, we use an adaptive k for hits and misses, k = 0.154 (m-1),
that has shown good balance between detecting main effects and
interaction effects (Le et al., 2019, 2020).

We compute the distance between two instances i and j in the
space of the set A of all attributes with an Lq metric

D(q)
ij =

(∑
a∈A

∣∣dij(a)
∣∣q)1/q

,

where |A| = p is the number of attributes in the dataset. We use
q = 1 (Manhattan) in this study. The projected difference or diff
function [dij(a)] between two instances i and j onto a SNP is of
critical importance to the NDPR algorithm and can be computed
by various difference functions. The standard difference used
by Relief-based algorithms for categorical variables is a binary
mismatch. For SNPs, this genotype mismatch (GM) is a 0 or 1
difference between two individuals (Ri, Rj) for a SNP, a, based
on the individuals’ genotypes for this SNP. Specifically, the diff
function is

dGM
ij (a) = diffGM(a, Ri, Rj)

=

{
0, genotype (a, Ri) = genotype

(
a, Rj

)
1, otherwise

}
where genotype (a, Ri) is the genotype for individual Ri for
SNP a. In other words, two individuals have zero diff if they
have identical genotypes and they have unit diff if they have
different genotypes.

A potential drawback of GM is that it is not sensitive to
heterozygous genotype differences when computing the diff.
The following allele mismatch (AM) diff accounts for the
difference in the number of alleles for a SNP when computing
the distance between two individuals (Arabnejad et al., 2018).
The AM difference of two individuals can be calculated by the
following formula:

dAM
ij (a) = diffAM (gν, Ri, Rj)

=
1
2
× |genotype (a, Ri)− genotype

(
a, Rj

)
|
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TABLE 1 | Properties of simulated data from epistasis benchmarking repository (https://github.com/EpistasisLab/rebate-benchmark/).

Dataset Predictive features (influence ratio) Total features Heritability MAF Instances (case/ctl)

Main effect pair 2 (50:50) 20 0.4 0.2 800/800

4-main effect 4 (25:25:25:25) 20 0.4 0.2 800/800

4 interactions 4 (2 interacting pairs) 20 0.4 0.2 800/800

Interacting pair 2 20 0.05 0.2 800/800

Continuous outcome interactions 2 20 0.4 0.2 1,600

Imbalanced outcome interactions 2 20 0.4 0.2 960/640

10,000 variants 2 10,000 0.4 0.2 800/800

All scenarios are case-control except one continuous outcome dataset. All scenarios have 20 features except for one with 10,000 features.

FIGURE 1 | Performance of three feature selection algorithms (from left to right): NPDR, random forest (RF) using permutation P-value, and univariate regression for
three simulation models from https://github.com/EpistasisLab/rebate-benchmark/. Simulated models include (from top to bottom) main effect of two variants, main
effect of four variants, and heterogeneous interaction of two interacting pairs. The –log(adjusted P-value) is plotted for the 20 variants in each dataset for 30 replicate
simulations. The functional variable names (blue) begin with letter M, and the background variable names (red) start with letter N. Datasets have 1,600 samples (800
cases and 800 controls). Additional dataset details are given in Table 1. The dashed line represents Bonferroni adjusted P-value of 0.05.

where genotype (a, Ri) is the genotype encoding for number of
copies of the reference allele for SNP a for individual i. In other
words, the value of genotype (a, Ri) is the number of minor
alleles in the genotype: 0, 1, or 2. Then the return value of dAM

ij (a)

is 0, 0.5, or 1 when the two individual have 2, 1, or 0 alleles in

common, respectively. Other projected differences and metrics
are described by Arabnejad et al. (2018).

Nearest-neighbor Projected-Distance Regression uses the
GLM to perform regression between nearest neighbors. For
each attribute, the NPDR model fits a GLM to the attribute’s
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FIGURE 2 | Performance of three feature selection algorithms (from left to right): NPDR, random forest (RF) using permutation P-value, and univariate regression for
three simulation models from https://github.com/EpistasisLab/rebate-benchmark/. Simulated models include (from top to bottom) an interacting pair, an interacting
pair with a continuous outcome, and imbalanced case-control (60%). The –log(adjusted P-value) is plotted for the 20 variants in each dataset for 30 replicate
simulations. The functional variable names (blue) begin with letter M, and the background variable names (red) start with letter N. Datasets have 1,600 samples (800
cases and 800 controls). Additional dataset details are given in Table 1. The dashed line represents Bonferroni adjusted P-value of 0.05.

projected distances between all pairs of nearest neighbors.
The regression coefficients are calculated to minimize the
least-squares error. For case-control phenotypes, pmiss

ij is the
probability that subjects i and j are in the opposite phenotype
class (misses) versus the same class (hits). We model this
probability from the projected differences for SNP a with
logit function:

logit
(

pmiss
ij

)
= β0 + βadij(a)+ εij.

The NPDR test statistic for attribute a is the βa estimate with
one-sided hypotheses:

H0 : βa < 0.

H1 : βa ≥ 0.

The quantity eβa is the predicted change in odds of neighbors
being in opposite classes when the difference of the attribute a
changes by one unit. For a continuous outcome (quantitative

trait), NPDR uses linear regression of the numerical difference
dnum

ij (y) of the outcome y between neighbors:

dnum
ij (y) = β0 + βadij (a)+ εij

and feature importance and significance are again determined
from the coefficient βa.

False-positive associations can arise in GWAS due to
population stratification or cryptic relatedness. A standard
approach to correct for population structure is to include PCs
in the regression model to account for the genetic background.
Many machine learning feature selection algorithms have limited
ability to adjust for population structure or other potentially
confounding covariates. However, the NPDR formalism can
adjust for multiple covariates by including projected differences
dnum

ij (Eycovs) for each covariate attribute in the regression model.
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FIGURE 3 | Rank (lower is better) of the two functional interacting variants [variant 1 (green) and variant 2 (purple)] in simulated datasets with 10,000 total variants
from https://github.com/EpistasisLab/rebate-benchmark/. The ranks of the two functional variables are averaged over 30 replicate simulations. NPDR P-value
ranking is performed for allele mismatch (AM) and genotype mismatch (GM) projected distance metrics. Random forest ranking is performed by permutation
importance score (RF) and univariate uses the regression coefficient P-value. The 10,000 simulated variants have average minor allele frequency 0.2 and heritability
0.4, and datasets have 800 cases and 800 controls.

The covariate adjusted model then becomes,

logit
(

pmiss
ij

)
= β0 + βadij (a)+ EβT

covsdij(Eycovs)+ εij

where the covariate coefficient vector for 10 PCs is,

EβT
covs = (βPC1 , βPC2 , . . . , βPC10)

and again pmiss
ij is the probability of neighbors having a different

phenotype. Neighbors are still determined in the attribute
(variant) space, but we add additional covariate diffs to the NDPR
regression model.

Simulated Data
We compare methods using existing simulated data from the
epistasis benchmark described by Urbanowicz et al. (2018) and
available at https://github.com/EpistasisLab/rebate-benchmark/.
For simplicity, many of the benchmark simulations use 20
total variants, but we also compare performance for multiple
replicate simulations with 10,000 total variants to demonstrate
computational feasibility and the effect of higher dimensionality

(Table 1 summary of datasets). For case-control data, we use
data with 1,600 balanced instances (800 cases and 800 controls)
and one imbalanced scenario with (60% cases). Datasets have
a heritability effect size of 0.4, minor allele frequency of 0.2
and include models with 2–4 functional variants and models
with additive main effects and epistatic effects. We also use
a dataset with a pair of interacting variants that influence a
continuous endpoint.

Real GWAS
We apply NPDR to a study of females with European ancestry
with genotyping data for 317,503 SNPs for 720 SLE subjects and
2,337 controls from the SLEGEN consortium (Harley et al., 2008).
All women with SLE satisfied the revised criteria for classification
of SLE from the American College of Rheumatology. The
study sample consisted of 730 unrelated women with SLE
and 475 controls from SLEGEN. Additional “out-of-study”
European ancestry female controls were added from Illumina’s
iControlDB. The majority of iControlDB are from the Robert
S. Boas Center for Genomics and Human Genetics at the
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FIGURE 4 | Epistasis Network for Lupus GWAS. Edges are significant pairwise interactions with adjusted P-value < 10−6 between variants in genes computed after
filtering. The edge weights are the magnitude of the statistical interaction between SNPs calculated by –log10 (adjusted P-value). The espin-like (ESPNL) gene is an
epistasis hub with 15 edges. The interaction on the left (HLA-DOB and PBX2) is between genes in the MHC II region.

Feinstein Institute for Medical Research. We reduced the data
dimensionality using LD pruning with a correlation threshold of
0.5, minor allele frequency threshold of 0.01, Hardy-Weinberg
Expectations (HWE) in controls P > 0.01, and HWE in cases
P > 0.0001. LD pruning helps remove redundant features,
where a SNP from a pair in high LD is removed from the
data (Calus and Vandenplas, 2018). Initial filtering reduced
the number of SNPs to 184,170. Due to computer memory
constraints of the current implementation of NPDR, we further
filtered to 10,000 SNPs based on univariate association. This
filtering risks removing some interaction effects but should
capture a considerable amount of variation in the data. Future
implementations of NPDR will improve memory efficiency and
incorporate additional variants. An advantage of NPDR is the
ability to incorporate covariates into feature selection. We used
the top 10 PCs from the variance-standardized relationship
matrix. We mapped the top SNPs found by NPDR to Ensembl
gene IDs based on proximity. If the SNP is not in an intron or
exon of a gene, the algorithm computes the distance of the variant
to the nearest two genes and the SNP is mapped to the gene
symbol of the closest gene.

RESULTS

Simulation Analysis
For low-dimensional simulations with only 20 total attributes
(Figures 1, 2), both NPDR with AM metric and random
forest rank the functionally interacting attributes at the top for
all simulation scenarios. All methods detect the main effects
(Figure 1), but as expected the univariate analysis cannot detect
interaction effects. For low dimensional datasets (20 attributes),
random forest is able to exhaustively sample all attributes and find
a tree with the interacting attributes. When the total number of
attributes increases from 20 to 10,000 (Figure 3), random forest
is unable to detect the functional interactions with average ranks
near random (5,000). In this case of 10,000 attributes, the random
forest ranking is very similar to a univariate ranking, while NPDR
has good rankings for interacting attributes using either the GM
or AM projected difference metrics (Figure 3). This is consistent
with our previous results that random forest is unable to detect
interactions beyond random chance in high dimensional data,
whereas Relief-based methods are less affected by the curse of
dimensionality (McKinney et al., 2009). NPDR also performs
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TABLE 2 | Logistic regression interaction statistics for pairs of variants in genes in the epistasis network (Figure 4) for SLE GWAS with adjusted P-values < 10−6.

SNP 1 Gene 1 SNP 2 Gene 2 P-value Adjusted P-value

rs10210979 ESPNL rs2067477 CHRM1 5.149E-12 3.51E-09

rs10210979 ESPNL rs11564281 SLC2A13 1.055E-11 3.51E-09

rs10210979 ESPNL rs4832401 KCNS3 1.243E-11 3.51E-09

rs10210979 ESPNL rs7573771 LINC01120 4.106E-11 8.70E-09

rs10210979 ESPNL rs9814172 MAGI1 1.585E-10 2.69E-08

rs10210979 ESPNL rs9807842 ZNF577 2.431E-10 3.08E-08

rs9814172 MAGI1 rs6507759 MIR4527HG 2.539E-10 3.08E-08

rs10210979 ESPNL rs7694687 HTT 4.235E-10 4.16E-08

rs9814172 MAGI1 rs2067477 CHRM1 4.415E-10 4.16E-08

rs10210979 ESPNL rs1446540 LINC00276 9.587E-10 8.13E-08

rs10210979 ESPNL rs7762152 GUCA1A 1.189E-09 9.17E-08

rs9814172 MAGI1 rs17653341 SH3TC2 1.568E-09 1.05E-07

rs10210979 ESPNL rs9311738 FHIT 1.606E-09 1.05E-07

rs10210979 ESPNL rs6507759 MIR4527HG 2.278E-09 1.38E-07

rs11920836 LINC01208 rs11564281 SLC2A13 2.638E-09 1.44E-07

rs17083190 TBC1D32 rs9317652 PCDH9 2.717E-09 1.44E-07

rs17653341 SH3TC2 rs6507759 MIR4527HG 3.133E-09 1.56E-07

rs17083190 TBC1D32 rs978268 FGF14 3.502E-09 1.61E-07

rs10210979 ESPNL rs12477083 HS6ST1 3.608E-09 1.61E-07

rs10210979 ESPNL rs6936115 AL606923.2 4.387E-09 1.86E-07

rs9814172 MAGI1 rs6936115 AL606923.2 6.287E-09 2.54E-07

rs11920836 LINC01208 rs6445245 PTPRG 8.55E-09 3.30E-07

rs9311738 FHIT rs6445245 PTPRG 1.216E-08 4.48E-07

rs10210979 ESPNL rs11920836 LINC01208 1.283E-08 4.53E-07

rs10210979 ESPNL rs11073328 FAM98B 1.449E-08 4.85E-07

rs9311738 FHIT rs9807842 ZNF577 1.486E-08 4.85E-07

rs10210979 ESPNL rs6445245 PTPRG 1.566E-08 4.92E-07

rs11920836 LINC01208 rs1446540 LINC00276 1.935E-08 5.86E-07

rs12464623 C2CD6 rs6445245 PTPRG 2.036E-08 5.95E-07

rs2067477 CHRM1 rs11920836 LINC01208 2.463E-08 6.96E-07

rs7694687 HTT rs4507859 PAX5 3.037E-08 8.31E-07

rs204995 PBX2 rs11244 HLA-DOB 3.244E-08 8.45E-07

rs1446540 LINC00276 rs4507859 PAX5 3.288E-08 8.45E-07

rs10992568 FGD3 rs4705038 STK32A 3.749E-08 9.28E-07

rs11073328 FAM98B rs9807842 ZNF577 3.832E-08 9.28E-07

well for multiple pairwise interactions (Figure 1), interactions for
a continuous outcome (Figure 2, middle row) and imbalanced
case-control data (Figure 2, bottom row).

SLE GWAS
We apply NPDR to the SLEGEN data, which is a real GWAS
composed of females with SLE and healthy controls. Although
the study is composed of European ancestry individuals, we
include 10 PCs as covariates in NPDR to account for possible
cryptic relatedness. Following filtering we create a network
from significant (adjusted P-value < 1e-6) pairwise interactions
(Figure 4). This edge significance threshold results in 35 edges
(Table 2) in the epistasis network. The espin-like (ESPNL) gene
is a hub of the network, involved in 15 of the 35 significant
interactions. The particular interacting SNP (rs10210979) in
ESPNL is an intron variant on chromosome 2. Although ESPNL
is involved in hearing, it is ubiquitously expressed and some

of its interactions may indicate novel function for the immune
system. In addition to this hub gene, there is an interesting
interaction between HLA-DOB and PBX2 (Pre-B-cell leukemia
homeobox 2). Both of these genes are located within the
major histocompatibility complex (MHC) class II region on
chromosome 6, and HLA-DOB is a beta chain of the MHC
class II molecule.

CONCLUSION

Machine learning feature selection methods are needed to
enrich for attributes involved in complex interaction network
effects in high dimensional data, such as GWAS and gene
expression, for case-control and quantitative trait studies. In
addition to interactions, machine learning methods need to
handle complicated modeling scenarios, such as controlling for
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potential confounders from demographic data or population
structure, which is a perennial challenge for GWAS data.

In the current study of GWAS data, we applied a new
feature selection technique called NPDR that uses the GLM
to perform regression between nearest-neighbor pair distances
projected onto predictor dimensions. NPDR detects interaction
structure using local nearest-neighbor information in the full
space of predictors, which may be SNPs or expression levels.
Using simulated GWAS, we showed that NPDR has good power
to detect functional variants in a variety of simulation scenarios
including case-control data with and without imbalance,
quantitative trait outcomes, main effects, and multiple pairwise
epistatic effects. Similar to our previous findings (McKinney
et al., 2009; Le et al., 2020), NPDR is less susceptible to
the curse of dimensionality than random forest because when
the total number of variants increases to 10,000, the ranking
of interacting variants by random forest is consistent with a
random ranking, while NPDR consistently ranks the functional
variants near the top.

We demonstrated NPDR’s ability to handle covariates by
including the first 10 PCs in the NPDR models for a GWAS
of SLE. Previously we showed that using the covariate term in
NPDR can remove genes from nearest-neighbor feature selection
that are confounded by sex (Le et al., 2020). In the current study,
we constructed a candidate epistasis network for SLE from the
filtered data, and found the ESPNL gene is a hub in the network
with 15 of the 35 statistically significant interactions. There is no
prior evidence for the role of ESPNL in autoimmunity, but it is
ubiquitously expressed. Replication and functional investigation

of these interactions are needed to identify mechanisms in the
pathogenesis of autoimmunity. The lupus epistasis network also
contains a significant interaction between HLA-DOB and PBX2,
which are both located within the MHC class II region on
chromosome 6. A limitation of this discovery analysis was the
lack of a replication dataset. Another limitation is the need for
SNP filtering in the current NPDR implementation in R for
GWAS. Future implementations will take advantage of binary
GWAS data formats for improved memory management.
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