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One of the most important and challenging problems in biomedicine is how to predict the cancer related genes. Retinoblastoma
(RB) is the most common primary intraocular malignancy usually occurring in childhood. Early detection of RB could reduce
the morbidity and promote the probability of disease-free survival. Therefore, it is of great importance to identify RB genes. In this
study, we developed a computationalmethod to predict RB related genes based onDagging, with themaximum relevanceminimum
redundancy (mRMR) method followed by incremental feature selection (IFS). 119 RB genes were compiled from two previous RB
related studies, while 5,500 non-RB genes were randomly selected from Ensemble genes. Ten datasets were constructed based on all
these RB and non-RB genes. Each gene was encoded with a 13,126-dimensional vector including 12,887 Gene Ontology enrichment
scores and 239 KEGG enrichment scores. Finally, an optimal feature set including 1061 GO terms and 8 KEGG pathways was
obtained. Analysis showed that these features were closely related to RB. It is anticipated that the method can be applied to predict
the other cancer related genes as well.

1. Introduction

Retinoblastoma (Rb) is a rapidly developing cancer in infants
that develops in the cells of retina, the light-detecting tissue of
the eye [1], which can be heritable or nonheritable. The most
common and obvious sign of retinoblastoma is an abnormal
appearance of the pupil, leukocoria, also known as amaurotic
cat’s eye reflex [2]. Retinoblastoma is rare and affects approxi-
mately 1 in 15,000 live births, but it is themost common inher-
ited childhood malignancy. In China, around 1100 new cases
are diagnosed each year, just second to that of India. Patients
without diagnosis and being treated untimely would undergo
enucleation or even die. In about two-thirds of cases, only one
eye is affected (unilateral retinoblastoma); in the other third,
tumours develop in both eyes (bilateral retinoblastoma). The
number and size of tumours on each eye may vary [2].

As a kind of neural ectoderm tumor, heritable Rb is
mainly caused by the mutation of Rb gene and dysfunction
of tumor suppressor genes [3]. In these years, a rise in
the number of cases was found, which was partly blue to
the environmental pollution. The defective RB1 gene can be
inherited from either parents; in some children, however, the
mutation occurs in the early stages of fetal development [4].
Somatic amplification of the MYCN oncogene is responsible
for some cases of non-hereditary, early onset, aggressive, and
unilateral Rb. Although MYCN amplification accounted for
only 1.4% of Rb cases, researchers identified it in 18% of
infants diagnosed at less than 6 months of age. Median age at
diagnosis for MYCN Rb was 4.5 months, compared with 24
months for those who had nonfamilial unilateral disease with
two RB1 gene mutations [5]. Bilaterally affected individuals
and 13%–15% of unilaterally affected individuals are expected
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to show an RB1 mutation in blood [6, 7]; the rest 85% of
unilaterally affected patients were found not to carry either
of their eye tumor RB1 mutations in blood; neither molecular
testing nor clinical surveillance of siblings is required [8]. So
to find more molecular markers or more effective prediction
method is crucial for Rb diagnosis.

System biology approaches for discovering cancer related
genes have been reported [9–11]. The Gene Ontology (GO)
is a major bioinformatics tool to unify the representation
of gene and gene product attributes across all species [12].
GO terms have been used previously to characterize protein
function and to elucidate trends in protein datasets [13]. In
addition, it has been shown that GO annotations are good
predictors of cancer genes [14]. The Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway database is a widely
used comprehensive inference for pathwaymapping of genes.

Here, we developed a new systems biological measure
to effectively and deficiently identify RB genes and their
pathways. First, we identified 119 RB genes from the overlap
of two gene expression studies of retinoblastoma. In order
to identify GO terms and KEGG pathways that are distinct
between RB and non-RB genes, 5,500 non-RB genes were
randomly selected from the Ensembl genes. Then all the
genes were encoded with 12,887 Gene Ontology enrichment
scores and 239 KEGG enrichment scores. mRMR and IFS
was used to rank these features. Dagging was employed
as the prediction engine. Finally, 1061 GO terms and 8
KEGG pathways were obtained as the optimal features to
discriminate an RB and non-RB gene, which has been shown
to be closely related to RB.

2. Materials and Methods

2.1. Dataset. The 119 consistently differentially expressed
genes between retinoblastoma and normal retina were
obtained from the overlap between differentially expressed
genes discussed in two gene expression studies of retinoblas-
toma [15, 16] (see Supplementary Material available at http://
dx.doi.org/10.1155/2013/304029). In Chakraborty et al.’s study
[15], there was a total of 10 RB samples and three normal
retina samples. Human 19K cDNA microarray which was
interrogating 19,000 human genes was used to get the expres-
sion profiling and the raw data were normalized by grid-
wise normalization. In Ganguly and Shields’s study [16], they
investigated the gene expression of six matched RB tissues
and normal retinal tissues with GeneChip Human U133 V2.0
microarray. Both the Affymetrix standard protocols and the
standard model-based methods of robust multichip average
were used. The values are background adjusted, normalized,
and log transformed. There were 110 proteins corresponding
to these 119 RB genes, which were regarded as positive
samples in this study. The gene symbols were mapped to
Ensembl proteins IDwith the tool BioMart [17].We randomly
selected 110 × 50 = 5,500 non-RB genes from Ensembl as the
negative samples. We refer the reader to [18] to deal with
imbalanced data; all the negative samples were randomly split
into 10 parts to comprise 10 datasets with the 110 positive
samples. All the RB related genes and non-RB related genes
are given in Supplementary S1.

2.2. Gene Ontology and KEGG Enrichment Scores. The Gene
ontology enrichment score of a protein is defined as the
−log10 of the hypergeometric test 𝑃 value [19–21] of its
direct neighbors in STRING network [22]. The higher the
enrichment score of a certain Gene Ontology term, the
more overrepresented it is. There were 12,887 Gene Ontology
enrichment score features. In the same way, the KEGG
enrichment score of a protein is defined as the −log10 of the
hypergeometric test 𝑃 value [19, 20] of its direct neighbors in
STRING network [22]. The higher the enrichment score of
one pathway, the more overrepresented the pathway is.There
were 239 KEGG enrichment score features.

2.3. Feature Reduction. We calculated the Cramer’s V coeffi-
cient [23, 24] between features and target variables. Cramer’s
V coefficient is a statistical measurement derived from the
Pearson Chi-square test [25]. It ranges from 0 to 1. The
smaller Cramer’s V coefficient indicates weaker association.
The features with Cramer’s V coefficient small than 0.1 were
removed.

2.4. mRMR Method and Dagging. We used the minimum
redundancy maximal relevance (mRMR) method to rank
the importance of the features [26]. The mRMR method
ranks features based on both their relevance to the target
and the redundancy between features. A smaller index of a
feature denotes that it has a better tradeoff betweenmaximum
relevance to the target and minimum redundancy. For detail,
please refer to our previous works [21, 27–31].

Dagging is a metaclassifier that employs majority vote to
combinemultiplemodels derived from a single learning algo-
rithm using disjoint samples [32]. For a training dataset I =
{𝑠
1
, 𝑠
2
, . . . , 𝑠

𝑛
}, 𝑘 disjoint subsets of size 𝑛 are constructed by

randomly taking samples in I without replacement, where
𝑘𝑛

≤ 𝑛. Use a basic classifier to derive 𝑘 classificationmodels

𝑀
1
,𝑀
2
, . . . ,𝑀

𝑘
from the constructed 𝑘 disjoint subsets ofI.

For a query sample, each of these models provides an output.
The final predicted result is the class withmost votes. InWeka
3.6.4 [33], the classifier “Dagging” implements the dagging
classifier described above. In this study, it was employed as
the classification model. For convenience, it was run with
its default parameters. In detail, SMO is used as a basic
classifier, and 𝑘 is set to 10. In recent years, Dagging has been
employed to deal with some biological problems [34–37]. Its
performances in these studies show that it can be superior to
some classic classifiers in some cases.

2.5. Ten-Fold Cross Validation and Incremental Feature Selec-
tion (IFS). Ten-fold cross validation was often used to eval-
uate the performance of a classifier [38]. To evaluate the
performance of the predictor, the prediction accuracy, speci-
ficity, sensitivity, and MCC (Matthews’s correlation coeffi-
cient) were calculated as follows:

accuracy = TP + TN
TP + TN + FP + FN

,

sensitivity = TP
TP + FN

,
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specificity = TN
TN + FP

,

MCC = TP × TN − FP × FN
√(TP + FP) (TP + FN) (TN + FP) (TN + FN)

,

(1)

where TP denotes true positive. TN denotes true negative. FP
denotes false positive and FN denotes false negative.

Based on the features ranked by mRMR, we used incre-
mental feature selection (IFS) [21, 28, 39, 40] to determine the
optimal number of features. During IFS procedure, features
in the ranked feature set are added one by one from higher to
lower rank. A new feature set is composed when one feature
is added. For each of the feature sets, a Dagging classifier is
constructed and tested using ten-fold cross-validation test.
Thus, an IFS table is obtained with one column being the
index of the feature set and the other columns being the
prediction accuracies, sensitivities, specificities, and MCCs.
We then can get the optimal feature set, using the predictor
that achieves the best prediction performance.

3. Results and Discussion

3.1. The mRMR Result. After running the mRMR software,
we obtained two tables for each of the ten datasets (see
Supplementary S2): one is called MaxRel feature table that
ranks the features according to their relevance to the class of
samples and the other is called mRMR feature table that lists
the ranked features by themaximumrelevance andminimum
redundancy to the class of samples. In the mRMR feature
table, a feature with a smaller index implies that it is more
important for discriminating RB and non-RB genes. Such
list of ranked feature was to be used in the following IFS
procedure for the optimal feature set selection.

3.2. IFS Result. By adding the ranked features one by one, we
built 500 individual predictors based on 500 subfeature sets to
predict RB genes for each of the ten datasets. We then tested
the prediction performance for each of the 500 predictors
and obtained the IFS results (see Supplementary S3). The IFS
curves plotted based on the data of Supplementary S3 are
shown in Figure 1. The IFS curve of dataset 1 is shown in
Figure 1, we can see that the maximal MCC was 0.5174 when
156 features as given in Supplementary S3 were used. Such 156
features were regarded as the optimal feature set for dataset
1. Based on these 156 features, the prediction sensitivity,
specificity, and accuracy were 0.5727, 0.9291, and 0.8697,
respectively (Table 1). For the other nine datasets, the IFS
results can be found in Supplementary S3 and corresponding
IFS curves can be found in Supplementary S4. Finally, we
took the union of optimal features for all the ten datasets as
the final optimal feature set, which included 1061 GO terms
and 8 KEGGpathways (see Supplementary S5). Hereafter, the
further analysis was based on this final optimal feature set.

3.3. 119 RB Genes Enrichment Analysis. To compare the en-
richment result of only positive sample and the selected GO
and KEGG terms, we conducted the enrichment analysis
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Figure 1: IFS curve for the first datasets. The maximal MCC was
0.5174 when 156 features were used.

for the 119 RB genes. The results showed that 12 GO terms
were enriched significantly (Benjamini adjusted 𝑃 value <
0.05; see Supplementary S6). Among them, two GO terms
(GO:0007049: cell cycle andGO:0000087:Mphase ofmitotic
cell cycle) were in our optimal feature set. For KEGG path-
ways, only hsa04110 (cell cycle) was significantly enriched
(see Supplementary S6) and it has been included in our
optimal feature set for distinguishing RB genes and non-
RB genes, which suggested that these three enriched terms
including GO:0007049: cell cycle, GO:0000087: M phase
of mitotic cell cycle, and hsa04110: cell cycle are critical
discriminators for RB genes and non-RB genes.

3.4. Analysis of the Optimal Feature Set

3.4.1. GO Number and Percentage. To illustrate the biological
meanings of the selected optimal feature subset, we firstly
tried to classify GO terms in the optimal set into the
three kinds: the biological process, cellular component, and
molecular function GO terms. And the GO terms of the
feature obtained by mRMR method were mapped to the
children of the three root GO terms. The figures show the
frequency of each GO term in the feature subset and display
the ratio of the number of each GO term to the scale of the
number of its children terms.

(1) Biological Process GO Terms. From Figure 2, it can be
seen that in the frequency of BP terms, the top five GO
biological process terms are GO:0009987: cellular process
(662), GO:0008152: metabolic process (425), GO:0065007:
biological regulation (386), GO:0050789: regulation of bio-
logical process (364), and GO:0019740: nitrogen utilization
(210). The inclusion of cellular process (GO:0009987), bio-
logical regulation (GO:0065007), and regulation of biological
process (GO:0050789) within the top five frequencies of GO
terms may suggest that these biological functions performed
by certain proteins at the cellular level are very important in
normal persons and may be dysfunctional in Rb patients.

For the percentage of BP terms, the top five GO biological
processes are GO:0006794: phosphorus utilization (4.99%),
GO:0022610: biological adhesion (4.85%), GO:0008283: cell
proliferation (4.81%), GO:0071840: cellular component orga-
nization or biogenesis (4.26%), and GO:0019740: nitrogen
utilization (4.08%). Phosphorus utilization provides cells
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Table 1: The predicted results for ten datasets.

Dataset Optimal feature number Sn Sp Acc MCC
1 156 0.5727 0.9291 0.8697 0.5174
2 141 0.6273 0.9218 0.8727 0.5452
3 337 0.7364 0.8691 0.8470 0.5347
4 140 0.6000 0.9327 0.8773 0.5471
5 126 0.5636 0.9436 0.8803 0.5434
6 489 0.6273 0.9255 0.8758 0.5527
7 78 0.5545 0.9527 0.8864 0.5588
8 222 0.6364 0.9345 0.8848 0.5795
9 319 0.6545 0.9218 0.8773 0.5663
10 235 0.5545 0.9491 0.8833 0.5495

Mean (standard deviation) 0.6127 (0.0567) 0.928 (0.0234) 0.8755 (0.0113) 0.5494 (0.017)
Sn: sensitivity; Sp: specificity; Acc: accuracy; MCC: Matthews’s correlation coefficient.
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Figure 2: Illustrating the distribution of GO terms of biological process in the optimal feature set. (a)The frequency of GO terms of biological
process. (b) The percentage of GO terms of biological process.

phosphorylation sources and ensures regular cellular activ-
ities. From the GO biological process term percentage dis-
tribution, it can be seen that GO terms related with cell
proliferation and biological adhesion are also highlighted,
although their term numbers are less than those of the others.
This indicates that proteins assigned with these two GO
terms have relatively high influence on RB. For example,
RB1 is a key regulator of cell proliferation and fate in
retinoblastoma, phosphorylation of which can lead to con-
formational alterations and inactivates the capability of RB1
to bind partner proteins [41]. Cell adhesion also contributes
to normal cells’ exchange and communication. Epithelial cell
adhesion molecule (EpCAM) can regulate expression of the
oncogenicmiR17-92 cluster inRB and thereby controls Rb cell
proliferation and invasion [42].

(2) Cellular Component GO Terms. In Figure 3(a), for fre-
quency of CC terms, the top five GO cellular com-
ponent terms are GO:0005623: cell (158), GO:0044464:
cell part (145), GO:0043226: organelle (76), GO:0044422:
organelle part (63), and GO:003299: macromolecular com-
plex (60), mostly because of their large base numbers.
In the percentage of CC terms, the top five GO cellu-
lar component terms also include GO:0044420: extracel-
lular matrix part (9.09%), GO:0031012: extracellular matrix
(7.07%), GO:0031974: membrane-enclosed lumen (5.41%),
GO:0044422: organelle part (5.15%), and GO:0043226:
organelle (4.73%).

Extracellularmatrix is associated with cell adhesionmen-
tioned in the last section. Inadhesive cells having destroyed
extracellular matrix and no natural protections tend to be
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Figure 3: Illustrating the distribution of GO terms of cellular component in the optimal feature set. (a)The frequency of GO terms of cellular
component. (b) The percentage of GO terms of cellular component.

tumor cells under outside pressures. Here, from the per-
centage distribution, it is suggested that extracellular matrix
was highly related with RB. Additionally, the inclusion of
membrane-enclosed lumen, organelle, and organelle part
indicated that cell organelles (with or without membrane)
may involve in Rb too.

(3) Molecular Function GO Terms. In Figure 4, the top
five GO molecular function terms of frequency are
GO:0003824: catalytic activity (152), GO:0005488: binding
(85), GO:0000988: protein binding transcription factor
activity (51), GO:0065009: regulation of molecular function
(38), and GO:0005215: transporter activity (30). Because
of large base numbers, protein GO terms related to RB are
relatively more enriched in the top five molecular function
GO terms, especially in catalytic activity (GO:0003824)
and binding (GO:0005488). Proteins assigned to these GO
terms required interaction to carry out their structural
or functional activities. This suggests that dysfunction of
proteins assigned to these GO terms contributed profoundly
to Rb tumorogenesis. The highlight of catalytic activity
(GO:0003824) may be attributed to the fact that many Rb
related proteins are involved in catalytic activities such as
enzymes. The highlight of binding (GO:0005488) may be
ascribed to the fact that proteins expressing specific function
should regulate or interact with others through binding each
other. Biological progresses such as phosphorylation and
acetylation are critical in disease and both of them need
certain enzyme to catalyze; for example, phosphorylated p53
can intiatie cell cycle arrest of abnormal cells and acetylated
ones can cause apoptosis of injured cells [43, 44], and all these
processes need binding and catalysis to execute function.

In Figure 4(b), the top five GO molecular function
terms are GO:0045182: translation regulator activity (14.3%),
GO:0030234: enzyme regulator activity (7.78%), GO:0001071:
nucleic acid binding transcription factor activity (6.31%),
GO:0044093: positive regulation of molecular function
(6%), and GO:0005198: structural molecule activity (5.88%).
Because of the large base number of the top five GO terms
in frequency, they have relatively lower enrichment than the
top fiveGO terms in percentage. But, the top fiveGO terms in
MFpercentage are all interrelatedwith these in BP percentage
and CC percentage. For example, ribosome as a kind of
organelle serves as translation vehicle in cells, which may
somehow take part in the translation regulation. RB protein
phosphorylation also needs enzyme to catalyze [45].

3.4.2. The KEGG Pathways in the Optimal Set. We got
eight KEGG pathway terms in the optimal set of fea-
tures (see Supplementary S5), which are hsa00520 (amino
sugar and nucleotide sugar metabolism) and has 00563
(glycosylphosphatidylinositol- (GPI-) anchor biosynthesis),
hsa03015 (mRNA surveillance pathway), hsa03440 (homol-
ogous recombination), hsa03450 (nonhomologous end join-
ing), hsa04110 (cell cycle), hsa04114 (oocyte meiosis), and
hsa04330 (notch signaling pathway). Among them, amino
sugar and nucleotide sugar metabolism (hsa00520) empha-
size the sugar metabolism in eye cancer. Glycosylphosphat-
idylinositol- (GPI-) anchor biosynthesis (hsa00563) pathway
is related with anchoring of proteins outside of membrane.
The next three are all included in genetic information pro-
cessing pathway.ThemRNA surveillance pathway (hsa03015)
involved in translation and the other two deal with repli-
cation and repair. Cell cycle (hsa04110) and oocyte meiosis
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Figure 4: Illustrating the distribution of GO terms of molecular function in the optimal feature set. (a) The frequency of GO terms of
molecular function. (b) The percentage of GO terms of molecular function.

(hsa04114) are related to cell growth and death, and notch sig-
naling pathway (hsa04330) is involved in signal transduction.

The canonical pathway that links tumor suppressor gene
Rb to human cancers details its interaction with the E2F
transcription factors and cell-cycle progression [46]; recent
studies have shown a significant role for RB-1 in the suppres-
sion of glycolytic and glutaminolytic metabolism [47, 48]. So
the RB-E2F axis and the up- and down-stream genes should
be very important in finding new potent antitumor target for
Rb treatment.

4. Conclusion

We proposed a computational method to identify cancer
related genes taking GO enrichment scores and KEGG
enrichment scores as features. We applied this method to RB.
An optimal feature set including 1061 GO terms and 8 KEGG
pathways was revealed by ourmethod, which has been shown
to be closely related to RB.We believe this method is efficient
and effective in prediction of novel cancer related genes and
has universal applicability in the cancer research.
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[17] R. J. Kinsella, A. Kähäri, S. Haider et al., “Ensembl BioMarts:
a hub for data retrieval across taxonomic space,” Database, vol.
2011, article bar030, 2011.

[18] Z.He, T.Huang, X. Shi et al., “Computational analysis of protein
tyrosine nitration,” in Proceedings of the 4th International
Conference on Computational Systems Biology (ISB ’10), pp. 35–
42, 2010.

[19] P. Carmona-Saez, M. Chagoyen, F. Tirado, J. M. Carazo, and A.
Pascual-Montano, “GENECODIS: a web-based tool for finding
significant concurrent annotations in gene lists,” Genome Biol-
ogy, vol. 8, no. 1, article R3, 2007.

[20] T. Huang, L. Chen, Y.-D. Cai, and K.-C. Chou, “Classification
and analysis of regulatory pathways using graph property,
biochemical and physicochemical property, and functional
property,” PLoS One, vol. 6, no. 9, Article ID e25297, 2011.

[21] B.-Q. Li, J. Zhang, T. Huang, L. Zhang, and Y.-D. Cai, “Iden-
tification of retinoblastoma related genes with shortest path in
a protein-protein interaction network,” Biochimie, vol. 94, pp.
1910–1917, 2012.

[22] D. Szklarczyk, A. Franceschini, M. Kuhn et al., “The STRING
database in 2011: functional interaction networks of proteins,
globally integrated and scored,” Nucleic Acids Research, vol. 39,
no. 1, pp. D561–D568, 2011.

[23] H. Cramér, Mathematical Methods of Statistics, Princeton Uni-
versity Press, Princeton, NJ, USA, 1946.

[24] M. Kendall and A. Stuart,TheAdvancedTheory of Statistics, vol.
2, Inference and Relationship, Macmillan, New York, NY, USA,
1979.

[25] K. M. Harrison, T. Kajese, H. I. Hall, and R. Song, “Risk factor
redistribution of the national HIV/AIDS surveillance data: an
alternative approach,” Public Health Reports, vol. 123, no. 5, pp.
618–627, 2008.

[26] H. Peng, F. Long, and C. Ding, “Feature selection based on
mutual information: criteria of max-dependency, max-
relevance, and min-redundancy,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 8, pp. 1226–1238,
2005.

[27] L.-L. Zheng, S. Niu, P. Hao, K. Feng, Y.-D. Cai, and Y. Li, “Pre-
diction of protein modification sites of pyrrolidone carboxylic
acid usingmRMR feature selection and analysis,”PLoSOne, vol.
6, no. 12, Article ID e28221, 2011.

[28] Y.-F. Gao, B. Li -Q, Y.-D. Cai, K.-Y. Feng, Z.-D. Li, and Y. Jiang,
“Prediction of active sites of enzymes by maximum relevance
minimum redundancy (mRMR) feature selection,” Molecular
BioSystems, vol. 9, pp. 61–69, 2013.

[29] B.-Q. Li, Y.-D. Cai, K.-Y. Feng, and G.-J. Zhao, “Prediction of
protein cleavage site with feature selection by random forest,”
PLoS One, vol. 7, Article ID e45854, 2012.

[30] N. Zhang, B.-Q. Li, S. Gao, J.-S. Ruan, and Y.-D. Cai,
“Computational prediction and analysis of protein [gamma]-
carboxylation sites based on a random forest method,” Molec-
ular BioSystems, vol. 8, pp. 2946–2955, 2012.

[31] B.-Q. Li, K.-Y. Feng, L. Chen, T. Huang, and Y.-D. Cai, “Pre-
diction of protein-protein interaction sites by random forest
algorithm with mRMR and IFS,” PLoS One, vol. 7, Article ID
e43927, 2012.

[32] K. M. Ting and I. H. Witten, “Stacking bagged and dagged
models,” in Proceedings of the 14th international Conference on
Machine Learning, pp. 367–375, San Francisco, Calif, USA, 1997.

[33] I. H. Witten and E. Frank, Data Mining: Practical Machine
Learning Tools and Techniques, Morgan Kaufmann, 2005.

[34] P. K. Srimani and M. S. Koti, “A Comparison of different
learning models used in data mining for medical data,” in
Proceedings of the 2nd International Conference on Methods and
Models in Science and Technology (ICM2ST ’11), pp. 51–55, India,
November 2011.

[35] L. Chen, L. Lu, K. Feng et al., “Multiple classifier integration
for the prediction of protein structural classes,” Journal of
Computational Chemistry, vol. 30, no. 14, pp. 2248–2254, 2009.

[36] Y.-D. Cai, L. Lu, L. Chen, and J.-F. He, “Predicting subcellu-
lar location of proteins using integrated-algorithm method,”
Molecular Diversity, vol. 14, no. 3, pp. 551–558, 2010.

[37] C. Peng, L. Liu, B. Niu et al., “Prediction of RNA-binding
proteins by voting systems,” BioMed Research International, vol.
2011, Article ID 506205, 8 pages, 2011.

[38] R. Kohavi, “A study of cross-validation and bootstrap for
accuracy estimation and model selection,” in Proceedings of
the 14th International Joint Conference on Artificial Intelligence
(IJCAI ’95), vol. 2, pp. 1137–1145, 1995.

[39] B.-Q. Li, T. Huang, J. Zhang et al., “An ensemble prognostic
model for colorectal cancer,” PLoS One, vol. 8, Article ID
e63494, 2013.

[40] B.-Q. Li, T. Huang, L. Liu, Y.-D. Cai, and K.-C. Chou, “Identifi-
cation of colorectal cancer related geneswithmrmr and shortest
path in protein-protein interaction network,” PLoS One, vol. 7,
no. 4, Article ID e33393, 2012.

[41] E. P. Lamber, F. Beuron, E. P. Morris, D. I. Svergun, and S.
Mittnacht, “Structural insights into the mechanism of phos-
phoregulation of the retinoblastoma protein,” PLoS One, vol. 8,
Article ID e58463, 2013.

[42] M. M. Kandalam, M. Beta, U. K. Maheswari, S. Swaminathan,
and S. Krishnakumar, “Oncogenic microRNA 17-92 cluster is
regulated by epithelial cell adhesion molecule and could be
a potential therapeutic target in retinoblastoma,” Molecular
Vision, vol. 18, pp. 2279–2287, 2012.

[43] A. Loewer, E. Batchelor, G. Gaglia, and G. Lahav, “Basal
dynamics of p53 reveal transcriptionally attenuated pulses in
cycling cells,” Cell, vol. 142, no. 1, pp. 89–100, 2010.



8 BioMed Research International

[44] C. Dai and W. Gu, “P53 post-translational modification: dereg-
ulated in tumorigenesis,” Trends in Molecular Medicine, vol. 16,
no. 11, pp. 528–536, 2010.

[45] S. Huang, Z. Zhu, Y. Wang et al., “Tet1 is required for Rb
phosphorylation duringG1/S phase transition,”Biochemical and
Biophysical Research Communications, vol. 434, no. 2, pp. 241–
244, 2013.

[46] B. F. Clem and J. Chesney, “Molecular pathways: regulation of
metabolism by RB,” Clinical Cancer Research, vol. 18, pp. 6096–
6100, 2012.

[47] G. Ciavarra and E. Zacksenhaus, “Rescue of myogenic defects
in Rb-deficient cells by inhibition of autophagy or by hypoxia-
induced glycolytic shift,” Journal of Cell Biology, vol. 191, no. 2,
pp. 291–301, 2010.

[48] G. Ciavarra and E. Zacksenhaus, “Multiple pathways counteract
cell death induced by RB1 loss: implications for cancer,” Cell
Cycle, vol. 10, no. 10, pp. 1533–1539, 2011.


