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Abstract: Feature selection is one of the core contents of rough set theory and application. Since
the reduction ability and classification performance of many feature selection algorithms based on
rough set theory and its extensions are not ideal, this paper proposes a feature selection algorithm
that combines the information theory view and algebraic view in the neighborhood decision system.
First, the neighborhood relationship in the neighborhood rough set model is used to retain the
classification information of continuous data, to study some uncertainty measures of neighborhood
information entropy. Second, to fully reflect the decision ability and classification performance of
the neighborhood system, the neighborhood credibility and neighborhood coverage are defined
and introduced into the neighborhood joint entropy. Third, a feature selection algorithm based on
neighborhood joint entropy is designed, which improves the disadvantage that most feature selection
algorithms only consider information theory definition or algebraic definition. Finally, experiments
and statistical analyses on nine data sets prove that the algorithm can effectively select the optimal
feature subset, and the selection result can maintain or improve the classification performance of the
data set.

Keywords: feature selection; neighborhood rough set; non-monotonicity; algebraic view; information
theory view

1. Introduction

Today, society has entered the era of network information, the rapid development
of computer and network information technology that makes data and information in
various fields increase rapidly. How to dig out potential and valuable information from the
massive, disordered and strong interference data has posed an unprecedented challenge to
the ability of intelligent information processing, which has produced a new field of artificial
intelligence research, feature selection. Among the many methods of feature selection,
rough set theory is an effective way to deal with complex systems, because it does not need
to provide any prior information except for the data set [1].

Rough set theory is a theory proposed by Polish scientist Pawlak in 1982 to deal with
uncertain, imprecise and fuzzy problems [1]. Its basic idea is to use equivalence relations to
granulate the discrete sample space into a cluster of equivalence classes that do not intersect
each other, therefore describing the knowledge and concepts in the sample space. Feature
selection is one of the core contents of rough set theory and application research. Rough
set theory performs information granulation on the original data set, deletes redundant
conditional attributes without reducing the data classification ability, and obtains a more
concise description than the original data set [2,3]. Classical rough set theory can only
handle discrete data well, and cannot meet the large number of continuous and mixed data
(including continuous and discrete) in practical applications [4–6]. Even if the discretization
technology is adopted [7], the important information in the data will be lost, which will
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ultimately affect the selection result. For this reason, Wang et al. [8] proposed the k-nearest
neighborhood rough set model. Chen et al. [9] explored the granular structure, distance
and metric in the neighborhood system. Yao et al. [10] studied the relationship between the
1-step neighborhood system and rough set approximation. Based on the above research,
Hu et al. [11] proposed the neighborhood rough set model and successfully applied it to
the feature selection, classification and uncertainty reasoning of continuous and mixed
data. As a data preprocessing method, feature selection based on the neighborhood rough
set has been widely used in cancer classification [12], character recognition [13] and facial
expression feature selection [14], and has good research value and application prospect.

The traditional feature selection methods have been proven to be NP hard problem by
Wong and Ziarko [15]. Therefore, in the research of feature selection algorithms, how to
speed up the convergence speed to reduce the time complexity has become a mainstream
research direction [16]. Chen et al. [17] proposed a heuristic feature selection algorithm
using joint entropy measurement. Jiang et al. [16] studied the feature selection accelerator
based on the supervised neighborhood. Most of the above feature selection methods
are based on monotonic evaluation functions to achieve feature selection [11]. However,
the feature selection algorithm that satisfies the monotonicity has the problem that when
the classification performance of the original data set is poor, the measured value of the
evaluation function is low, and the final reduction effect is not good [18]. To solve this
problem, Li et al. [19] proposed a non-monotonic feature selection algorithm based on
decision rough set model. Sun et al. [18] designed a gene feature selection algorithm based
on the uncertainty measurement of neighborhood entropy. Wang et al. [20] studied a greedy
feature selection algorithm based on non-monotonic conditional discriminant index.

Some existing uncertainty measures cannot objectively reflect changes in classification
decision capability [21]. Sun et al. [18] believes that credibility and coverage can reflect the
classification ability of condition attributes relative to decision attributes, and condition
attributes with higher credibility and coverage are more important for decision attributes.
In addition, Tsumoto et al. [22] also emphasizes that credibility represents the sufficiency
of propositions and coverage describes the necessity of propositions. Therefore, this
paper defines the credibility and coverage in the neighborhood decision system, namely
neighborhood credibility and neighborhood coverage.

The information theory definition based on information entropy and the algebraic
definition based on approximate precision are two definitions form in the classic rough
set theory [23]. The information theory definition based on information entropy considers
the influence of attributes on uncertain subsets, while the algebraic definition based on
approximate precision considers the influence of attributes on defined subsets [24,25],
which are two measurement mechanisms with strong complementarity [26]. So far, most
feature selection algorithms only consider information theory definition or algebraic defini-
tion. For example, Hu et al. [11] proposed a hybrid feature selection algorithm based on
neighborhood information entropy. Wang et al. [27,28] used the equivalent relation matrix
to calculate the concepts of knowledge granularity, resolution and attribute importance
from the algebraic view of rough sets. Sun et al. [2,29] studied the feature selection method
based on entropy measures. The uncertainty measures based on neighborhood information
entropy reflect the information theory view in the neighborhood decision system, and the
neighborhood approximate precision belongs to the algebraic view in the neighborhood
decision system [18].

Inspired by the above, this paper combines the information theory view and algebra
view in the neighborhood decision system, and proposes a heuristic non-monotonic feature
selection algorithm. The experimental results on nine different scale data sets show that
the algorithm can effectively select the optimal feature subset, and the selection results can
maintain or improve the classification performance of the data set.

In summary, the main contributions of this paper are as follows:

• The credibility and coverage degrees can reflect the decision-making ability and the
classification ability of conditional attributes with respect to the decision attribute [18].
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In order to effectively analyze the uncertainty of knowledge in the neighborhood
rough set, the credibility and coverage are introduced into the neighborhood decision
system, and then the neighborhood credibility and neighborhood coverage are defined
and introduced into neighborhood joint entropy.

• Based on the proposed neighborhood joint entropy, some uncertainty measures of
neighborhood information entropy are studied, and the relationship between the
measures is derived, which is conducive to understanding the nature of knowledge
uncertainty in neighborhood decision systems.

• To construct a more comprehensive measurement mechanism and overcome the
problem of poor selection results when the classification performance of the original
data set is not good, the information theory view and algebraic view in the neigh-
borhood decision system are combined to propose a heuristic non-monotonic feature
selection algorithm.

Section 2 briefly introduces the basic concepts of the neighborhood rough set and
information entropy measures. Section 3 studies the heuristic non-monotonic feature selec-
tion algorithm based on information theory view and algebraic view. Section 4 analyzes
the experimental results on four low-dimensional data sets and five high-dimensional data
sets. Section 5 summarizes the content of this paper.

2. Basic Concepts

In this part, we will briefly review the basic concepts of information entropy measures
and the neighborhood rough set [2,30–33].

2.1. Information Entropy Measures

DS = (U, C ∪ D, V, f ) is called a decision system, where U = {x1, x2, . . . , xk} is the
sample set, C is the conditional attribute set, D is the classification decision attribute, V is
the value of attribute, f : U × C → V is a mapping function.

In the DS, if B ⊆ C divides the sample set U into U/B = {X1, X2, . . . , XK}, then the
information entropy is defined as

H(B) = −
K

∑
i=1

p(Xi) log p(Xi) Xi ⊆ U/B (1)

p(Xi) =
|Xi |
|U| represents the probability of Xi in the sample set.

In the DS, if B, Q ⊆ C, U/B = {X1, X2, . . . , XK}, U/Q = {Y1, Y2, . . . , YL}, then the
conditional information entropy of Q relative to B is defined as

H(Q|B) = −
K

∑
i=1

p(Xi)
L

∑
j=1

p
(
Yj|Xi

)
log p

(
Yj|Xi

)
(2)

where Xi ⊆ U/B, Yj ⊆ U/Q, p
(
Yj|Xi

)
=
|Yj∩Xi|
|Xi |

.
In the DS, if B, Q ⊆ C, U/B = {X1, X2, . . . , XK}, U/Q = {Y1, Y2, . . . , YL}, then the

joint information entropy of Q and B is defined as

H(Q, B) = −
K

∑
i=1

L

∑
j=1

p
(
Xi ∩Yj

)
log
(

p
(
Xi ∩Yj

))
(3)

where Xi ⊆ U/B, Yj ⊆ U/Q, p
(
Xi ∩Yj

)
=
|Xi∩Yj|
|U| .

Theorem 1. Given the DS, if B, Q ⊆ C, U/B = {X1, X2, . . . , XK}, U/Q = {Y1, Y2, . . . , YL},
then H(Q|B) = H(Q, B)− H(B).
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2.2. Neighborhood Rough Set

NDS = (U, C, D, δ) is called the neighborhood decision system, where U is a sample
set named universe, C is the conditional attribute set, D is decision attribute, and δ is the
neighborhood radius.

In the NDS, if B ⊆ C, then Minkowski distance between different sample points
xi = {xi1, xi2, . . . , xim} and xj =

{
xj1, xj2, . . . , xjm

}
on U is defined as

MDB
(
xi, xj

)
=

(
B

∑
k=1

∣∣∣xik − xjk

∣∣∣p)1/p
(4)

Given the NDS and the distance measurement function MD, if B ⊆ C, then the
neighborhood information granule of xi ∈ U relative to B is defined as

nδ
B(xi) = {x ∈ U|∆B(xi , x) ≤ δ} δ > 0 (5)

nδ
B(xi) represents the indistinguishable relation sample set of the xi under B.

In the NDS, if U/D = {Y1, Y2, . . . , YL}, then the decision equivalence relation of
xi ∈ U is defined as

[xi]D =
{

Yj|xi ∈ Yj
}

j = 1, 2 . . . , L (6)

In the NDS, if B ⊆ C, NB is the neighborhood relationship on U, then the neighbor-
hood upper approximation set NBX and the neighborhood lower approximation set NBX
of sample set X ⊆ U relative to B are respectively defined as

NBX =
{

xi ∈ U|nδ
B(xi) ∩ X 6= ∅

}
i = 1, 2 . . . , |U| (7)

NBX =
{

xi ∈ U|nδ
B(xi) ⊆ X

}
i = 1, 2 . . . , |U| (8)

In the NDS, if B ⊆ C, U/D = {Y1, Y2, . . . , YL}, NB is the neighborhood relationship
on U, then the upper approximate set NB(D) and the lower neighborhood approximate set
NB(D) of D relative to B are respectively defined as

NB(D) =
⋃L

S=1
NBYs (9)

NB(D) =
⋃L

S=1
NBYs (10)

In the NDS, if B ⊆ C, then the neighborhood approximate precision of the sample set
X ⊆ U relative to B is defined as

PB(X) =

∣∣NB(X)
∣∣∣∣NB(X)
∣∣ (11)

In the NDS, if B ⊆ C, U/D = {Y1, Y2, . . . , YL}, then the neighborhood approximate
precision of D relative to B is defined as

PB(D) =

∣∣NB(D)
∣∣∣∣NB(D)
∣∣ (12)

PB(D) describes the knowledge completeness of a set, considering the influence of at-
tributes in the neighborhood decision system on the defined subset, and is the view of the
neighborhood decision system under algebraic definition [18].
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3. Feature Selection Algorithm Design

This part first defines the neighborhood credibility and neighborhood coverage. Sec-
ond, some uncertainty measures of neighborhood information entropy are studied, and the
relationship between the measures is derived. Then, using the information theory view
and algebraic view in the neighborhood decision system, a heuristic non-monotonic fea-
ture selection algorithm is designed. The following introduces related concepts and
their properties.

3.1. Neighborhood Credibility and Neighborhood Coverage

In the NDS, if B ⊆ C, U/B = {X1, X2, . . . , XK}, U/D = {Y1, Y2, . . . , YL}, then the
credibility αij and coverage κij [18] are respectively defined as

αij =

∣∣Xi ∩Yj
∣∣

|Xi|
(13)

κij =

∣∣Xi ∩Yj
∣∣∣∣Yj

∣∣ (14)

where i = 1, 2, . . . , K and j = 1, 2, . . . , L. Credibility and coverage reflect the classification
ability of condition attributes relative to decision attributes. Condition attributes with
higher credibility and coverage are more important for decision attributes [22].

Definition 1. In the NDS, if B ⊆ C, then the joint neighborhood information granule of xi ∈ U
is defined as

n(B,D)(xi) = nδ
B(xi) ∪ [xi]D (15)

n(B,D)(xi) combines the neighborhood information granule nδ
B(xi) and decision equivalence relation-

ship [xi]D, which more accurately reflects the amount of class information when each class in nδ
B(xi)

has a different distribution, and the amount of class information provided is embodied in the number
of elements in n(B,D)(xi). Therefore, n(B,D)(xi) can accurately reflect the decision information.

Definition 2. In the NDS, if B ⊆ C, then the neighborhood credibility nαi and neighborhood
coverage nκi of xi ∈ U are respectively defined as

nαi =

∣∣nδ
B(xi) ∩ [xi]D

∣∣
|n(B,D)(xi))|

(16)

nκi =

∣∣nδ
B(xi) ∩ [xi]D

∣∣
|[xi]D|

(17)

nαi and nκi respectively use the joint neighborhood information granule and the decision equivalence
relationship to describe the credibility and coverage of the neighborhood decision system, which
makes full use of the decision information provided by the decision system.

3.2. Uncertainty Measures of Neighborhood Information Entropy

In the NDS, if B ⊆ C, then neighborhood entropy [34] of xi ∈ U is defined as

Hxi
δ (B) = − log

(∣∣nδ
B(xi)

∣∣
|U|

)
(18)

In the NDS, if B ⊆ C, then the average neighborhood entropy [34] is defined as

Hδ(B) =
1
|U|

|U|

∑
i=1

Hxi
δ (B) = − 1

|U|

|U|

∑
i=1

log

(∣∣nδ
B(xi)

∣∣
|U|

)
(19)
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Definition 3. In the NDS, if B ⊆ C, then new neighborhood entropy of xi ∈ U is defined as

Hxi
δ (B) = − log

( ∣∣nδ
B(xi)

∣∣
|n(B,D)(xi)

)
(20)

Definition 4. In the NDS, if B ⊆ C, then the new average neighborhood entropy is defined as

Hδ(B) =
PB(D)

|U|

|U|

∑
i=1

Hxi
δ (B) = −PB(D)

|U|

|U|

∑
i=1

log

( ∣∣nδ
B(xi)

∣∣
|n(B,D)(xi)|

)
(21)

The new average neighborhood entropy Hδ(B) introduces the joint neighborhood information gran-
ule into neighborhood entropy, which makes full use of the decision information in the neighborhood
decision system.

Definition 5. In the NDS, if B ⊆ C, then neighborhood conditional entropy of D relative to B is
defined as

Hδ(D|B) = −PB(D)

|U|

|U|

∑
i=1

log

(∣∣nδ
B(xi) ∩ [xi]D

∣∣2∣∣nδ
B(xi)

∣∣|[xi]D|

)
(22)

Definition 6. In the NDS, if B ⊆ C, then neighborhood joint entropy of D and B is defined as

Hδ(D, B) = −PB(D)

|U|

|U|

∑
i=1

log

 ∣∣nδ
B(xi) ∩ [xi]D

∣∣2∣∣∣n(B,D)(xi)
∣∣∣|[xi]D|

 (23)

Theorem 2. Given the NDS, if B ⊆ C, then Hδ(D, B) = − PB(D)
|U|

|U|
∑

i=1
log(nκi ∗ nαi).

Proof of Theorem 2.

Hδ(D, B) = −PB(D)

|U|

|U|

∑
i=1

log

 ∣∣nδ
B(xi) ∩ [xi]D

∣∣2∣∣∣n(B,D)(xi)
∣∣∣|[xi]D|


= −PB(D)

|U|

|U|

∑
i=1

log

∣∣nδ
B(xi) ∩ [xi]D

∣∣∣∣nδ
B(xi) ∩ [xi]D

∣∣∣∣∣n(B,D)(xi)
∣∣∣|[xi]D|


= −PB(D)

|U|

|U|

∑
i=1

log

∣∣nδ
B(xi) ∩ [xi]D

∣∣∣∣∣n(B,D)(xi)
∣∣∣
∣∣nδ

B(xi) ∩ [xi]D
∣∣

|[xi]D|


= −PB(D)

|U|

|U|

∑
i=1

log(nαi ∗ nκi)

From Theorem 2, we can see that the definition of neighborhood joint entropy can be
derived from neighborhood credibility and neighborhood coverage.

Theorem 3. Given the NDS, if B ⊆ C, then Hδ(D|B) = Hδ(D, B)− Hδ(B).
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Proof of Theorem 3.

Hδ(D, B)− Hδ(B) = −PB(D)

|U|

|U|

∑
i=1

log


∣∣∣nδ

B(xi) ∩ [xi]D

∣∣∣2∣∣∣n(B,D)(xi)
∣∣∣|[xi]D|

+
PB(D)

|U|

|U|

∑
i=1

log


∣∣∣nδ

B(xi)
∣∣∣∣∣∣n(B,D)(xi)
∣∣∣


= −PB(D)

|U|

|U|

∑
i=1

log


∣∣∣nδ

B(xi) ∩ [xi]D

∣∣∣2∣∣∣n(B,D)(xi)
∣∣∣|[xi]D|

+
PB(D)

|U|

|U|

∑
i=1

log


∣∣∣nδ

B(xi)
∣∣∣∣∣∣n(B,D)(xi)
∣∣∣


= −PB(D)

|U|

|U|

∑
i=1

log


∣∣∣nδ

B(xi) ∩ [xi]D

∣∣∣2∣∣∣n(B,D)(xi)
∣∣∣|[xi]D|

∣∣∣n(B,D)(xi)
∣∣∣∣∣nδ

B(xi)
∣∣


= −PB(D)

|U|

|U|

∑
i=1

log


∣∣∣nδ

B(xi) ∩ [xi]D

∣∣∣2∣∣nδ
B(xi)

∣∣|[xi]D|


According to De f inition 5, Hδ(D|B) = Hδ(D, B)− Hδ(B) holds.

Sun et al. [18] shows that information entropy and its extension belong to the view
under the information theory definition, and the neighborhood approximate precision
comes from the view under the algebra definition. Therefore, Definitions 4–6 can be used
to measure the uncertainty of knowledge in the neighborhood decision system from the
information theory view and the algebraic view.

3.3. Heuristic Non-Monotonic Feature Selection Algorithm Design

The feature selection algorithm that satisfies the monotonicity has the problem that
the reduction effect is not good when the classification performance of the original data
set is poor. Therefore, based on the uncertainty measures combining algebraic view
and information theory view in Section 3.2, a heuristic non-monotonic feature selection
algorithm is designed.

Theorem 4. Given the NDS, if B1 ⊆ B2 ⊆ C, then Hδ(D, B) is non-monotonic.

Proof of Theorem 4. we can know that
∣∣∣nδ

B1
(xi)

∣∣∣ ≥ ∣∣∣nδ
B2
(xi)

∣∣∣, so
∣∣∣nδ

B1
(xi) ∩ [xi]D

∣∣∣ ≥∣∣∣nδ
B2
(xi) ∩ [xi]D

∣∣∣, ∣∣∣nδ
B1
(xi) ∪ [xi]D

∣∣∣ ≥ ∣∣∣nδ
B2
(xi) ∪ [xi]D

∣∣∣ and
∣∣∣n(B1,D)(xi)

∣∣∣ ≥ ∣∣∣n(B2,D)(xi)
∣∣∣

from Equation (5). Then it can be deduced that the numerical relationship between∣∣∣nδ
B1
(xi)∩[xi ]D

∣∣∣2∣∣∣n(B1,D)(xi)
∣∣∣ and

∣∣∣nδ
B2
(xi)∩[xi ]D

∣∣∣2∣∣∣n(B2,D)(xi)
∣∣∣ is not clear, so the numerical relationship between

− 1
|U|

|U|
∑

i=1
log

( ∣∣∣nδ
B1
(xi)∩[xi ]D

∣∣∣2∣∣∣n(B1,D)(xi)
∣∣∣|[xi ]D |

)
and − 1

|U|

|U|
∑

i=1
log

( ∣∣∣nδ
B2
(xi)∩[xi ]D

∣∣∣2∣∣∣n(B2,D)(xi)
∣∣∣|[xi ]D |

)
is unknown. Accord-

ing to Equations (9), (10) and (12), we can obtain PB1(D) ≤ PB2(D), so value relationship

of − PB1 (D)

|U|

|U|
∑

i=1
log

( ∣∣∣nδ
B1
(xi)∩[xi ]D

∣∣∣2∣∣∣n(B1,D)(xi)
∣∣∣|[xi ]D |

)
and − PB2 (D)

|U|

|U|
∑

i=1
log

( ∣∣∣nδ
B2
(xi)∩[xi ]D

∣∣∣2∣∣∣n(B2,D)(xi)
∣∣∣|[xi ]D |

)
are uncertain.

According to Equation (23), Theorem 4 holds.

Definition 7. In the NDS, if B ⊆ C, attribute b ∈ B satisfies Hδ(D, B) ≤ Hδ(D, B− {b}),
then it is said that attribute b is redundant with respect to D, otherwise it is said that attribute b is
indispensable for D. If B satisfies the following conditions, then B is called a feature subset of C.

(1) Hδ(D, B) ≥ Hδ(D, C)
(2) Hδ(D, B) > Hδ(D, {B− b}) ∀b ∈ B
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Definition 8. In the NDS, if B ⊆ C, then the importance of attribute b ∈ (C− B) is defined as

Sig(b, B, D) = Hδ(D, B ∪ {b})− Hδ(D, B) (24)

when B = ∅, Sig(b, B, D) = Hδ(D, {b}). The larger Sig(b, B, D), the more important b is.
From a numerical point of view, looking for an optimal feature subset is to find the B corresponding
to the maximum Hδ(D, B).

To accurately reflect the decision information and eliminate redundant features,
a heuristic non-monotonic feature selection algorithm based on neighborhood joint en-
tropy (BONJE) is designed. The implementation steps of this algorithm are shown in
Algorithm 1.

Algorithm 1: B0NJE Algorithm Steps.
Input: Given the NDS
Output: A feature subset B
1. Initialize B = Agent = ∅, Hδ(D, B) = 0
2. While Sig(C, B, D) ≤ 0 do
3. Let H = 0
4. for any b ∈ (C− B) do
5. Calculate Hδ(D, B ∪ b)
6. if Hδ(D, B ∪ b) > H then
7. Let Agent = B ∪ b and H = Hδ(D, B ∪ b)
8. end if
9. end for
10. Let B = Agent
11. end while
12. return A feature subset B

To facilitate the understanding of the specific calculation steps of the algorithm,
an example is given below.

Example 1. A NDS = (U, C, D, δ) is given in Table 1, where U = {x1, x2, x3, x4} is the
universe, C = {a, b, c} is the conditional attribute set, D = d is the decision attribute, and the
neighborhood radius parameter δ = 0.3.

Table 1. NDS.

U a b c d

x1 0.12 0.41 0.61 Y
x2 0.21 0.15 0.14 Y
x3 0.31 0.11 0.26 N
x4 0.61 0.13 0.23 N

Let the initial feature subset B = ∅, the base of log is 10, the calculation result is kept
to three decimal places. In the distance measurement function Equation (4), p = 2 is used
as the calculation function.

From Equation (6), we know that [x1]D = {x1, x2}, [x2]D = {x1, x2}, [x3]D = {x3, x4},
[x4]D = {x3, x4}.

When B = a, the distance between each sample is as follows: MD{a}(x1, x1) = 0 ≤
δ, MD{a}(x1, x2) = 0.09 ≤ δ, MD{a}(x1, x3) = 0.19 ≤ δ, MD{a}(x1, x4) = 0.49 ≥ δ,
MD{a}(x2, x3) = 0.1 ≤ δ, MD{a}(x2, x4) = 0.4 ≥ δ, MD{a}(x3, x4) = 0.3 ≤ δ.

According to Equation (5), we obtain nδ
{a}(x1) = {x1, x2, x3}, nδ

{a}(x2) = {x1, x2, x3},
nδ
{a}(x3) = {x1, x2, x3, x4}, nδ

{a}(x4) = {x3, x4}.
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We know that n({a},D)(x1) = n{a}(x1) ∪ [x1]D = {x1, x2, x3}, n({a},D)(x2) = n{a}(x2)
∪[x2]D = {x1, x2, x3}, n({a},D)(x3) = n{a}(x3) ∪ [x3]D = {x1, x2, x3, x4}, n({a},D)(x4) =
n{a}(x4) ∪ [x4]D = {x3, x4} from Equation(15).

From Equations (9), (10) and (12), we can obtain N{a}(D) = {x1, x2, x3, x4}, N{a}(D) =

{x4}, P{a}(X) =

∣∣∣N{a}(D)
∣∣∣

|N{a}(D)| =
1
4 respectively.

According to Equation (23), we can obtain Hδ(D, {a}) = − PB(D)
|U|

|U|
∑

i=1
log
(
|nδ

B(xi)∩[xi ]D|
2

|n(B,D)(xi)||[xi ]D |

)
= −

1/4
4

(
log
(

22

3×2

)
+ log

(
22

3×2

)
+ log

(
22

4×2

)
+ log

(
22

2×2

))
= 0.041

Similarly, Hδ(D, {b}) = 0, Hδ(D, {c}) = 0.116, Hδ(D, {a, b}) = 0.195, Hδ(D, {a, c}) =
0.345, Hδ(D, {b, c}) = 0.116, Hδ(D, {a, b, c}) = 0.345.

It can be seen from the results that Hδ(D, {b}) < Hδ(D, {a}) < Hδ(D, {c}), so add {c}
to B. Since Hδ(D, {c}) = Hδ(D, {b, c}) < Hδ(D, {a, c}), so add {a} to B. Hδ(D, {a, b, c}) =
Hδ(D, {a, c}) meets the suspension requirement, so B = {a, c} is the optimal feature subset.

4. Experiment and Analysis

This part uses the BONJE algorithm to select the appropriate neighborhood radius for
different data sets and designs different comparative experiments to prove the efficiency of
the BONJE algorithm in feature selection.

4.1. Experimental Data Introduction

To verify the efficiency of the BONJE algorithm in feature selection, this experiment
selects nine data sets with different dimensions as the experimental objects, including 4
low-dimensional data sets (Wine, WDBC, WPBC, Ionosphere) and 5 high-dimensional data
sets (Colon, SRBCT, DLBCL, Leukemia, Lung). The specific data of each data set is shown
in Table 2.

Table 2. Description of the nine data sets.

No. Data Sets Features Samples Classes Reference

1 Wine 13 178 3(59/71/48) Fan et al. [35]
2 WDBC 30 569 2(357/ 212) Fan et al. [35]
3 WPBC 32 194 2(46/148) Fan et al. [35]
4 Ionosphere 34 351 2(126/225) Fan et al. [35]
5 Colon 2000 62 2(22/40) Xu et al. [36]
6 SRBCT 2308 63 4(23/8/12/20) Tibshirani et al. [37]
7 DLBCL 5469 77 2(58/19) Wang et al. [20]
8 Leukemia 7129 72 2(47/25) Dong et al. [38]
9 Lung 12533 181 2(31/150) Sun et al. [39]

Wine, WDBC (Wisconsin Diagnostic Breast Cancer), WPBC (Wisconsin Prognostic
Breast Cancer), Ionosphere data sets are downloaded at https://archive.ics.uci.edu/ml/
datasets.html (accessed on 31 May 2021). Colon data set is downloaded from http://
eps.upo.es/bigs/datasets.html (accessed on 31 May 2021). SRBCT (Small Round Blue
Cell Tumor) data set. DLBCL (Diffuse Large B Cell Lymphoma), Leukemia data sets are
downloaded from http://www.gems-system.org. (accessed on 31 May 2021). Lung data set
is downloaded from http://bioinformatics.rutgers.ed/Static/Supplemens/CompCancer/
datasets (accessed on 31 May 2021).

4.2. Experimental Environment

The experiment in this paper is performed on a personal computer with Microsoft
Windows 10 Professional Edition (64-bit), (Intel) Intel(R) Core(TM) i5-6500 CPU @ 3.20 GHz
(3192 MHz) and 16.00 GB RAM. The simulation experiment is implemented on the In-
telliJ IDEA 2020.1.2 platform using Java version “1.8.0_144”. C4.5, SVM (support vector

https://archive.ics.uci.edu/ml/datasets.html
https://archive.ics.uci.edu/ml/datasets.html
http://eps.upo.es/bigs/datasets.html
http://eps.upo.es/bigs/datasets.html
http://www.gems-system.org.
http://bioinformatics.rutgers.ed/Static/Supplemens/CompCancer /datasets
http://bioinformatics.rutgers.ed/Static/Supplemens/CompCancer /datasets
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machine) and KNN (k-nearest neighbors) classifiers are selected on Weka software to
verify the classification accuracy of selected feature subsets, where SVM uses PolyKer-
nel as the kernel function, and KNN sets K = 3. In order to reduce the generalization
error, the three classifiers all adopt a ten-fold cross-validation method to obtain the final
classification accuracy.

4.3. Neighborhood Radius Selection

Since the neighborhood radius affects the granularity of neighborhood information,
and thus neighborhood joint entropy, it is very important to choose a proper neighborhood
radius. In order to unify the value of the neighborhood radius, eliminate the difference in
dimensions and make each feature be treated equally by the classifier, this experiment, first,
normalizes the data ( x−Min

Max−Min ), then the neighborhood radius is set in [0.05, 1] with 0.05 as
the interval. The number of selected features and the three classifiers average classification
accuracy in the different neighborhood radii are shown in Figure 1.

For Wine data set in Figure 1a, as the neighborhood radius value increases, the number
of selected features increases sharply. The number of selected features is small when the
neighborhood radius value is in the interval [0.05, 0.15] and the average classification
accuracy reaches the highest when δ = 0.1 in this interval. Similar to Wine data set, the δ
values of WDBC and WPBC data sets are set to 0.05 and 0.1, respectively. For Ionosphere
data set in Figure 1d, the average classification accuracy is higher when the neighborhood
radius value is in the interval [0.05, 0.2] and the number of selected features is the least
when δ = 0.05 in this interval. For Colon data set in Figure 1e, the change trend of the
average classification accuracy is obvious. The number of selected features is small, and
the classification accuracy is higher when δ = 0.25. Similar to Colon data set, the δ values
of SRBCT, DLBCL, Leukemia, and Lung data sets can be set to 0.15, 0.3, 0.3, and 0.45,
respectively. Therefore, the neighborhood radius values of the 9 data sets should be within
[0.05, 0.45].
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Figure 1. Cont.
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Figure 1. The number of selected features and average classification accuracy of nine data sets in
different neighborhood radii. (a) Wine. (b) WDBC. (c) WPBC. (d) Ionosphere. (e) Colon. (f) SRBCT.
(g) DLBCL. (h) Leukemia1. (i) Lung.

4.4. Classification Results of Bonje Algorithm

This part of the experiment compares the classification accuracy and the number of
features between the original data and the feature subset selected by the BONJE algorithm.
The comparison results are shown in Table 3. The neighborhood radius selected for different
data sets are listed in the last column. In addition, the feature subsets selected by the BONJE
algorithm for different data sets are shown in Table 4. Please note that the boldface indicates
the better value in the comparison data.
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Table 3. The classification results of the original data and the data processed by BONJE algorithm.

Data Sets
Raw Data BONJE Algorithm

δ
Features KNN SVM C4.5 AVE Features KNN SVM C4.5 AVE

Wine 13 0.949 0.983 0.938 0.957 7 0.961 0.961 0.944 0.955 0.1
WDBC 30 0.968 0.977 0.933 0.959 7 0.960 0.963 0.947 0.957 0.05
WPBC 32 0.701 0.763 0.758 0.741 7 0.743 0.763 0.763 0.756 0.1

Ionosphere 34 0.866 0.886 0.915 0.889 13 0.875 0.849 0.915 0.881 0.05
Colon 2000 0.758 0.855 0.823 0.812 8 0.840 0.840 0.903 0.860 0.25
SRBCT 2308 0.810 0.984 0.825 0.873 5 0.921 0.921 0.889 0.910 0.15
DLBCL 5469 0.909 0.974 0.727 0.870 8 0.948 0.948 0.935 0.944 0.3

Leukemia 7129 0.833 0.986 0.792 0.870 8 0.931 0.958 0.944 0.944 0.3
Lung 12533 0.939 0.994 0.950 0.961 16 0.994 0.994 0.967 0.986 0.45

Table 4. Feature subset selected on data set by BONFDE algorithm.

Data Sets Feature Subset

Wine {10,13,8,12,1,3,4}
WDBC {11,22,10,29,25,21,27}
WPBC {27,3,22,31,12,9,11}

Ionosphere {21,11,4,29,30,5,16,34,26,27,20,19}
Colon {1047,1672,29,354,1037,11,734,625}
SRBCT {1954,2240,879,1716,1207}
DLBCL {856,4656,1698,2651,3627,4410,3139,2618}

Leukemia {758,2267,6041,1234,5503,6209,4184,2295}

Lung {3916,5239,2193,3389,8110,8369,11272,2203,3466,610,
12262,2139,1521,5858,3975,3334 }

From the comparison of average classification accuracy in Table 3, it can be seen
that the average classification accuracy of the BONJE algorithm on the Wine, WDBC,
and Ionosphere data sets is slightly lower than the original data by 0.2%, 0.2%, and 0.8%,
respectively. The accuracy loss caused by the BONJE algorithm is controlled within 1%,
which shows that the BONJE algorithm maintains the classification accuracy of the original
data. The average classification accuracy of the BONJE algorithm on the WPBC, Colon,
SRBCT, DLBCL, Leukemia, and Lung data sets is higher than the original data by 1.5%,
4.8%, 3.7%, 7.4%, 7.4%, 2.5%, respectively, which indicates that the BONJE algorithm
eliminates many redundant features and improves the classification accuracy of the data
set. From the comparison of feature number in Table 3, it can be seen that BONJE algorithm
can delete redundant features without reducing the classification accuracy, especially
in high-dimensional data sets. In summary, the BONJE algorithm can effectively select
the optimal feature subset, and the feature selection result can maintain or improve the
classification ability of the data set.

4.5. The Performance of BONJE Algorithm on Low-Dimensional Data Sets

This part of the experiment compares the BONJE algorithm with four other ad-
vanced feature selection algorithms in the low-dimensional data set from the perspec-
tive of the number of selected features and the classification accuracy of KNN and SVM
classifiers. The four advanced feature selection algorithms are: (1) Classic Rough Set
Algorithm (RS) [1], (2) Neighborhood Rough Set Algorithm (NRS) [40], (3) Covering Deci-
sion Algorithm (CDA) [41], (4) Maximum Decision Neighborhood Rough Set Algorithm
(MDNRS) [35]. Tables 5–7 show the experimental results of five different feature selec-
tion algorithms.
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Table 5. The number of selected features by the five feature selection algorithms on the low-
dimensional data set.

Data Sets RS NRS CDA MDNRS BONJE

Wine 5 3 2 4 7
WDBC 8 2 2 2 7
WPBC 7 2 2 4 7

Ionosphere 17 8 9 8 13
AVE 9.25 3.75 3.75 4.5 8.5

Table 6. KNN classification accuracy of five feature selection algorithms on low-dimensional
data sets.

Data Sets RS NRS CDA MDNRS BONJE

Wine 0.863 0.753 0.727 0.911 0.961
WDBC 0.911 0.923 0.923 0.930 0.960
WPBC 0.743 0.738 0.738 0.761 0.743

Ionosphere 0.866 0.859 0.848 0.891 0.875
AVE 0.846 0.818 0.809 0.873 0.885

Table 7. SVM classification accuracy of five feature selection algorithms on low-dimensional data sets.

Data Sets RS NRS CDA MDNRS BONJE

Wine 0.640 0.402 0.643 0.910 0.961
WDBC 0.589 0.595 0.595 0.861 0.963
WPBC 0.778 0.757 0.757 0.692 0.763

Ionosphere 0.881 0.872 0.878 0.870 0.849
AVE 0.722 0.657 0.718 0.833 0.884

Comprehensive analyses of Tables 5–7 show that for the Wine data set, CDA algorithm
selects the least number of features, but the KNN classification accuracy and SVM classifi-
cation accuracy of CDA algorithm are far lower than BONJE algorithm by 23.4% and 31.8%
respectively, which indicates that CDA algorithm loses features with important information
in the selection process; For WDBC data set, although BONJE algorithm has more selected
features than other algorithms, the classification accuracy of BONJE algorithm under the
two classifiers is higher than that of other algorithms; For WPBC data set, NRS algorithm
and the CDA algorithm choose the least number of features, but their classification accuracy
under the two classifiers is lower than BONJE algorithm; For Ionosphere data set, the clas-
sification accuracy of BONJE algorithm is relatively high compared to other algorithms,
and the number of features selected by BONJE algorithm is smaller than other algorithms;
In general, the average number of selected features of BONJE algorithm is less, and BONJE
algorithm has the highest average classification accuracy under the two classifiers, which
shows that BONJE algorithm has stable reduction ability and can improve the classification
accuracy of data set in low-dimensional data.

4.6. The Performance of BONJE Algorithm on High-Dimensional Data Sets

This part of the experiment compares the BONJE algorithm with four other ad-
vanced entropy-based feature selection algorithms from the perspective of different high-
dimensional data sets. The four entropy-based feature selection algorithms are: (1) the
mutual entropy-based attribute reduction algorithm (MEAR) [42], (2) the entropy gain-
based gene selection algorithm (EGGS) [17], (3) the EGGS algorithm combined with the
Fisher score (EGES-FS) [29], (4) feature selection algorithm with the Fisher score based on
decision neighborhood entropy (FSDNE) [18]. Tables 8–12 show the experimental results
of five different entropy-based feature selection algorithms.
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Table 8. Experimental results of five entropy-based feature selection algorithms on the Colon data set.

Algorithms Features KNN SVM C4.5 AVE

MEAR 5 0.770 0.849 0.822 0.814
EGGS 11 0.649 0.556 0.646 0.617

EGGS-FS 2 0.702 0.621 0.672 0.665
FSDNE 3 0.840 0.838 0.796 0.825
BONJE 8 0.840 0.840 0.903 0.860

As shown in Table 8, the KNN classification accuracy and C4.5 classification accuracy
of the BONJE algorithm are better than other algorithms. Although the SVM classification
accuracy of the BONJE algorithm is slightly lower than that of the first-ranked MEAR
algorithm by 0.9%, the average classification accuracy of the BONJE algorithm is much
higher than the second-ranked FSDNE algorithm by 3.5%. In general, the BONJE algorithm
has excellent performance on the Colon data set.

Table 9. Experimental results of five entropy-based feature selection algorithms on the SRBCT
data set.

Algorithms Features KNN SVM C4.5 AVE

MEAR 1 0.389 0.364 0.365 0.373
EGGS 12 0.575 0.703 0.513 0.597

EGGS-FS 1 0.637 0.651 0.626 0.638
FSDNE 9 0.846 0.936 0.821 0.868
BONJE 5 0.921 0.921 0.889 0.910

Table 9 shows that the KNN classification accuracy and C4.5 classification accuracy of
the BONJE algorithm are better than other algorithms. Although the SVM classification
accuracy of the BONJE algorithm is lower than that of the first-ranked FSDNE algorithm
by 1.5%, the average classification accuracy of the BONJE algorithm is much higher than
the second-ranked FSDNE algorithm by 4.2%. Therefore, BONJE has stable classification
performance on the SRBCT data set.

Table 10. Experimental results of five entropy-based feature selection algorithms on the DLBCL
data set.

Algorithms Features KNN SVM C4.5 AVE

MEAR 2 0.765 0.777 0.778 0.773
EGGS 20 0.854 0.781 0.826 0.820

EGGS-FS 3 0.870 0.841 0.801 0.837
FSDNE 11 0.946 0.927 0.903 0.925
BONJE 8 0.948 0.948 0.935 0.944

According to the experimental results in Table 10, it can be clearly seen that the KNN
classification accuracy, SVM classification accuracy and C4.5 classification accuracy of the
BONJE algorithm are better than other algorithms. Compared with the BONJE algorithm,
the MEAR and EGGS-FS algorithms select fewer features, but the average classification
accuracy of the MEAR and EGGS-FS algorithms is much lower than the BONJE algorithm.
Therefore, the BONJE algorithm can delete many redundant features on the DLBCL data
set without reducing the data classification ability.
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Table 11. Experimental results of five entropy-based feature selection algorithms on the Leukemia
data set.

Algorithms Features KNN SVM C4.5 AVE

MEAR 3 0.928 0.920 0.934 0.927
EGGS 8 0.629 0.802 0.733 0.721

EGGS-FS 5 0.801 0.680 0.813 0.765
FSDNE 9 0.952 0.929 0.905 0.929
BONJE 8 0.931 0.958 0.944 0.944

According to the results in Table 11, although the KNN classification accuracy of
the BONJE algorithm is lower than that of the FSDNE algorithm, the SVM classification
accuracy and C4.5 classification accuracy of the BONJE algorithm are as high as 95.8%
and 94.4%, respectively. The average classification accuracy of the BONJE algorithm is
1.5% higher than that of the second-ranked FSDNE algorithm. Therefore, the BONJE
algorithm can effectively select feature subsets on the Leukemia data set and improve the
classification ability of the data set.

It can be seen from Table 12 that the number of features selected by the BONJE
algorithm is relatively high compared with other algorithms, but the BONJE algorithm has
the highest average classification accuracy. Therefore, the BONJE algorithm can effectively
reduce noise and improve classification accuracy on the Lung data set.

Table 12. Experimental results of five entropy-based feature selection algorithms on the Lung data set.

Algorithms Features KNN SVM C4.5 AVE

MEAR 6 0.958 0.929 0.964 0.950
EGGS 12 0.859 0.960 0.966 0.928

EGGS-FS 6 0.979 0.990 0.955 0.975
FSDNE 8 0.987 0.988 0.979 0.985
BONJE 16 0.994 0.994 0.967 0.986

Based on the above experimental results and analyses, the BONJE algorithm can
effectively select feature subsets under high-dimensional data, and the feature selection
results can improve the classification ability of the data set.

4.7. Comparison of BONJE Algorithm and Multiple Dimensionality Reduction Algorithms

To further verify the reduction performance and classification ability of the BONJE al-
gorithm, this part of the experiment compares the BONJE algorithm with other 10 reduction
algorithms from the perspective of the number of selected features and SVM classifica-
tion accuracy on 3 representative tumor data sets (Colon, Leukemia, Lung). The ten
different dimensionality reduction methods are: (1) the neighborhood rough set-based
reduction algorithm (NRS) [35], (2) feature selection algorithm with Fisher linear discrimi-
nant (FLD-NRS) [32], (3) the gene selection algorithm based on locally linear embedding
(LLE-NRS) [43], (4) the Relief algorithm [44] combined with the NRS algorithm(Relief +
NRS) [35], (5) the fuzzy back-ward feature algorithm (FBFE) [44], (6) the binary differential
evolution algorithm (BDE) [2], (7) the sequential forward selection algorithm (SFS) [29],
(8) the Spearman’s rank correlation coefficient algorithm (SC2) [36], (9) the mutual informa-
tion maximization algorithm (MIM) [2], (10) feature selection algorithm with the Fisher
score based on decision neighborhood entropy (FSDNE) [18]. Tables 13 and 14 show the
experimental results of 11 dimensionality reduction algorithms.



Entropy 2021, 23, 704 16 of 22

Table 13. The number of features selected by 11 dimensionality reduction algorithms.

Algorithms Colon Leukemia Lung AVE

NRS 4 5 3 4
FLD-NRS 6 6 3 5
LLE-NRS 16 22 16 18

Relife+NRS 9 17 23 16.33
FBFE 35 30 80 48.33
BDE 3 7 3 4.33
SFS 19 7 3 9.67
SC2 4 5 3 4
MIM 19 7 3 9.67

FSDNE 3 9 8 6.67
BONJE 8 8 16 10.67

Table 14. SVM classification accuracy of 11 dimensionality reduction algorithms.

Algorithms Colon Leukemia Lung AVE

NRS 0.611 0.645 0.641 0.632
FLD-NRS 0.880 0.828 0.889 0.866
LLE-NRS 0.840 0.868 0.907 0.872

Relife+NRS 0.564 0.563 0.919 0.682
FBFE 0.833 0.912 0.852 0.866
BDE 0.750 0.824 0.980 0.851
SFS 0.521 0.959 0.833 0.771
SC2 0.805 0.852 0.806 0.821
MIM 0.653 0.727 0.795 0.725

FSDNE 0.828 0.928 0.988 0.915
BONJE 0.840 0.958 0.994 0.931

According to the results in Tables 13 and 14, the SVM classification accuracy of the
BONJE and LLE-NRS algorithms on the Colon dataset is the same and ranked second,
but the number of features selected by the LLE-NRS algorithm is twice that of BONJE
algorithm. The SVM classification accuracy of the BONJE algorithm on the Colon data
set is lower than that of the FLD-NRS algorithm, but the SVM classification accuracy of
the BONJE algorithm on the Leukemia and Lung data sets is much higher than that of the
FLD-NRS algorithm by 13% and 10.5%, respectively, which shows that the classification
performance of the BONJE algorithm is more stable. Although the BDE algorithm selects
the least number of features on the Colon data set, its SVM classification accuracy is only
75%, which indicates that the BDE algorithm loses some important features in the process
of selecting feature subsets. The SVM classification accuracy of the BONJE algorithm on
the Leukemia data set is 0.1% lower than that of the first-ranked SFS algorithm, and the
number of selected features the BONJE algorithm is only one more than the SFS algorithm,
so these two algorithms have similar performance on the Leukemia data set. Compared
with other algorithms, the number of features selected by the BONJE algorithm on the Lung
data set is higher, but the SVM classification accuracy of the BONJE algorithm is the highest.
In general, the BONJE algorithm is at a medium level compared to other algorithms in
terms of the number of selected features, and has the highest average classification accuracy
in terms of SVM classification accuracy, which is enough to show that BONJE algorithm
has a stable dimension reduction performance, and can select features with important
classification information in the data set.

4.8. Statistical Analyses

To systematically explore the statistical significance of algorithm classification results,
this part of the experiment introduces the Friedman statistic test [45] and Nemenyi test [46].
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The calculation formula of Friedman statistic test is as follows:

χ2
F =

12N
M(M + 1)

M

∑
i=1

R2
i − 3N(M + 1) (25)

FF =
(N − 1)χ2

F
N(M− 1)− χ2

F
(26)

where M is the number of algorithms, N is the number of data sets, and Ri represents the
average ranking of the classification accuracy of the i-th algorithm on all data sets. FF is an
F-distribution with M− 1 and (M− 1)(N − 1) degrees of freedom.

If the null hypothesis, all algorithms have the same performance, is rejected, it means
that the performance of the algorithms is significantly different. Then, the Nemenyi test is
used as a post-hoc test for algorithm comparison. If the average ranking difference between
the algorithms is greater than the critical distance CD, it means that the algorithm with a
high average ranking is better than the algorithm with a low average ranking.

The calculation formula of the critical distance CD is as follows:

CD = qα

√
M(M + 1)

6N
(27)

where qα is the critical list value of the test, α represents the significance level of Bonferroni-
Dunn.

According to the classification accuracy results of Tables 6 and 7 on low-dimensional
data sets, the rankings of the five feature selection algorithms under the KNN and SVM
classifiers are shown in Tables 15 and 16, respectively. Please note that the content in
parentheses in all tables is the classification accuracy under the corresponding classifier

Table 15. Classification accuracy ranking of five feature selection algorithms under KNN classifier.

Data Sets RS NRS CDA MDNRS BONJE

Wine 3(0.863) 4(0.753) 5(0.727) 2(0.911) 1(0.961)
WDBC 5(0.911) 3.5(0.923) 3.5(0.923) 2(0.930) 1(0.960)
WPBC 3(0.740) 4.5(0.738) 4.5(0.738) 1(0.761) 2(0.743)

Ionosphere 3(0.866) 4(0.859) 5(0.848) 1(0.891) 2(0.875)

Ave 3.5 4 4.5 1.5 1.5

Table 16. Classification accuracy ranking of five feature selection algorithms under SVM classifier.

Data Sets RS NRS CDA MDNRS BONJE

Wine 4(0.640) 5(0.402) 3(0.643) 2(0.910) 1(0.961)
WDBC 3(0.598) 4.5(0.595) 4.5(0.595) 2(0.861) 1(0.963)
WPBC 1(0.778) 3.5(0.757) 3.5(0.757) 5(0.692) 2(0.763)

Ionosphere 1(0.881) 4(0.832) 3(0.848) 5(0.830) 2(0.849)

Ave 2.25 4.25 3.5 3.5 1.5

According to the algorithm rankings in Tables 15 and 16, the two evaluation mea-
surement values (Friedman statistics χ2

F and Iman-Davenport test FF) of the five feature
selection algorithms under the KNN and SVM classifiers are shown in Table 17.

Table 17. χ2
F and FF under two classifiers of five feature selection algorithms.

KNN SVM

χ2
F 12.8 7.8

FF 12 2.8537
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When the significance level α = 0.1, the critical value of Friedman statistic test
F(4, 12) = 2.480. It can be seen from Table 17 that the FF values under the KNN and SVM
classifiers are both greater than F(4, 12), so the null hypothesis under the two classifiers
is rejected. Then Nemenyi test is used as a post-hoc test to compare the algorithm perfor-
mance, and the comparison results are shown in Figure 2. It is worth noting that the average
ranking of each algorithm is plotted along the axis in the graph, and the best ranking in the
axis is on the left. In particular, when there are thick lines between the algorithms, it means
that the classification capabilities of these algorithms are similar, otherwise, they will be
regarded as significantly different from each other [47].

(a) (b)

Figure 2. The five feature selection algorithms use the Nemenyi test under the two classifiers to
compare the classification performance. (a) KNN. (b) SVM.

It can be clearly seen from Figure 2 that BONJE algorithm ranks first under the two
classifiers. The classification performance of the BONJE, MDNRS, RS and NRS algorithms
under the KNN classifier is similar, and the BONJE algorithm is significantly better than
the CDA algorithm. Under the SVM classifier, the classification performance of BONJE, RS,
CDA and MDNRS algorithms is similar, and the BONJE algorithm performs better than
the NRS algorithm

According to the classification accuracy results of Tables 8–12 on high-dimensional
data sets, the rankings of the entropy-based feature selection algorithms under the KNN,
C4.5 and SVM classifiers are shown in Tables 18–20, respectively.

Table 18. Classification accuracy ranking of five entropy-based feature selection algorithms under
KNN classifier.

Data Sets MEAR EGGS EGGS-FS FSDNE BONJE

Colon 3(0.770) 5(0.649) 4(0.702) 1.5(0.840) 1.5(0.840)
SRBCT 5(0.389) 4(0.575) 3(0.637) 2(0.846) 1(0.921)
DLBCL 5(0.765) 4(0.854) 3(0.870) 2(0.946) 1(0.948)

Leukemia 3(0.928) 5(0.629) 4(0.901) 1(0.952) 2(0.931)
Lung 4(0.958) 5(0.859) 3(0.979) 2(0.987) 1(0.994)

AVE 4 4.6 3.4 1.7 1.3

Table 19. Classification accuracy ranking of five entropy-based feature selection algorithms under
SVM classifier.

Data Sets MEAR EGGS EGGS-FS FSDNE BONJE

Colon 1(0.849) 5(0.556) 4(0.621) 3(0.838) 2(0.840)
SRBCT 5(0.364) 3(0.703) 4(0.651) 1(0.936) 2(0.921)
DLBCL 5(0.777) 4(0.781) 3(0.841) 2(0.927) 1(0.948)

Leukemia 3(0.920) 4(0.802) 5(0.680) 2(0.929) 1(0.958)
Lung 5(0.929) 4(0.960) 3(0.990) 2(0.988) 1(0.994)

AVE 3.8 4 3.8 2 1.4
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Table 20. Classification accuracy ranking of five entropy-based feature selection algorithms under
C4.5 classifier.

Data Sets MEAR EGGS EGGS-FS FSDNE BONJE

Colon 2(0.822) 5(0.646) 4(0.672) 3(0.796) 1(0.903)
SRBCT 5(0.365) 4(0.513) 3(0.626) 2(0.821) 1(0.889)
DLBCL 5(0.778) 3(0.826) 4(0.801) 2(0.903) 1(0.935)

Leukemia 2(0.934) 5(0.733) 4(0.813) 3(0.905) 1(0.944)
Lung 4(0.964) 3(0.966) 5(0.955) 1(0.979) 2(0.967)

AVE 3.6 4 4 2.2 1.2

According to the algorithm rankings in Tables 18–20, the two evaluation measure-
ment values of the five entropy-based feature selection algorithms under the KNN, SVM,
and C4.5 classifiers are shown in Table 21.

Table 21. χ2
F and FF under three classifiers of five entropy-based feature selection algorithms.

KNN SVM C4.5

χ2
F 16.6 11.68 12.48

FF 19.5294 5.6154 6.6383

When the significance level α = 0.1, the critical value of Friedman statistic test
F(4, 16) = 2.333, so null hypothesis under the three classifiers is rejected. The Nemenyi test
is used as a post-hoc test to compare the performance of the algorithms, and the comparison
results are shown in Figure 3.

According to the results in Figure 3, it can be seen that the ranking of BONJE algorithm
is the best under the three classifiers. Under the KNN classifier, the classification perfor-
mance of the BONJE, FSDNE and EGGS-FS algorithms is similar and the BONJE algorithm
is significantly better than the MEAR and EGGS algorithms. Under the SVM classifier,
the classification performance of the BONJE, FSDNE, EGGS-FS and FSDNE algorithms is
similar, and the BONJE algorithm performs better than the EGGS algorithm. Under the
C4.5 classifier, the BONJE algorithm has better classification performance than the EGGS
and EGGS-FS algorithms.

(a) (b)

(c)

Figure 3. The five entropy-based feature selection algorithms use the Nemenyi test under the three
classifiers to compare the classification performance. (a) KNN. (b) SVM. (c) C4.5.

According to the classification accuracy results of Table 14 on three representative
tumor data sets, the rankings of the 11 dimensionality reduction algorithms under the SVM
classifier are shown in Table 22.
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Table 22. Classification accuracy ranking of eleven dimensionality reduction algorithms under
SVM classifier.

Algorithms Colon Leukemia Lung AVE

NRS 9(0.611) 10(0.645) 11(0.641) 10
FLD-NRS 1(0.880) 7(0.828) 6(0.889) 4.67
LLE-NRS 2.5(0.840) 5(0.868) 5(0.907) 4.17

Relife+NRS 10(0.564) 11(0.563) 4(0.919) 8.33
FBFE 4(0.833) 4(0.912) 7(0.852) 5
BDE 7(0.750) 8(0.824) 3(0.980) 6
SFS 11(0.521) 1(0.959) 8(0.833) 6.67
SC2 6(0.805) 6(0.852) 9(0.806) 7
MIM 8(0.653) 9(0.727) 10(0.795) 9

FSDNE 5(0.828) 3(0.928) 2(0.988) 3.33
BONJE 2.5(0.840) 2(0.958) 1(0.994) 1.83

According to the ranking in Table 22, the χ2
F = 17.0491 and FF = 2.6329 of the 11

dimensionality reduction algorithms under the SVM classifier. When the significance level
α = 0.1, the critical value of Friedman statistic test F(10, 20) = 1.9367. FF = 2.8329 is greater
than F(10, 20), so the null hypothesis under the SVM classifier is rejected. The Nemenyi
test is used as a post-hoc test to compare the algorithm performance, and the comparison
result is shown in Figure 4.

Figure 4. The 11 dimensionality reduction algorithms use the Nemenyi test under the SVM classifiers
to compare the classification performance.

Figure 4 shows that the dimensionality reduction effect of BONJE is significantly better
than NRS algorithm. In addition, BONJE algorithm has the highest ranking, which shows
that BONJE algorithm has stable classification performance compared to other algorithms.

In general, the classification results of BONJE algorithm under different data sets are
significantly better than different algorithms, which shows that the classification perfor-
mance of BONJE algorithm is more stable and efficient from a statistical point of view.

5. Conclusions

Since the classification performance of many feature selection algorithms based on
rough set theory and its extension is not ideal, this paper proposes a feature selection algo-
rithm combining information theory view and algebraic view in the neighborhood decision
system to deal with redundant features and noise in data. First, some uncertainty mea-
sures of the neighborhood information entropy are studied to measure the uncertainty of
knowledge in the neighborhood decision system. In addition, the credibility and coverage
are introduced into the neighborhood decision system, and then neighborhood credibility
and neighborhood coverage are defined and introduced into neighborhood joint entropy.
Finally, based on the information theory view and algebraic view in the neighborhood de-
cision system, a heuristic non-monotonic feature selection algorithm is proposed. A series
of comparative experiments and statistical analysis results on four low-dimensional data
sets and five high-dimensional data sets show that the algorithm can effectively remove
redundant features and select the optimal feature subset. Since the BONJE algorithm needs
to frequently calculate the neighborhood information particles of all samples, it has a high
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time complexity when processing high-dimensional data. Moreover, the BONJE algorithm
cannot completely balance the classification level of the selected feature subset. In future
work, it is necessary to study more effective search methods and uncertainty evaluation
criteria to reduce the time complexity and classification error of the algorithm.
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