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Abstract

Introduction: MDD represents a significant burden worldwide, and while a number of approved treatments
exist, there are high rates of treatment resistance and refractoriness. Ketamine, an N-methyl-D-aspartate
receptor (NMDAR) antagonist, is a novel, rapid-acting antidepressant, however the mechanisms underlying
the efficacy of ketamine are not well understood and many other mechanisms outside of NMDAR
antagonism have been postulated based on preclinical data. This focused review aims to present a summary
of the proposed mechanisms of action by which ketamine functions in depressive disorders supported by
preclinical data and clinical studies in humans.

Methods: A literature search was completed using the PubMed and Google Scholar databases. Results were
limited to clinical trials and case studies in humans that were published in English. The findings were used
to compile this article.

Results: The antidepressant effects associated with ketamine are mediated via a complex interplay of
mechanisms; key steps include NMDAR blockade on c-aminobutyric acid interneurons, glutamate surge, and
subsequent activation and upregulation of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor.

Discussion: Coadministration of ketamine for MDD with other psychotropic agents, for example
benzodiazepines, may attenuate antidepressant effects. Limited evidence exists for these effects and should
be evaluated on a case-by-case basis.
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Introduction

MDD is a leading cause of disability worldwide with more

than 322 million people affected.1,2 Depressive disorders

were among the top 10 conditions that contributed the

largest number of additional disability-adjusted life-years

globally from 1990 to 2019.2 Approximately 20% to 30%

of patients diagnosed with MDD have treatment-resistant

depression (TRD), often defined as suboptimal response to

at least 2 antidepressant trials of adequate dose and

duration.3 Despite the burden of MDD and availability of

effective treatments, there remains a large percentage of

patients who have suboptimal response. The pathophys-

iology of depression remains unclear, and specific

biomarkers are lacking. Since the 1950s the prevailing

hypotheses of MDD pathophysiology and antidepressant

pharmacology have focused on monoamines.4 According-

ly, traditional antidepressant pharmacotherapy is com-

prised of agents that modulate monoamine activity. In

recent years, the paradigm has started to shift from the

monoamine hypotheses to the neuroplasticity hypothesis,

which posits that MDD results from dysregulation of
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processes that allow neurons and neural systems to adapt

to changes in the environment.4

A major disadvantage of traditional antidepressants is the

4-week to 8-week latency of onset of clinical action.5 In

addition to latency of effect, there is ongoing debate

around the relationship between antidepressant use,

specifically SSRIs, and suicidality.6 All antidepressant

drugs, however, carry a boxed warning for increased risk

of suicidal thinking and behavior in children, adolescents,

and young adults.6 This relationship has not been

observed in short-term studies in those over the age of

24 years; instead, at the population level, unchanged or

decreasing risk of suicidality is observed with long-term

use of antidepressants.6 This is presumably because of

improvement of depressive symptoms with long-term use.

In regard to antisuicidality, there are only 2 non-

antidepressant psychotropic medications, clozapine7-9

and lithium,10 with known antisuicidality effects outside

of their impact on mood. Alternatively, ketamine, an N-

methyl-D-aspartate receptor (NMDAR) antagonist origi-

nally developed for anesthetic use, exhibits antidepressant

action within hours of administration in some patients.11,12

The rapid onset of antidepressant effects associated with

ketamine has led to off-label use of racemic ketamine as

well as FDA approval of an intranasal formulation of the

single isomer S-ketamine (esketamine) for use in TRD in

combination with an oral antidepressant.13

Ketamine was developed in 1962 as an alternative

dissociative anesthetic to phencyclidine and first admin-

istered to humans in 1964 by physicians Edward Domino

and Guenter Corrsen.14 In 1965, they published data15 on

the use of ketamine in 20 prisoners, establishing ketamine

as an effective anesthetic agent. Ketamine binds at the

dizocilpine site (MK-801) on the NMDAR and acts as a

noncompetitive antagonist.16,17 When administered intra-

venously at higher doses, ranging from 1 to 2 mg/kg,

ketamine produces dissociative anesthesia.15 In a 2010

retrospective, Domino18 described the origins of keta-

mine, his early experience with it, and its current place in

therapy. He wrote that, much to his surprise, a patient

Domino became acquainted with in the 1980s reported

that she eschewed her prescribed antidepressants in favor

of illicitly obtained ketamine. The patient reported that

ketamine rapidly and effectively relieved her depressive

symptoms, prompting ongoing use.18 In 2000, significant

improvement in depressive symptoms was reported when

patients with TRD received subanesthetic doses (0.5 mg/

kg) of IV ketamine.12 Subsequent studies19-22 demonstrat-

ed decreased suicidality following administration, giving

ketamine a rare distinction amongst psychotropic medi-

cations.

Despite its use over the last 20 years, little progress has

been made in fully understanding the mechanism of

ketamine in alleviating depressive symptoms. At a

molecular level, ketamine antagonizes NMDAR preventing

glutamate binding and the resultant influx of cations,

primarily calcium.17 However, multiple trials23,24 employ-

ing other NMDAR antagonists have demonstrated that

this alone is insufficient in generating antidepressant

effects. The differing antidepressant activity between

ketamine and other NMDAR antagonists suggest that

ketamine possesses unique properties. There is a growing

body of preclinical literature on the mechanisms under-

lying the antidepressant activity of ketamine.25 The

clinical significance of data generated in preclinical studies

can be difficult to discern. Assessing the impact of other

medications on the antidepressant effects of ketamine,

while certainly a rudimentary strategy, is useful in the

interpretation of preclinical data and generating clinically

applicable insights. Furthermore, it helps to identify areas

where further research is needed. This focused review

aims to present a summary of the proposed mechanisms

of action by which ketamine functions in depressive

disorders supported by both preclinical and clinical

studies, as well as provide insight into potential drug

interactions with ketamine.

Methods

A literature search was conducted in the PubMed

MEDLINE and Google Scholar databases. Results in both

databases were limited to articles in English and studies in

humans. All relevant literature, regardless of publication

date, was included. Studies and case reports had to

explicitly aim to evaluate the mechanism of ketamine in

depression in humans or indirectly via reporting of

potential drug interactions when ketamine was adminis-

tered to humans. Preclinical data in animal studies

pertinent to findings in clinical studies or case reports

were then reviewed. The information from the above

searches was used in compiling this article. The focus of

this non-systematic review was literature providing

pharmacodynamic data in humans. Keywords used were

ketamine, esketamine, depression, drug-drug interaction,

pharmacodynamic interaction, and mechanism.

Results

GABA Interneurons

One of the primary mechanisms that has emerged as

underlying the rapid antidepressant activity of ketamine is

NMDAR blockade on fast-spiking c-aminobutyric acid

(GABA) interneurons.26,27 Fast-spiking GABA interneurons

are so-named for the pattern of action potential they

generate, and they play a major role in tonic inhibition of

excitatory, projecting pyramidal neurons.28 It appears that

NMDAR subunit composition may be responsible for
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selectivity of ketamine for NMDAR on GABA interneurons

and lack of efficacy seen with other NMDAR antago-

nists.29,30 This blockade on local, inhibitory GABA

interneurons subsequently disinhibits excitatory pyramidal

neurons resulting in a glutamate surge. Numerous

preclinical studies26-30 using rodent models of depression

have demonstrated that intact GABA interneurons are

required for the antidepressant effects of ketamine.

Interestingly, a 2015 case report31 described attenuated

response to ketamine infusion in a woman with bipolar

depression who was also taking lithium, fluoxetine,

quetiapine, and lorazepam. The patient reported a

‘‘muted’’ response to ketamine after taking lorazepam

prior to her infusion. Following discontinuation of

lorazepam, the patient noted improved response and

duration of effect after ketamine administration. No

changes were made to any of her other medications.

Subsequently 2 post-hoc analyses32,33 evaluated the effect

of concomitant benzodiazepine (BZD) administration on

the antidepressant effect of ketamine. Concurrent BZD

use predicted nonresponse to ketamine in a dose-

dependent manner, while concurrent use of antiepileptic

drugs (AED) including carbamazepine, divalproex sodium,

and lamotrigine had no impact in 10 patients with TRD.32

The mean dose in the first study,32 reported in lorazepam

equivalents, was 0.75 6 0.29 mg for those in the

responder group and 3 6 1.4 mg in the nonresponder

group. These findings were supported by reports of

prolonged time to remission and shortened time to

relapse in 13 patients with MDD receiving BZD compared

to patients not concurrently receiving BZDs.33 A recently

published study34 analyzing data from 2 previously

conducted randomized, controlled trials reported that

concurrent BZD use was a predictor of nonresponse in 47

patients with MDD to ketamine in a dose-dependent

manner. Responders were receiving significantly lower

doses of BZDs (7.7 6 4.5 mg vs 32.1 6 24.9 mg, diazepam

equivalents) when compared to nonresponders.34 Inter-

estingly, all of these reports31-34 describe attenuation of

both acute and sustained effects of ketamine in MDD.

While a recent study35 did not replicate these findings,

BZD doses were not reported. Since this may be a dose-

dependent effect, it is challenging to interpret the

significance of this. As of yet, no randomized controlled

trials have evaluated the interaction between subanes-

thetic doses of ketamine for MDD and BZD. Furthermore,

some clinical trials of ketamine require participants to

discontinue BZDs prior to treatment,36,37 but the above

literature suggests a clinically significant interaction

between the 2 and may point to the part of the underlying

mechanism of ketamine.

Glutamate Surge

The glutamate surge following NMDAR blockade was

initially demonstrated in preclinical animal models38,39 and

later supported by neuroimaging studies in humans.40

Consequently, agents that block glutamate release may

oppose the antidepressant effects of ketamine when

administered concomitantly. Lamotrigine, an AED that

exerts its action via inhibition of glutamate release, was

administered prior to subanesthetic infusion of ketamine

in healthy participants.41 Compared to those who received

placebo, those who received lamotrigine had significantly

fewer ketamine-induced dissociative symptoms. While

this study included participants without MDD or TRD, it

helps illustrate the role of glutamate in mediating the

effects of ketamine in vivo. It is important to note that the

relationship between dissociative effects during subanes-

thetic infusion and antidepressant response is not well

understood.42 Recent neuroimaging data demonstrate

attenuation of glutamate release following subanesthetic

doses of ketamine but does not provide data on clinical

outcomes associated with lamotrigine coadministration in

patients with TRD.43 A case series44 describing 3 patients

receiving repeated subanesthetic doses of ketamine while

also on lamotrigine describe variable outcomes of

ketamine therapy without clear evidence that coadminis-

tration of lamotrigine or other AEDs is deleterious on the

antidepressant effects of ketamine.

Postsynaptic AMPAR Modulation

The NMDAR has consistently been implicated in the

activity of ketamine, however another glutamate recep-

tor, the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic

acid receptor (AMPAR), likely plays a central role.45 Both

AMPAR and NMDAR are ionotropic, however the synaptic

currents produced by activation of each differ. NMDAR

activation produces slower, longer lasting currents while

AMPAR activation mediates fast synaptic transmission.46

NMDAR are unique in that they are both ligand and

voltage gated; channel opening requires ligand binding

but influx of cations through the channel requires

depolarization to dislodge extracellular magnesium or

zinc ions that bind inside the channel at hyperpolarized

membrane potentials.47 NMDAR and AMPAR are often

found together in the central nervous system as AMPAR

can mediate the depolarization required for opening the

NMDAR channel.46,47 Following the glutamate surge

produced by NMDAR blockade of GABA interneurons,

postsynaptic AMPAR are activated and play an important

role in mediating the antidepressant effects of ketamine.

Preclinical studies have demonstrated increased AMPAR

density following ketamine administration,48 decreased

efficacy of ketamine via AMPAR blockade,49,50 as well as

antidepressant effects of AMPAR potentiators in rodent

models of depression.51

Two agents modulating AMPAR, riluzole and Org 26576,

have been studied in patients with MDD.52,53 Org 26576 is

an AMPAR positive allosteric modulator which demon-
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strated tolerability and promising antidepressant efficacy

in phase I trials.52 It failed to meet statistical significance

in a phase II trial and has not been studied in MDD further.

Riluzole, approved for the treatment of amyotrophic

lateral sclerosis, is thought to have a net-negative effect

on glutamate release.54,55 Interestingly, it has also been

shown to modulate AMPAR,56 with 1 preclinical study57

demonstrating enhanced AMPAR expression and AMPAR

mediated membrane depolarization in a manner similar to

lamotrigine and imipramine. In 2018, a clinical trial58

demonstrated an association between lower serum brain

derived neurotrophic factor (BDNF) levels at baseline in

depressed patients and response to riluzole. A more

recent meta-analysis53 concluded that overall, riluzole did

not demonstrate antidepressant efficacy. Alternatively,

perampanel, an AED that antagonizes AMPAR, is associ-

ated with increased risk of depression in patients with and

without epilepsy.59 It should be noted that MDD is a

common comorbidity of epilepsy and there is varying

incidence of positive and negative antidepressant effects

of different AEDs, including perampanel.60,61

Stronger evidence for involvement and activation of

AMPAR in the antidepressant effects of ketamine comes

from clinical, placebo-controlled trials62-64 using neuroim-

aging techniques to explore molecular changes following

ketamine administration. The time course described in the

aforementioned neuroimaging studies suggests that initial

AMPAR activation and ongoing modulation is implicated

in both the acute and sustained antidepressant effects of

ketamine. This is consistent with the proposed role of

long-term potentiation mediated neural plasticity in

antidepressant effects.65 Some studies have proposed

that one of the primary metabolites of ketamine,

hydroxynorketamine, plays a significant role in mediating

antidepressant effects independent of NMDAR antago-

nism via direct AMPAR activation.66 Since the initial

controversial finding, further studies67,68 have questioned

the veracity of these findings. At present, the full activity

of ketamine metabolites and their clinical significance is

not well understood.

mTOR Signaling

Following activation of AMPAR, intracellular signaling

events including upregulation of BDNF and subsequent

activation of mammalian target of rapamycin complex

(mTOR) facilitates synaptogenesis.69,70 Preclinical studies

in rats and mice have demonstrated that both mTOR

signaling and BDNF are required for ketamine’s antide-

pressant effect; one preclinical study71 found that the

antidepressant response to ketamine was attenuated

when study animals were pretreated with a single dose

of rapamycin, an mTOR kinase inhibitor, infused directly

into the medial prefrontal cortex (mPFC), one of the

regions of the brain implicated in depression pathophys-

iology and the mechanism of action of ketamine.

Interestingly, a number of traditional antidepressants,

including fluoxetine,72 paroxetine,73 and fluvoxamine,74 led

to mTOR activation in a region-specific manner after

chronic administration to mice in preclinical studies. In

each of these studies, administration of rapamycin

prevented antidepressant effects.

A 2011 case report75 described increasing peripheral

mTOR activation in correlation with improvement in

depressive symptoms following ketamine administration

to a patient with TRD. The purported role of mTOR was

further evaluated in a human cross-over trial in which

participants who had previously not responded to at least

one adequate antidepressant trial received pretreatment

with placebo or a single dose of rapamycin 2 hours prior

to subanesthetic ketamine infusion.76 Unexpectedly,

rapamycin did not alter antidepressant efficacy of

ketamine at 24 hours postinfusion, and pretreated

subjects had prolonged duration of effect at the study’s
2 week follow-up compared to those who had received

placebo. Reasons proposed for the unexpected effect of

rapamycin premedication in humans treated with keta-

mine are focused on the difference in concentrations

when administered directly into the mPFC compared to

systemic oral administration, potentially contributing to

decreased central nervous system concentrations. Re-

garding the prolongation of antidepressant effect, the

authors offered 2 possibilities: (1), that the anti-inflam-

matory effect of rapamycin serves to protect newly

formed synapses, or (2), that rapamycin enhances

autophagy essential to neuroplasticity. These possibilities

are bolstered by evidence from studies of everolimus, a

derivative of rapamycin that also antagonizes mTOR.77

Breast cancer patients treated with hormone therapy and

everolimus demonstrated improved depressive symptoms

compared to those treated with hormone therapy alone.78

Another report79 described significant improvement in

mood and cognitive symptoms following a switch from

calcineurin inhibitors to rapamycin in adult heart trans-

plant patients. Calcineurin itself plays a role in mediating

the effects of traditional antidepressants, and its activa-

tion is important for autophagy.80,81 While these studies

suggest that the antidepressant effect of systemically

administered mTOR inhibitors is secondary to modulation

of autophagy, both possibilities could simultaneously be

true; regardless, this example emphasizes the importance

in validating preclinical findings in humans.

Brain Derived Neurotrophic Factor

BDNF has been implicated in depressive disorders,82 as

well as other neuropsychiatric disorders including schizo-

phrenia,83 PTSD,84 and Parkinson disease.85 BDNF is

increasingly recognized for the role it plays in response to
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antidepressants and its potential as a biomarker for

antidepressant response. This is evidenced by a meta-

analysis86 of 20 studies demonstrating increasing periph-

eral BDNF levels over the course of treatment with

traditional antidepressants. A neuroimaging study87

showed an association between change in resting state

function connectivity, reflecting enhanced synaptic plas-

ticity, and peripheral BDNF levels following ketamine

administration in participants without MDD. Interestingly,

changes in resting state function connectivity at 24 hours

were only seen in participants that had increased BDNF

levels at 24 hours as well. This study adds further support

to the role of BDNF in ketamine response and illustrates a

potential mechanism for the rapid onset of antidepressant

effects seen with ketamine. A recent preclinical study88

described differential changes in BDNF expression when

mice were administered subanesthetic and anesthetic

doses of ketamine. Hippocampal BDNF expression was

increased at subanesthetic doses but was unchanged at

higher doses, suggesting BDNF expression is, in part,

responsible for the effects seen at different doses of

ketamine. It could also contribute to the finding that not

all patients demonstrate response to ketamine.

While a number of factors influence an individual’s
response to ketamine for MDD, a known polymorphism,

BDNF Val66Met, that affects activity-dependent BDNF

release is thought to play a role.89 Preclinical studies using

mice with this mutation demonstrated absence of

antidepressant effects following ketamine administra-

tion.90 Patients with the lower functioning polymorphism

of this gene (Val/Met or Met/Met) had attenuated

responses to ketamine for MDD compared to patients

carrying the higher functioning polymorphism (Val/Val).91

Subsequent work92 did not demonstrate attenuation of

antidepressant efficacy of ketamine in patients carrying

the BDNF Val66Met polymorphism, but did show dose-

dependent efficacy. Later reanalysis93 demonstrated

differing reduction in suicidal thoughts for Met/Met

carriers compared to Val/Met and Val/Val carriers. A small

cohort94 of 6 Taiwanese patients with TRD demonstrated

improved antidepressant response to a higher dose of

ketamine, 0.8 mg/kg versus 0.5 mg/kg. While genotyping

was not available for this cohort, a proposed reason for

improved response at higher doses was the greater

incidence of the Val66Met polymorphism in Asian

populations.

Nonglutamatergic Signaling

Other, nonglutamatergic signaling pathways are also

implicated in the antidepressant effects of ketamine.

Ketamine is a weak ligand for the l, j, and d opioid

receptors with inhibition constant values at these sites

that are more than 15 times greater than those with which

it binds at the NMDAR.95 Preclinical studies described

blocking of beneficial effects following ketamine admin-

istration when coadministered with l-opioid antago-

nists,96 findings which are supported by results of a

small clinical study in which participants who received

naltrexone premedication had significantly attenuated

antidepressant and antisuicidality responses.97 Two sub-

sequent clinical studies98,99 had discordant results. It has

also been suggested that this may not be a ketamine-

specific effect, rather a side effect of naltrexone.100 The

first98 showed reduced depressive symptoms in patients

receiving long-acting injectable naltrexone prior to 4

treatments with subanesthetic ketamine. Importantly,

participants in this trial were receiving naltrexone for

alcohol use disorder which may have introduced a

confounding variable as more robust responses to

ketamine are seen in patients with a first degree relative

who has a history of alcohol use disorder.101,102 A larger,

retrospective study99 (n¼40) also found no difference in

antidepressant effect in participants receiving ketamine

therapy and opioid ligands, either agonists (methadone,

buprenorphine) or antagonists (naltrexone).

Finally, dopamine signaling likely plays a role in the

antidepressant effect of ketamine and potentially medi-

ates specific subgroups of symptoms (ie, anhedonia).103

The role of dopaminergic signaling in depression patho-

physiology has been suggested by numerous preclinical

studies and supported by studies in humans as well.

Pramipexole, a dopamine agonist at D2 and D3 receptors,

has been shown to have an effect comparable to SSRIs in

treating unipolar and bipolar depression.104 Use of

different atypical antipsychotics as adjunctive therapy

has shown benefit in TRD.105 Furthermore, a study106 in

patients with schizophrenia found that gene sets causing

reduced NMDA and AMPA mediated synaptic currents

were associated with poor antipsychotic drug response. In

fact, the connection between glutamatergic signaling and

antipsychotic efficacy may explain, in part, the superiority

of clozapine to other antipsychotic agents. Clozapine has

agonist activity at the NMDAR glycineB modulatory site

causing increased glutamate and D-serine.107

While schizophrenia and MDD are often thought of in a

dichotomous manner, neuroimaging has revealed similar

brain alteration patterns in the 2 and similar patterns of

normalization following treatment.108-110 A pilot and

follow-up study111 evaluating the effects of adjunctive

ketamine treatment in patients with chronic treatment-

resistant schizophrenia with TRD symptoms demonstrat-

ed initial alleviation of depressive symptoms, however

benefits seemed to persist for only 1 week following the

first treatment and did not reappear with ongoing

treatment. Interestingly, neuroimaging showed that

alterations secondary to ketamine use returned to

baseline at approximately 3 weeks. While there are far

too many unknown variables and these findings are in
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patients with a different psychiatric disorder with

differences in underlying pathology, it is possible that

treatment with antipsychotics could attenuate the anti-

depressant effect of ketamine. Clozapine has been shown

to reverse subanesthetic ketamine-induced changes in

signaling in animal studies112,113 and reduce ketamine-

induced positive symptoms in humans.114 Since a history

of schizophrenia or psychosis is a relative contraindication

to the use of ketamine, studies in these patient

populations are few. It is unclear if coadministration of

ketamine with dopamine modulating agents in patients

without a history of psychosis or schizophrenia would

negatively impact the antidepressant effect of ketamine.

Discussion

As ketamine use increases, it is important to identify

clinically significant pharmacodynamic drug-drug interac-

tions. BZDs have been reported31-34 to attenuate the

effect of ketamine in MDD. While not all studies have

reported evidence of this interaction,35 given the persis-

tence of this effect in the setting of heterogeneous data

and proposed mechanism of ketamine in MDD, it seems

likely that BZDs pose a pharmacodynamic interaction in a

dose-dependent manner. Limited data exists around

ketamine and concomitant AEDs in MDD. The literature

that exists suggests a potential interaction between

ketamine and lamotrigine, however the use of lamotrigine

should not preclude ketamine use for MDD.41,43,44

Another small study32 did not find AEDs to be associated

with poor antidepressant response to ketamine. There are

few commercially available AMPAR modulating agents, so

there is a lower likelihood of coadministration of these

along with ketamine in the clinical setting. Riluzole has

not consistently demonstrated antidepressant effects on

its own and has not provided benefit as an adjunct to

ketamine.58 Therapeutic use of perampanel while receiv-

ing ketamine for MDD has not been reported, however

based on experimental neuroimaging findings in humans,

it appears to have the potential to attenuate the

antidepressant effect of ketamine.115 Agents that impact

downstream signaling like rapamycin suggest potential

benefit when coadministered with ketamine.76 It is unclear

how different doses and ongoing use, as opposed to a

single dose given before ketamine administration, would

impact the antidepressant effect of ketamine. There is

significant debate as to the role opioid signaling plays in

the antidepressant effect of ketamine; this is further

hindered by the exclusion of patients with histories of

SUD from most clinical trials. It seems likely that opioid

signaling does play a role but is not sufficient for the

antidepressant effect of ketamine.95-99 Concurrent opioid

ligand use should be evaluated on a case-by-case basis

keeping in mind the different receptor binding properties

of individual agents (ie, j-antagonism with buprenor-

phine116). Finally, it seems likely that an interaction exists

between antipsychotics and ketamine,111-114 but this is

largely theoretical at this point.

A full understanding of the mechanism and promise of

ketamine as a prototypical rapid-acting antidepressant

remains elusive. Despite this, a clearer picture is emerging

(Figure). Data from preclinical models supported by

neuroimaging studies in humans suggests that NMDAR

blockade on GABA interneurons in the mPFC is the initial

event that triggers the glutamate surge seen after

ketamine administration. This surge is the result of

disinhibition of glutamatergic pyramidal neurons and

propagates post-synaptic AMPAR activation and expres-

sion. AMPAR activation and subsequent long-term poten-

tiation is mediated by a number of downstream signaling

pathways, including BDNF and mTOR. It seems that both

opioid and dopamine mediated signaling are implicated

and possibly responsible for specific subgroups of

antidepressant effects (eg, suicidality and anhedonia). It

is also possible that the antisuicidality effect associated

with ketamine is separate from the antidepressant effect,

even if the time course of the 2 often overlap. While

FIGURE: Summary of glutamatergic signaling implicated in the mechanism of action of ketamine in depression (AMPAR¼
a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; BDNF ¼ brain derived neurotrophic factor; GABA ¼ c-
aminobutyric acid; mTOR ¼mammalian target of rapamycin complex; NMDAR¼ N-methyl-D-aspartate receptor)
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progress has been made in understanding the underlying

mechanisms of the antidepressant effect of ketamine,

many areas exist where further research is needed. The

clinical significance of variant BDNF Val666Met polymor-

phisms is still being explored and has the potential to

inform treatment decisions for ketamine in MDD. As

described earlier, gene sets affecting NMDA and AMPA

mediated synaptic currents predicted poor response to

antipsychotic agents in patients with schizophrenia; while

these alleles are rare, their presence may also impact the

antidepressant efficacy of ketamine. Finally, potential

pharmacodynamic drug-drug interactions have been

explored in this review, but this is likely only the tip of

the proverbial iceberg. Better delineation of concurrent

psychotropic drugs in clinical studies of ketamine will aid

in improving understanding of pharmacodynamic drug-

drug interactions and the underlying mechanisms of

ketamine.
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