
molecules

Article

Application of Near-infrared Spectroscopy and
Multiple Spectral Algorithms to Explore the Effect of
Soil Particle Sizes on Soil Nitrogen Detection

Shupei Xiao 1,2 and Yong He 1,2,*
1 College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
2 Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture, Hangzhou 310058, China
* Correspondence: yhe@zju.edu.cn; Tel.: +86-0571-8898-2143

Received: 19 June 2019; Accepted: 6 July 2019; Published: 7 July 2019
����������
�������

Abstract: Soil nitrogen is the key parameter supporting plant growth and development; it is also
the material basis of plant growth. An accurate grasp of soil nitrogen information is the premise of
scientific fertilization in precision agriculture, where near-infrared (NIR) spectroscopy is widely used
for rapid detection of soil nutrients. In this study, the variation law of soil NIR reflectivity spectra
with soil particle sizes was studied. Moreover, in order to precisely study the effect of particle size
on soil nitrogen detection by NIR, four different spectra preprocessing methods and five different
chemometric modeling methods were used to analyze the soil NIR spectra. The results showed that
the smaller the soil particle sizes, the stronger the soil NIR reflectivity spectra. Besides, when the soil
particle sizes ranged 0.18–0.28 mm, the soil nitrogen prediction accuracy was the best based on the
partial least squares (PLS) model with the highest Rp2 of 0.983, the residual predictive deviation (RPD)
of 6.706. The detection accuracy was not ideal when the soil particle sizes were too big (1–2 mm) or
too small (0–0.18 mm). In addition, the relationship between the mixing spectra of six different soil
particle sizes and the soil nitrogen detection accuracy was studied. It was indicated that the larger
the gap between soil particle sizes, the worse the accuracy of soil nitrogen detection. In conclusion,
soil nitrogen detection precision was affected by soil particle sizes to a large extent. It is of great
significance to optimize the pre-treatments of soil samples to realize rapid and accurate detection by
NIR spectroscopy.

Keywords: soil nitrogen; near-infrared spectroscopy; soil particle sizes; multiple spectral algorithms;
mixing spectra

1. Introduction

As the main source of nutrient supply for plant growth, the nutritional status of soil is one of the
key factors directly influencing plant growth and development [1]. During the plant growth process,
plants obtain available nitrogen through decomposition of organic nitrogen and subsequent nitrogen
mineralization (ammonification and nitrification) by microbes [2]. Thus, it is of great importance to
obtain soil nutrient content such as soil nitrogen quickly and accurately for precision fertilization and
agricultural production [3]. The traditional chemical method for detecting soil nitrogen content, such
as Dumas combustion [4], achieves high accuracy. However, the whole detection process is complex
and time-consuming [5]. At present, near-infrared (NIR) spectroscopy has been successfully applied in
the fields of agriculture, food, medicine, petroleum and chemistry [6], and many scholars have applied
NIR spectroscopy to detect soil nitrogen content as well.

Firstly, NIR spectroscopy could be used as a rapid, inexpensive and non-destructive technique to
predict the physical, chemical and biochemical properties of soil. The predicted results were evaluated
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as excellent (R2 > 0.90) for soil organic carbon, Kjeldahl nitrogen, soil moisture, cation exchange
capacity, microbial biomass carbon, basal soil respiration, acid phosphatase activity and β-glucosidase
activity [7]. Soil nitrogen was detected with multiple linear regression (MLR) method at the spectral
bands of 1702, 1870 and 2052 nm using NIR spectroscopy [8], and the correlation coefficients between
measured and predicted values of soil nitrogen achieved 0.931 [9]. Moreover, it was found that the
sensitive bands of soil total nitrogen were different for different soil types and the characteristic bands
were affected not only by soil type, but also by sampling depth [10]. Secondly, the effect of soil particle
size on soil nitrogen detection by NIR spectroscopy was also studied. Hernandez et al. found that the
NIR prediction result of soil organic nitrogen was not ideal when the soil particle size was too large or
too small [11]. On this basis, scholars have carried out further studies. When soil particle sizes were
in the range of 0.5–5 mm, the correlation coefficient of prediction was higher than 0.8; the prediction
accuracy was worse when the soil particle size was less than 0.25 mm or greater than 0.5 mm [9].
However, there were different conclusions about the effect of soil particle sizes on soil nitrogen detection
using NIR spectroscopy. For example, in Cozzolino’s research, in which the correlation coefficients
of coarse sand (0.25–2 mm), fine sand (0.05–0.25 mm) and clay sand (<0.05 mm) were 0.90, 0.92 and
0.96, respectively, between soil nitrogen and NIR spectra [12]. Similar to Cozzolino’s research, Zhu et
al. pointed out that the smaller the soil water content and soil particle size, the better the prediction
accuracy [13]. Furthermore, the results of Nie’s research suggested that the soil with the strictest
pretreatments (dried, ground, sieved and pressed) achieved the highest accuracy in predicting the soil
nitrogen content using NIR sensor [14].

It is concluded that the accuracy of detecting soil nitrogen content is largely affected by soil
particle size. However, at present, the research on the influence of soil particle sizes on soil nitrogen
detection by NIR mainly has the following shortcomings: First, soil particle size classification is not
specific enough and lacks systematic research; second, qualitative or quantitative analysis of the mixed
spectra based on different soil particle sizes is lacking; third, the modeling method for unified data
is relatively simple, and data stability needs further study. In order to solve the above problems,
the main objective of this study was to (1) systematically study the effect of soil particle sizes on the
detection of soil nitrogen by NIR spectroscopy; (2) conduct a qualitative and quantitative analysis
of mixed spectra based on different soil particle sizes; (3) model and analyze the soil NIR spectra by
four spectral pretreatment methods and five modeling methods, attempting to achieve high feasibility
and reliability.

2. Results and Discussion

2.1. Analysis of Soil NIR Spectrum

The soil type, color, and other physicochemical properties will affect the spectral characteristics
of soil to a large extent. Therefore, before exploring the effect of soil particle sizes on soil nitrogen
detection using NIR spectroscopy, the spectral properties of the red soil used in this experiment were
analyzed. The original NIR spectrum of soil is given in Figure 1a and the NIR spectrum of soil with
first-order pretreatment is shown in Figure 1b.
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According to Figure 1, there were strong absorption peaks at 1394 and 1409 nm, which belonged
to the hydrogen group vibrations of N-H band and O-H band [15]. Furthermore, it can be seen that the
absorption peaks at 1250, 1300 and 1355 nm had weak vibrations. To be more specific, the absorption
peaks at 1250 nm were assigned to the vibrations of the C-H band and the absorption peaks at 1300 and
1355 nm were assigned to the vibrations of the N-H band [16]. To a certain extent, it was indicated that
the reflectivity of soil NIR spectrum could reflect the soil nitrogen level through some certain bands.

2.2. Soil NIR Spectra with Different Soil Particle Sizes

In this paper, the average reflectivity of soil NIR spectra with different particle sizes was collected
and the corresponding reflectivity curves are presented in Figure 2. The average spectral reflectivity of
soil with different soil particle sizes at 1394 nm is shown in Figure 3.
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According to Figure 2, on the one hand, from the perspective of the relationship between soil
particle sizes and soil NIR spectra, when the soil particle sizes were 1–2 mm and 0–2 mm (Figure 2A,F),
the soil reflectivity curves with different nitrogen contents were hard to separate, especially at 1394
nm (Figure 3a, f). The reason for this might be that the large soil particle sizes caused the surface
of soil tablet to be uneven. Besides, when the soil particle sizes were in the range of 0.18-0.45 mm
(Figure 2B–D), the spectral curve was evenly distributed. The soil reflectivity curves were concentrated
when the soil particle sizes were the smallest (Figure 2E), which indicated that the smaller the soil
particle sizes, the smaller the impact of soil particle sizes on the NIR reflectivity intensity. A good
explanation for this is that the small soil particle sizes led to the smooth soil surface, thus resulting in
the concentrated soil spectral intensity [17]. On the other hand, from the perspective of the relationship
between soil NIR spectra and soil nitrogen contents, it can be seen that with the increase of soil nitrogen
contents from 0.051 to 0.452 g/kg, the soil average spectral reflectivity decreased gradually (Figures 2
and 3), especially for the soil NIR spectra with the soil particle sizes in the range of 0.18–0.28 mm at
1394 nm (Figure 3d). The reason for this might be that when the soil nitrogen contents increased, the
absorption of soil nitrogen increased correspondingly.

2.3. Model Analysis of Spectral Data with Different Soil Particle Sizes

Considering the spectral information overlap and noise on the edge of acquisition band, the
930-1670 nm soil NIR spectra of six soil groups with different soil particle sizes were pretreated
with Savitzky–Golay (S–G) smoothing, detrend (DT), standard normal variation (SNV), and first
derivative (1st-Der), respectively, and then modeled by partial least squares (PLS), competitive adaptive
reweighted sampling-partial least squares (CARS-PLS), backward interval partial least squares (biPLS),
genetic algorithm-partial least squares (GA-PLS) and successive projections algorithm-partial least
squares (SPA-PLS), respectively. The sample set portioning based on the joint x–y distance (SPXY)
method was used to separate the soil samples into a calibration set and validation set at a ratio of 2:1
for each soil group. The modeling results of PLS with different pretreatments are presented in Table 1
and the modeling results of biPLS, CARS-PLS, SPA-PLS and GA-PLS with different pretreatments
are presented in Table S1–S4, respectively. In order to compare the prediction results and the model
stability of four different preprocessing methods and five different modeling method more directly,
the prediction determination coefficients and residual predictive deviation (RPD) of four different
preprocessing methods and five different modeling methods are given in Figures 4 and 5, respectively.
The scatter plot with the predicted values and the measured values of the correction and prediction
sets based on PLS (original spectra) are shown in Figure 6.

As illustrated in Table 1, Table S1–S4 and Figures 4–6, the conclusions were as follows:
First, from the perspective of the effect of soil particle sizes on the detection of soil nitrogen

contents by NIR, the detection results were relatively poor (0.658 < Rp2 < 0.893) when the soil particle
sizes were 1–2 mm. It was shown that large soil particle sizes were averse to soil nitrogen detection
and this conclusion is consistent with Cozzolino’s and Bao’s research [9,12]. Moreover, when the soil
particle sizes were in the range of 0.28–1 mm, the soil nitrogen prediction accuracy (0.45–1 mm: 0.795 <

Rp2 < 0.885; 0.28–0.45 mm: 0.809 < Rp2 < 0.944) improved greatly. Additionally, when the soil particle
sizes ranged 0.18–0.28 mm, soil nitrogen prediction achieved the best accuracy with the highest Rp2 of
0.983. However, soil particle sizes that were too small (less than 0.18 mm) were not helpful for the
improvement of detection accuracy (0.824 < Rp2 < 0.926). Compared with the five soil groups, Rp2

reached 0.8–0.9 when the soil particle sizes were in the range of 0–2 mm, which indicated that the
detection of soil nitrogen contents using NIR was also affected by the uniformity of soil particle sizes.
Therefore, the prediction effect of six soil particle size ranges can be ranked as follows: 0.18–0.28 mm >

0–0.18 mm > 0.28–0.45 mm > 0.45–1 mm > 0–2 mm > 1–2 mm.
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Molecules 2019, 24, x; doi: FOR PEER REVIEW 6 of 14 

 

 
Figure 5. The residual predictive deviation (RPD) of four different preprocessing methods and five 
different models. Models: (A) PLS; (B) CARS-PLS; (C) biPLS; (D) GA-PLS; (E) SPA-PLS. Soil particle 
sizes: (a) 1–2 mm; (b) 0.45–1 mm; (c) 0.28–0.45 mm; (d) 0.18–0.28 mm; (e) 0–0.18 mm; (f) 0–2 mm. 

 
Figure 6. The predicted values and the measured values of the correction set and the prediction set 
based on PLS (original spectra). Soil particle sizes: (A) 1–2 mm; (B) 0.45–1 mm; (C) 0.28–0.45 mm; (D) 
0.18–0.28 mm; (E) 0–0.18 mm; (F) 0–2 mm. 

As illustrated in Table 1, Table S1–S4 and Figures 4–6, the conclusions were as follows: 
First, from the perspective of the effect of soil particle sizes on the detection of soil nitrogen 

contents by NIR, the detection results were relatively poor (0.658 < Rp2 < 0.893) when the soil particle 
sizes were 1–2 mm. It was shown that large soil particle sizes were averse to soil nitrogen detection 
and this conclusion is consistent with Cozzolino’s and Bao’s research [9,12]. Moreover, when the soil 
particle sizes were in the range of 0.28–1 mm, the soil nitrogen prediction accuracy (0.45–1 mm: 0.795 
< Rp2 < 0.885; 0.28–0.45 mm: 0.809 < Rp2 < 0.944) improved greatly. Additionally, when the soil particle 
sizes ranged 0.18–0.28 mm, soil nitrogen prediction achieved the best accuracy with the highest Rp2 

Figure 6. The predicted values and the measured values of the correction set and the prediction set
based on PLS (original spectra). Soil particle sizes: (A) 1–2 mm; (B) 0.45–1 mm; (C) 0.28–0.45 mm;
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Second, from the perspective of the modeling results, there were some differences in the prediction
effect of different models for different soil particle sizes. However, as a whole, the PLS, biPLS and
CARS-PLS models performed better in terms of detection accuracy than the GA-PLS and SPA-PLS
models. A possible explanation for this is that PLS performed well in summarizing the information
of independent variables, which effectively handled the variables multiple correlation problem. The
biPLS and CARS-PLS could efficiently select valid variables and eliminate redundant variables, which
resulted in more accurate results and higher detection precision. Although GA-PLS and SPA-PLS
could efficiently eliminate redundant variables to some extent, the valid information might also be
incorrectly eliminated, which could lead to the relatively poor prediction results.
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Third, from the perspective of spectral pretreatment methods, the soil NIR spectra processed with
different pretreatment methods showed different modeling effect. Clearly, when the soil particle sizes
were in the range of 1–2 mm, the prediction accuracy improved from 0.658 to 0.909 when the soil
NIR spectra were processed by MSC and SNV. However, the prediction accuracy decreased when the
soil particle sizes were small (0–0.28 mm). The reason could be that MSC and SNV could efficiently
eliminate the influence of soil particle sizes, surface scattered light, and optical path change on NIR
spectroscopy, which improved the spectral resolution, reduced the standard deviation between samples
and separated the main characteristic peaks for quantitative analysis [18]. It can be seen that when the
soil NIR spectra were pretreated by S–G smoothing and 1st-Der method, the prediction accuracy was
not obviously improved, which indicated that the effect of noise in the original spectra was small.

Finally, from the perspective of the model stability, it can be seen that the higher the Rp2, the
better the model stability. No matter which method was used, the RPD of prediction models were
more than 4 (> 3) mostly when the soil particle sizes were in the range of 0.18–0.28 mm, which satisfied
the agriculture applications [19].

In summary, for the analysis of soil NIR spectra with different soil particle sizes, there were some
differences in model prediction results using different pretreatment methods and modeling methods.
However, when the soil particle sizes were 0.18–0.28 mm, soil nitrogen prediction accuracy achieved
the highest Rp2 and RPD.

Table 1. The PLS model prediction of different soil particle sizes.

Particle size (mm) Pretreatments
Calibration Set Prediction Set

Rc2 RMSEC (g/kg) Rp2 RMSEP (g/kg) RPD

1–2

Origin 0.567 0.082 0.716 0.081 1.734
S-G 0.567 0.082 0.716 0.081 1.734

MSC 0.685 0.065 0.900 0.048 3.002
SNV 0.735 0.064 0.871 0.049 2.815

1st-Der 0.713 0.064 0.893 0.050 2.938

0.45–1

Origin 0.770 0.062 0.854 0.051 2.645
S-G 0.772 0.061 0.858 0.050 2.739

MSC 0.912 0.036 0.837 0.056 2.429
SNV 0.928 0.033 0.795 0.065 2.061

1st-Der 0.947 0.029 0.786 0.068 2.082

0.28–0.45

Origin 0.849 0.050 0.866 0.048 2.699
S-G 0.847 0.050 0.867 0.048 2.706

MSC 0.800 0.059 0.824 0.042 2.284
SNV 0.800 0.058 0.827 0.040 2.415

1st-Der 0.927 0.035 0.835 0.054 2.446

0.18–0.28

Origin 0.967 0.023 0.976 0.020 6.303
S-G 0.967 0.023 0.972 0.019 6.706

MSC 0.949 0.019 0.968 0.021 5.036
SNV 0.969 0.022 0.950 0.019 4.811

1st-Der 0.970 0.023 0.969 0.021 5.706

0–0.18

Origin 0.979 0.021 0.937 0.032 3.932
S-G 0.993 0.011 0.917 0.037 3.422

MSC 0.959 0.026 0.929 0.036 3.717
SNV 0.960 0.025 0.926 0.036 3.659

1st-Der 0.964 0.023 0.891 0.047 3.066

0–2

Origin 0.926 0.026 0.839 0.051 2.468
S-G 0.932 0.034 0.839 0.051 2.482

MSC 0.942 0.031 0.865 0.041 2.773
SNV 0.940 0.032 0.879 0.041 3.659

1st-Der 0.927 0.035 0.874 0.045 3.154
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2.4. Spectral Analysis of Different Soil Particle Sizes

In order to further explore the influence of soil mixing spectra with different particle sizes on
soil nitrogen detection, the spectra of five different soil particle size ranges (1–2 mm; 0.45–1 mm;
0.28–0.45 mm; 0.18–0.28 mm; 0–0.18 mm) were mixed with each other in equal proportions and
modeled by PLS. We obtained five average spectra (108 samples of each average spectra) of different
soil particle sizes before exploring the modeling effects of different mixing spectra (Figure 7).
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MSC 0.685 0.065 0.900 0.048 3.002 
SNV 0.735 0.064 0.871 0.049 2.815 

1st-Der 0.713 0.064 0.893 0.050 2.938 

0.45–1 

Origin 0.770 0.062 0.854 0.051 2.645 
S-G 0.772 0.061 0.858 0.050 2.739 

MSC 0.912 0.036 0.837 0.056 2.429 
SNV 0.928 0.033 0.795 0.065 2.061 

1st-Der 0.947 0.029 0.786 0.068 2.082 

0.28–0.45 

Origin 0.849 0.050 0.866 0.048 2.699 
S-G 0.847 0.050 0.867 0.048 2.706 

MSC 0.800 0.059 0.824 0.042 2.284 
SNV 0.800 0.058 0.827 0.040 2.415 

1st-Der 0.927 0.035 0.835 0.054 2.446 

0.18–0.28 

Origin 0.967 0.023 0.976 0.020 6.303 
S-G 0.967 0.023 0.972 0.019 6.706 

MSC 0.949 0.019 0.968 0.021 5.036 
SNV 0.969 0.022 0.950 0.019 4.811 

1st-Der 0.970 0.023 0.969 0.021 5.706 

0–0.18  

Origin 0.979 0.021 0.937 0.032 3.932 
S-G 0.993 0.011 0.917 0.037 3.422 

MSC 0.959 0.026 0.929 0.036 3.717 
SNV 0.960 0.025 0.926 0.036 3.659 

1st-Der 0.964 0.023 0.891 0.047 3.066 

0–2 

Origin 0.926 0.026 0.839 0.051 2.468 
S-G 0.932 0.034 0.839 0.051 2.482 

MSC 0.942 0.031 0.865 0.041 2.773 
SNV 0.940 0.032 0.879 0.041 3.659 

1st-Der 0.927 0.035 0.874 0.045 3.154 

2.4. Spectral Analysis of Different Soil Particle Sizes 

In order to further explore the influence of soil mixing spectra with different particle sizes on 
soil nitrogen detection, the spectra of five different soil particle size ranges (1–2 mm; 0.45–1 mm; 0.28–
0.45 mm; 0.18–0.28 mm; 0–0.18 mm) were mixed with each other in equal proportions and modeled 
by PLS. We obtained five average spectra (108 samples of each average spectra) of different soil 
particle sizes before exploring the modeling effects of different mixing spectra (Figure 7). 
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Figure 7. The average spectra of different soil particle sizes: (a) 1–2 mm; (b) 0.45–1 mm; (c) 0.28–0.45 mm;
(d) 0.18–0.28 mm; (e) 0–0.18 mm.

As shown in Figure 6, with the increase of soil particle sizes, the soil NIR reflectivity curve
increased correspondingly, which indicated that the bigger the soil particle sizes, the stronger the soil
NIR reflectivity. The reason might be that the large soil particles caused the surface of the soil tablet to
become uneven. We could infer that when the nitrogen content in soil was the same, the spectra of
different soil particle sizes would also have significant differences. Therefore, we established the PLS
model based on mixing spectra of different soil particle sizes with each other. The Rp2 and RPD of PLS
model is given in Figure 8, and the PLS modeling results are presented in Table 2.
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Figure 8. The Rp2 (A) and RPD (B) of PLS model with different soil particle sizes: (a) 1–2 mm;
(b) 0.45–1 mm; (c) 0.28–0.45 mm; (d) 0.18–0.28 mm; (e) 0–0.18 mm.

Clearly, the Rp2 and RPD of individual soil group were larger than those of two mixed soil groups.
Moreover, the PLS modeling effect of two mixing spectra with small differences in soil particle sizes
were better than those of two mixing spectra with big gap in soil particle sizes. A good explanation
was that soil NIR reflectivity was affected by soil particle sizes, and the difference of soil particle sizes
resulted in worse uniformity of soil groups to be detected, which would reduce the model accuracy.
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The results showed that the larger difference of mixing spectra with soil particle sizes, the worse the
modeling accuracy. Therefore, the consistency and uniformity of soil particle size should be maintained
as far as possible to achieve high accuracy when using NIR spectroscopy to detect soil nitrogen content.

Table 2. The PLS model prediction of different soil particle sizes.

Particle Size (mm)
Calibration Set Prediction Set

Rc2 RMSEC (g/kg) Rp2 RMSEP (g/kg) RPD

a + b 0.732 0.064 0.741 0.072 1.969
a + c 0.516 0.088 0.634 0.083 1.616
a + d 0.353 0.011 0.286 0.113 1.142
a + e 0.160 0.118 0.101 0.121 1.042
b + c 0.600 0.081 0.737 0.072 1.858

b + d 0.344 0.105 0.487 0.098 1.332
b + e 0.140 0.118 0.243 0.124 1.065
c + d 0.415 0.099 0.577 0.092 1.410
c + e 0.674 0.075 0.637 0.077 1.638
d + e 0.750 0.064 0.852 0.056 2.295

Soil particle sizes: (a) 1–2 mm; (b) 0.45–1 mm; (c) 0.28–0.45 mm; (d) 0.18–0.28 mm; (e) 0–0.18 mm.

3. Materials and Methods

3.1. Experimental Materials

The experimental soil was collected from Maoming city, Guangdong province, China (N21◦25′,
E111◦07′). The portable NIR optical instrument from Isuzu Optics Corp (Shanghai, China) is an
interferometer instrument reflective with two integrated tungsten halogen lamps. This instrument
collects spectral information in the range of 900–1700 nm, with an optical resolution of 10 nm.

3.2. Experimental Materials and Sample Preparation

The preparation process of soil samples was as follows: First, the soil samples were dried by
air and sieved with a 2 mm mesh sieve. Second, soil nitrogen concentration was detected by biuret
method and Kjeldahl determination. Third, one group of soil samples with soil particle sizes in the
range 0–2 mm was obtained. The other five groups of soils with different particle sizes were obtained
as follows: (1) The soil samples (0–2 mm) were sieved with a 0.18 mm sieve and the soil particle
sizes in the range 0–0.18 mm were obtained. (2) The remaining soil sieved through a 0.18 mm sieve
was sieved again with 0.28 mm sieve and the soil particle sizes ranging 0.18–0.28 mm were obtained.
(3) The remaining soil sieved through a 0.28 mm sieve was sieved again with 0.45 mm sieve and
the soil particle sizes ranging 0.28–0.45 mm were obtained. (4) The remaining soil sieved through a
0.45 mm sieve was sieved again with 1 mm sieve and the soil particle sizes ranging 0.45–1 mm were
obtained. (5). The remaining soil sieved through a 1 mm sieve (1–2 mm) was obtained. Thus, six
soil sample groups with different particle sizes ranging (a) 1–2 mm; (b) 0.45–1 mm; (c) 0.28–0.45 mm;
(d) 0.18–0.28 mm; (e) 0–0.18 mm; and (f) 0–2 mm were obtained. The urea solutions with different
concentrations were mixed with the soil samples and eight gradients with different soil nitrogen
concentrations were obtained (0.051–0.452 g/kg, 0.05 g/kg per gradient). Finally, the soil samples were
dried by air and pressed into 10 mm × 10 mm × 2 mm blocks. There were 108 samples (12 samples for
each concentration) in each group, and 648 samples in total.

3.3. Soil NIR Spectra Measurement

Before performing the soil NIR spectra measurement, the instrument was preheated for 15 min and
prepared with blackboard and whiteboard correction operation. In order to maintain the integrity of the
original soil spectra as well as achieve the rapidity during the detection process, the spectral acquisition
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parameter is set up as 400 points, and each spectrum is obtained by averaging three scans. When the
soil spectra were measured, the samples were placed on the light source window, which avoided the
phenomenon of light leakage since the size of soil sample is larger than that of light source window.

3.4. Data Analysis

NIR light is an electromagnetic wave between the infrared and visible light whose wavelength
range is from 780 nm to 2526 nm. The spectral information originates from the vibration of the O-H,
C-H and N-H groups containing hydrogen internal vibration frequency and sum frequency overlap,
which can reflect the variation of organic matter in the characteristic spectral region [20]. According
to the Lambert Bill absorption law [21], the spectral characteristics would change with the variation
of sample composition or structure [22]. However, at the same time, it can also be affected by the soil
surface texture, density and uneven distribution of internal components, such as the overlap of spectral
information, the large amount of noise and the background of detected sample, which is very difficult
for all redundant information of the spectral data to be eliminated [23]. Therefore, in order to achieve the
purpose of qualitative or quantitative analysis of complex mixtures, it is necessary to apply chemometric
methods to extract and analyze the weak chemical information in the spectral analysis [24].

3.5. Spectral Pretreatment Methods

In order to achieve a better model prediction effect, in this study four spectral pretreatment
methods were applied to preprocess the original soil NIR spectra, that is, S-G smoothing, DT, SNV and
1st-Der. Among them, S-G smoothing is widely used to remove noise from original spectrum such as
remove high frequency noise [25]. DT algorithm is mainly used to eliminate the baseline drift of the
diffuse reflectance spectrum [26]. SNV algorithm can use the absorbance values of each wavelength
point to satisfy a certain distribution in each spectrum, and the spectral correction was performed
according to this assumption [27]. 1st-Der is able to distinguish overlapping peaks and eliminate
interference from other backgrounds, which improves spectral resolution and sensitivity.

3.6. Spectral Modeling Methods

3.6.1. Partial Least Squares

PLS is a common-used regression modeling method for analyzing spectral data based on its flexibility
and reliability in dealing with the redundant spectral data [28]. During the PLS modeling process, the
spectral matrix is decomposed first and the main latent variables are obtained, then the contribution rate
of each latent variable is calculated. The flexibility of PLS makes it possible to establish a regression model
in the case where the number of samples is less than the number of variables. In this study, the PLS model
was established with the spectral data as X and the measured soil N content as Y, whose best principal
factor was determined by the root mean square error of cross validation (RMSECV) [29].

3.6.2. Competitive Adaptive Reweighted Sampling—Partial Least Squares Method (CARS-PLS)

CARS is a variable selection method based on the principle of “survival of the fittest” [30], which
uses Monte Carlo sampling to select several samples from the calibration set for PLS modeling and
repeats this process for hundreds of iterations. In the process of wavelength variable selection, CARS
preserves the wavelength variable with the absolute value of PLS regression coefficient, and the
wavelength invariable with small absolute value of regression coefficient is removed. In order to
obtain a series of wavelength variable subsets, each subset of wavelength variables is modeled by cross
validation, and the optimal wavelength variable subset is selected according to the RMSECV value [31].

3.6.3. Backward Interval Partial Least Squares

BiPLS is a variable selection method based on the PLS modeling method, it aims to filter the
wavelength range of PLS model and reduce the number of sub-intervals of the worst or collinear
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variables, which select the best principal component number according to RMSECV [32]. For selecting
the best and minimum RMSECV among all the base models, biPLS is able to preliminarily locate the
NIR spectral interval and rank the importance of individual intervals during the modeling process,
it also can eliminate the spectral interval with poor information to obtain better modeling effect.

3.6.4. Successive Projections Algorithm—Partial Least Squares (SPA-PLS)

SPA is a forward variable selection method, which uses vector projection analysis to find the
variable group with minimal redundancy information to effectively eliminate the collinear, singular
and instable variables in the spectra. Araujo et al. [33] first proposed the selection of spectral variables
by means of SPA. Soares et al. [34] used SPA for cross-classification analysis. Since it reduces the
number of variables used in the model and lowers the model complexity, the collinear between the
vectors is minimized. Extracting feature wavelength modeling based on SPA-PLS has significance in
actual detection because of the useful information for mining spectral data with latent variables [35].

3.6.5. Genetic Algorithm—Partial Least Squares (GA-PLS)

The aim of genetic algorithm (GA) is to search for the optimal solution by simulating the natural
evolution process [36]. The biggest advantage is that the global optimization search ability of GA is
strong, and it is not necessary to assign the initial value to the decision variable to be optimized. The
GA itself will automatically and randomly select a set of initial values from its upper and lower limits
and select the global optimal solution of the parameters according to the genetic selection strategy.
On this basis, GA-PLS method aims to solve the problem of multi-correlation interference and poor
model fitting in the conventional regression model, and further improve the fitting and prediction
accuracy of the model [26].

3.7. Model Evaluation Index

In this experiment, the modeling effect was evaluated by the correlation coefficient R, the root mean
square error (RMSE) and the residual predictive deviation (RPD). The correlation coefficient R reflects
the level of intimacy between variables, RMSE reflects the model accuracy, and RPD reflects the model
prediction ability. The higher the R and RPD and the lower the RMSE, the better the prediction model
performance. In this paper, Rc and Rp represent the correlation coefficient of calibration set and prediction
set, respectively, and RMSEC and RMSEP represent the root mean square error of the calibration set
and prediction set respectively. Besides, RPD was suggested to be at least 3 for agriculture applications;
2 < RPD < 3 indicates a model with a good prediction ability; 1.4 < RPD < 2 is an intermediate model
requiring some improvement; and RPD < 1.4 indicates a poor model prediction ability [19]. In addition,
all above-mentioned data analysis in this study was performed on OMNIC v8.2 (Thermo Nicolet Corp.,
Madison, WI, USA) and MATLAB R2018a (The MathWorks, Inc., Natick, MA, USA).

4. Conclusions

In this paper, the variation law of soil NIR spectra with soil particle sizes was studied. The results
showed that the smaller the soil particle sizes, the stronger the reflectivity of soil NIR spectra. When
the soil particle sizes ranged 0.18–0.28 mm, soil nitrogen prediction achieved the best accuracy based
on PLS model with the highest Rp2 of 0.983, the RPD of 6.706. The detection accuracy was not ideal
when soil particle sizes were too large (1–2 mm) or small (0–0.18 mm). In addition, the relationship
between the mixing spectra of six different soil particle sizes and the soil nitrogen detection accuracy
was studied. It was shown that the larger the difference of soil particle size, the worse the soil nitrogen
detection accuracy. In conclusion, soil nitrogen detection precision was affected by soil particle size to
a large extent. It is of great significance to optimize the pretreatments of soil samples to realize rapid
and accurate detection of soil nitrogen by NIR spectroscopy.
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