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Abstract

Glucocorticoids (GCs) mediate physiological responses to environmental stress and are commonly used as pharmaceuticals.
GCs act primarily through the GC receptor (GR, a transcription factor). Despite their clear biomedical importance, little is
known about the genetic architecture of variation in GC response. Here we provide an initial assessment of variability in the
cellular response to GC treatment by profiling gene expression and protein secretion in 114 EBV-transformed B lymphocytes
of African and European ancestry. We found that genetic variation affects the response of nearby genes and exhibits
distinctive patterns of genotype-treatment interactions, with genotypic effects evident in either only GC-treated or only
control-treated conditions. Using a novel statistical framework, we identified interactions that influence the expression of 26
genes known to play central roles in GC-related pathways (e.g. NQO1, AIRE, and SGK1) and that influence the secretion of
IL6.
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Introduction

Glucocorticoids (GCs) are steroid hormones that mediate

homeostatic responses to environmental stressors through the

regulation of critical physiological processes (e.g. immune

response, energy metabolism and blood pressure (reviewed in

[1])). Owing to early observations of the anti-inflammatory

properties [2] of cortisol (i.e. the endogenous GC in humans),

synthetic GCs are widely used as pharmaceuticals for inflamma-

tory and autoimmune diseases (e.g. asthma [3] and rheumatoid

arthritis [4]). GCs are also used in the treatment of several types of

cancer [5], most notably lymphoid malignancies [6], due to their

pro-apoptotic activities and for symptomatic relief. While there is

evidence for a substantial genetic contribution [7–12], and for

inter-ethnic differences in drug response [13,14], little is known

about the genetic architecture of variation in GC response within

and between human populations.

Genetic effects on GC action could provide a mechanism for a vast

array of gene-environment interactions, which could have major

implications for human phenotypic variation. In fact, evidence of

such interactions has been observed for numerous traits relevant to

GCs including obesity [15], cardiovascular disease [16] and asthma

[17]. With few exceptions (e.g. a regulatory polymorphism in the

promoter of IL6 [18]), little is currently known about the mechanisms

that underlie gene-environment interactions. If not properly

accounted for, these interactions can complicate efforts to identify

genetic and environmental factors associated with disease risk.

Furthermore, identifying genetic variation that interacts with

pharmaceutical treatments like GCs, which are a specific subset of

environmental factors, is of particular interest from a clinical

perspective and constitutes the primary goal of pharmacogenetics.

As GCs act largely by inducing changes in the expression

of target genes [19], regulatory polymorphisms are likely to

contribute to variation in response. The initial steps of the GC

response pathway are mediated by the GC receptor (GR) and

interacting transcription factors. GC binding allows the GR to

translocate from the cytoplasm to the nucleus, where it regulates

gene expression through at least two distinct mechanisms. The GR

can either drive the assembly of novel transcriptional regulatory

complexes at target genes, or inhibit regulatory complexes, such as

NFkB [20], that are already active at target genes. Some direct

GR target genes are, in turn, transcription factors that regulate

downstream target genes.

Here, we provide an initial view of the genetic architecture of

variation in the GC-mediated regulation of transcription and

protein secretion. To accomplish this, we measured the expression

of 13,232 genes and the secretion levels of 10 proteins in paired

aliquots, one treated with the synthetic GC dexamethasone (dex)
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and one treated with the vehicle for dex (EtOH) as a control, in a

panel of 114 densely genotyped HapMap B-lymphocytes trans-

formed with Epstein-Barr Virus (EBV), commonly known as

lymphoblastoid cell lines (LCLs). This panel included 57 Yoruba

(YRI) from Nigeria and 57 Toscani (TSI) from Italy. EBV

transformation proceeds, in part, by mimicking CD40 activation

and ultimately leads to cellular proliferation through a variety of

mechanisms, including the activation of the NFkB signaling

pathway [21]. Given their activated state, LCLs are a suitable

system for studying the immunorepressive effects of GCs.

Additionally, some regulatory variants that affect GC response

in LCLs may be shared with other cell types, as observed for

baseline expression [22–24].

Results

GCs have widespread effects on transcriptional
regulation

We found that 4,568 genes were differentially expressed, at a

FDR,0.01 (p,0.003), following treatment with GCs (8 h, 1 uM

dexamethasone), corresponding to ,32% of the expressed genes.

This number is similar to that observed in a recent study of

equivalent sample size in osteoblasts treated with GCs [25], but

larger than previous studies that used much smaller samples (often

a single cell line; e.g. [26]). This suggests that large sample sizes are

necessary to identify many GC target genes. Accordingly, we

found that sub-sampling data from our full panel of LCLs

dramatically reduced the number of differentially expressed genes,

especially at genes with inter-individual variation in transcriptional

response (Figure S1). It should be noted that tests of differential

expression rely on magnitude of transcriptional response and its

consistency across individuals. Because our main goal is to identify

the genetic basis of variation in response, we did not limit our

mapping analyses (see below) to the differentially expressed genes.

Among the differentially expressed genes in LCLs, we found roughly

equal numbers of up and down-regulated genes. Up-regulated genes

were enriched for GC-related biological processes including cellular

response to stimulus (p = 4.161026, FDR = 7.561025) and cell cycle

(p = 1.461025, FDR = 2.661024), consistent with GC regulation of

lymphocyte proliferation. Down-regulated genes were enriched for

immune response genes (p = 1.1610210, FDR = 4.661029) and for

genes involved in the positive regulation of I-kappaB kinase/NF-

kappaB cascade (p = 3.361025, FDR = 3.361024), consistent with the

immunorepressive role of GCs.

To explore the extent of tissue-specificity in the transcriptional

response to GCs, we compared our data to the results in osteoblasts

[25]. We found a significant overlap between the genes differentially

expressed in LCLs and in osteoblasts (p = 4.8610213), but only 28%

of genes differentially expressed in our study are differentially

expressed (p,0.05) in osteoblasts. This likely reflects some amount

of tissue specificity, although other factors are likely to contribute

(e.g. incomplete power [23], differences in duration of treatment).

We measured and corrected for multiple factors related to EBV-

transformation that have been previously shown to be associated

with gene expression patterns at baseline [27,28] (e.g. EBV copy

number). Unlike baseline expression, these factors showed hardly

any evidence for an effect on transcriptional response (see Table

S1); nonetheless, we corrected for them in all subsequent analyses.

No evidence for trans-acting genetic effects on
transcriptional response to GCs

Many of the proteins involved in the GC-mediated regulation of

transcription are well characterized (i.e. GR and interacting

transcription factors). Genetic variants that impact the function of

these regulatory proteins are likely to influence transcriptional

response at several, and potentially many, downstream genes.

Consequently, the genes that encode these proteins are candidate

expression quantitative trait loci (eQTLs) acting in trans to

modulate the transcriptional response to GCs. However, ge-

nome-wide tests for trans eQTLs suffer from a tremendous multiple

testing burden. Therefore, to reduce the number of tests being

performed, we first examined only these candidate genes for

response eQTLs. We used simple linear regression to test for an

association between log fold change in expression at each

expressed gene in the genome and genotype at all HapMap SNPs

within 100 kb of the gene that encodes the GR (NR3C1), and

found no significant evidence of association at a FDR,0.2

(Figure 1a, Figure S4a-S4b). Similarly, as the GR interacts with

other transcription factors in the regulation of target gene

transcription, we also tested all HapMap SNPs within 100 kb of

34 genes that encode transcription factors known to interact with

the GR (listed in Materials and Methods [29]). Here again, we

found no evidence for an effect of genetic variation at these loci on

the transcriptional response to GCs at a FDR,0.2 (Figure 1b,

Figure S4c-S4d).

Evidence for local effects on transcriptional response to
GCs

We then performed an unbiased, genome-wide scan for genetic

variation associated with GC response. Specifically, we tested for an

association between every HapMap SNP and log fold change at

every gene. While this analysis did not reveal any significant

associations at a FDR,0.2, we found that the top association was

between log fold change at C1orf106 and genotype at an intronic

SNP (rs4915463, p = 8.4610211, FDR,0.67). Given the proximity

of the associated SNP to the C1orf106 locus and work by others

highlighting the impact of cis-acting regulatory polymorphisms on

baseline expression [30,31], we then focused our analyses on

HapMap SNPs near each of the 12,619 expressed, autosomal genes.

We found the strongest signal when we tested for an association

between log fold change at each gene and all SNPs within 100 kb

Author Summary

Glucocorticoids (GCs) are steroid hormones produced by
the human body in response to environmental stressors.
Despite their key role as physiological regulators and
widely administered pharmaceuticals, little is known about
the genetic basis of inter-individual and inter-ethnic
variation in GC response. As GC action is mediated by
the regulation of gene expression, we profiled transcript
abundance and protein secretion in EBV-transformed B
lymphocytes from a panel of 114 individuals, including
those of both African and European ancestry. Combining
these molecular traits with genome-wide genetic data, we
found that genotype-treatment interactions at polymor-
phisms near genes affected GC regulation of expression for
26 genes and of secretion for IL6. A novel statistical
approach revealed that these interactions could be
distinguished into distinct types, with some showing
genotypic effects only in GC-treated samples and others
showing genotypic effects only in control-treated samples,
with differing phenotypic and molecular interpretations.
The insights into the genetic basis of variation in GC
response and the statistical tools for identifying gene-
treatment interactions that we provide will aid future
efforts to identify genetic predictors of response to this
and other treatments.

Glucocorticoids Interact with Cis-Polymorphisms
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(compared to either a genome-wide scan or testing SNPs within

500 kb of each gene, Figure 1c). This analysis revealed local

response eQTLs for 8 genes at a FDR,0.1 (Figure 2). These

included genes previously shown to play important roles in GC-

related biological processes, including regulation of immune

response (MT1X [32] and MFGE8 [33]) and cell cycle progression

(e.g. BIRC3 [34]). These also included NQO1, a gene previously

shown to affect variation in response to GC pharmaceutical

treatment [35].

Distinguishing types of genotype-treatment interactions
that influence response

Visual examination of the genes in Figure 2 indicates that

different genes show qualitatively different patterns. For some

genes, a genotypic effect is evident either in only the GC-treated

condition (C1orf106, NQO1, C9orf5, MFGE8, and BIRC3) or only

the control-treated condition (MT1X). For others, an effect is

evident in both, but differs between the two conditions (DNAJC5G

and MS4A7). These different patterns may have different

mechanistic and phenotypic interpretations, but are not distin-

guished by the test of log fold change, and so researchers have

previously been forced to identify such patterns post hoc (e.g. [36]).

To address this, we developed a novel statistical framework that

explicitly compares and identifies these different patterns of

interaction.

In brief, our method explicitly compares five different models

relating each SNP to phenotypic measurements in the two

treatment conditions (GC and control):

1. Null model: no association between genotype and phenotype in

either condition.

2. No-interaction model: genotype is associated with phenotype in

both conditions, with the same effect in each condition.

3. GC-only model: genotype is associated with phenotype in GC-

treated samples, but not in control-treated samples.

4. Control-only model: genotype is associated with phenotype in

control-treated samples, but not in GC-treated samples.

5. General interaction model: genotype is associated with

phenotype in both conditions, but with different effects in

each condition.

Figure 1. Quantile-quantile plots summarizing the results from tests for genetic variation associated with log fold change in
expression. a) Test of all HapMap SNPs within 100 kb of the gene that encodes GR. b) Test of all HapMap SNPs within transcription factors that
interact with the GR. c) Results from genome-wide scan (all HapMap SNPs) are compared to scan limited to SNPs within 500 kb and 100 kb of each
gene. Observed p-values are shown as black dots. P-values from permutations are shown as grey dots. Results from 100 permutations are shown for
a) and b), and results from 3 permutations are shown for c).
doi:10.1371/journal.pgen.1002162.g001
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Figure 2. Patterns of interaction between genotype and GC treatment that underlie associations with log fold change for each of
the 8 genes where log fold change is significantly associated with genotype at a SNP within 100 kb. Plots on the left show the effect of
genotype on log2 fold change, with genotype coded as copies of the minor allele. In plots on the right, each small dot corresponds to an individual
and is color coded based on genotype (red = homozygous for major allele, purple = heterozygous, and blue = homozygous for minor allele). Large
dots represent genotypic means. Associations are classified based on the configuration of genotypic effects in the two conditions, including a)
genotypic effects only in GC-treated samples, b) genotypic effects only in control-treated samples and c) genotypic effects in both conditions that
differ. On the right is a cartoon showing patterns of interaction in two-dimensional space with expression after GC-treatment on the y-axis and
expression after control-treatment on the x-axis. Each of the three dots on each line corresponds to the mean value for a genotype class
(red = homozygous for major allele, purple = heterozygous, and blue = homozygous for minor allele). Genotype is coded as copies of the minor allele.
Relative expression corresponds to log2-transformed microarray intensities.
doi:10.1371/journal.pgen.1002162.g002

Glucocorticoids Interact with Cis-Polymorphisms
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For each SNP, we computed a likelihood ratio, or Bayes Factor

(BF) that measures the relative support in the data for each model

1–4. These BFs take account of the paired nature of the data, and

the correlations between measurements in the same LCL in

different conditions. We used a hierarchical model [37] to

combine information both across SNPs in each gene region, and

across genes, ultimately computing a posterior probability for each

gene that it follows each of the models 1–4, i.e. that it is affected by

a polymorphism that follows that model. We used these posterior

probabilities both to identify high-confidence eQTLs of each type,

and to estimate false discovery rates among eQTLs exceeding any

given posterior probability threshold. This method is broadly

applicable to the study of any gene-environment interactions with

paired phenotype measurements.

Using this novel framework we identified 26 genes with high-

confidence interactions (posterior probability of interaction.0.7,

FDR = 0.10) between GC treatment and eQTLs. These interac-

tion eQTLs included 7 of the 8 response eQTLs identified by

mapping log fold change. The remainder generally showed strong,

but not genome-wide significant (FDR,0.10), association with log

fold change (see Table S2 and Figure S2). The larger number of

interactions identified compared with mapping log fold change (26

versus 8), therefore, reflects an increase in power that comes from

explicitly considering different plausible interaction scenarios. Of

these, the majority (18 of 26) showed strongest support for GC-

only interactions, with the remainder (8 of 26) showing strongest

support for control-only eQTLs. Only one interaction between

treatment and genotype identified through mapping the log fold

change was not identified by the Bayesian hierarchical model

(DNAJC5G). This interaction was the least significant of the 8

identified by mapping log fold change, and although it also shows

some signal in the Bayesian analysis (BF for general interaction

versus null = 4.96102, BF for general interaction versus no-

interaction = 6.46103), the signal was insufficient to outweigh the

low prior probability of a general interaction estimated by the

hierarchical model (prior = 0.001, see Table S4).

The Bayesian hierarchical model revealed eQTLs at genes with

clear biological relevance to GC-related biological processes that

were not identified through mapping the log fold change. These

include additional genes involved in the regulation of immune

response (e.g. CST7 [38] or NLRP2 [39]) and cell cycle progression

(e.g. PDGFRL [40]), well-established GC targets, such as serum

and glucocorticoid regulated kinase 1 (SGK1 [41]), and previously

unknown GC target genes. For example, we found a control-only

eQTL for multiple coagulation factor deficiency 2 (MDCF2),

which is involved in the production of pro-coagulation factors

[42]. The effect of GCs on coagulation is controversial [43], but

has been suggested to play a role in their therapeutic effects on

diseases such as asthma [44].

Given that cortisol regulates a variety of physiological processes

relevant to numerous diseases, we compared our eQTL results to

those from genome-wide association studies collected as a part of

the GWAS catalog [45]. We found that a GC-only eQTL for

AIRE (rs762421) was associated with risk of the Crohn’s disease

[46]. AIRE encodes a potent repressor of autoimmunity and can

cause severe autoimmune disease when mutated [47]. In addition

to its role in removing autoreactive T cells in the thymus, AIRE

also plays a role in B-cell mediated immune response [48]. We

found that the putative risk allele (rs762421-G) is associated with

the down-regulation of AIRE expression by GCs. This allele may

confer increased susceptibility to this autoimmune disease by

allowing GCs to decrease AIRE expression.

In addition to these interacting polymorphisms, our analysis

identified a much larger number of genes (6,813 genes) affected by

no-interaction eQTLs (posterior probability.0.7; FDR = 0.16). In

other words, transcript levels at these genes depend on the eQTL

genotype, but the magnitude of transcriptional response does not

(i.e. model 2, see Figure S10). Our observation that the vast

majority of cis-acting regulatory polymorphisms with identical

genotypic effects across treatment conditions is consistent with

findings in osteoblasts treated with GCs [25] and in yeast [49],

suggesting that this may reflect a general biological trend, rather

than a feature specific to our treatment and experimental system.

We compared the distribution of minor allele frequencies between

the eQTLs following these three models and did not observe any

significant differences (Figure S9).

The results reported above come from using a hierarchical

model, which combines information across SNPs within each

gene. One limitation of this hierarchical model is that it allows at

most one eQTL per gene. This may cause it to miss interacting

SNPs in genes that contain both interacting and non-interacting

eQTLs, and for this reason the probabilities on interacting models

may be underestimated. (More generally this feature could cause

apparent discrepancies between the results from the hierarchical

model and the log fold change analysis, although this does not

seem to be the case in the results above.) To assess whether this

limitation might have led us to miss some strong interaction signals

we also performed a SNP-level analysis using the BF (for

interaction models 2–4 vs non-interaction models 0–1) computed

for each SNP. This analysis identified 247 SNPs, in 120 distinct

genes, with BF exceeding 103, although none exceeding 105, that

are candidates for being interacting eQTLs (Table S5).

Validation of cis-regulatory polymorphisms with
treatment-specific effects

To determine whether GC-only and control-only eQTLs

represented regulatory polymorphisms with treatment-specific

genotypic effects, we assayed treatment-dependent allelic imbalance

using quantitative real time PCR in heterozygotes. This assay also

asks whether local eQTLs act in cis, as alleles at cis-regulatory

polymorphisms, by definition, affect target gene transcription only

on the chromosome on which they reside. Among the 26 interaction

eQTLs, we chose five at random among those for which a common

coding SNP could be reliably genotyped. We assayed three genes

with evidence of GC-only eQTLs (C9orf5, LSG1, and MFGE8). We

found significant allelic imbalance, with allelic effects in the same

direction as predicted by the eQTL mapping results, in GC-treated

samples, but not in control-treated samples, for all of them (Table 1).

Table 1. eQTL validation by allele-specific qRT–PCR.

Gene eQTL Model GC-treated Control-treated

Effect p-value Effect p-value

C9orf5 GC-only 0.12 0.041 20.05 0.809

LSG1 GC-only 0.23 8.3861025 20.01 0.585

MFGE8 GC-only 0.60 0.033 0.07 0.271

C12orf45 control-only 0.09 0.174 0.22 0.017

SRD5A2 control-only 0.01 0.445 0.95 0.118

Effects represent the natural log of the allelic ratio of qRT-PCR measurements of
mRNA abundance, with the allele associated with increased expression in eQTL
experiments as the numerator. P-values are from t-tests comparing allelic ratios
between heterozygotes and homozygotes (as a control for technical sources of
imbalance) at the eQTL. Significant p-values (p-value,0.05) are indicated in bold.
doi:10.1371/journal.pgen.1002162.t001

Glucocorticoids Interact with Cis-Polymorphisms
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We also performed allelic imbalance assays on 2 of the 8 control-

only eQTLs (SRD5A2, C12orf45). We found significant allelic

imbalance at C12orf45 only in the control-treated samples. While

not significant at p,0.05, we observed a pattern consistent with a

control-only eQTL at SRD5A2. Our failure to fully validate all 5

assayed eQTLs by allelic imbalance could reflect some level of false

positive identifications of eQTL interactions, but may also reflect

incomplete power of the allelic imbalance assay.

eQTL replication in an independent study
We compared our results with those from an independent GC

response eQTL mapping study in LCLs derived from asthma

patients (W. Qui and K. Tantisira, personal communication). We

found that 4 of the 9 interaction eQTLs that we identified, and

that were tested in both studies, showed significant associations

with log fold change in this independent dataset (p,0.05,

C1orf106, LSG1, CST7, and MS4A7), and an additional 2 showed

suggestive associations (p,0.1, SYT17 and BIRC3). This overlap is

highly significant (p = 8.561024). Importantly, the overlap for

single-treatment eQTLs is much greater than that for response

eQTLs: all of the top 10 eQTLs identified by Qiu et al (2011) in

each treatment condition were replicated in our data (p,0.05),

while only 1 of the top 10 eQTLs for log fold change was

replicated. This contrast highlights the known statistical challenge

of mapping gene-environment interactions.

We also tested 15 of our interaction eQTLs (i.e. all eQTLs

tested in both studies) for an association with response to GC

therapy in 172 asthma patients (W. Qui and K. Tantisira, personal

communication). We found that a GC-only eQTL for TNIP1 was

significantly associated with patient response (rs6870205,

p = 2.561023, Bonferroni-corrected p = 0.037). TNIP1 has an

established role in the immune response, as it encodes a protein

that inhibits NFkB [50] and contains polymorphisms that have

been associated with risk of systemic lupus erythematosus [46].

Between-population variation in GC response
We observed substantial allele frequency differences between

populations at many of the putative interaction expression

quantitative trait nucleotides (eQTNs), defined as the most strongly

associated SNP for each gene. Furthermore, differences in allele

frequency at these eQTNs were predictive of differences in

average transcriptional response between populations (r2 = 0.33,

p = 5.361023, Figure 3a). This demonstrates that these eQTNs

contribute to differences in response between populations, and so

may also contribute to inter-ethnic disparities in GC-related diseases

and in drug response. It also provides independent supporting

evidence that these eQTNs interact with GC treatment.

In some cases, allele frequency differences may explain why

genes respond to GC treatment only in individuals of one

population. For example, we observed that the GC-only eQTL

allele associated with up-regulation of the detoxification enzyme

NAD(P)H:quinone oxidoreductase 1 (NQO1) was extremely rare

outside equatorial African populations (Figure 3b), likely causing

the observed lack of NQO1 response in TSI LCLs, and the strong

up-regulation in many YRI LCLs (Figure 3c). This result may be

of particular relevance to ethnic disparities in leukemia patient

response to GCs, as alleles that reduce NQO1 enzymatic activity

have been associated with decreased response to a chemotherapy

regime that included GCs in patients with acute lymphoblastic

[51,52] and acute myeloid leukemia [53].

In an effort to identify additional genes with differences in

average transcriptional response between populations, we applied

the same statistical framework described above to test for

interactions between population (rather than genotype) and GC

treatment. Using this approach, we identified 258 genes with

differences in transcriptional response (posterior.0.7,

FDR = 0.128) between populations; of these, 130 were up-

regulated by GC treatment while 128 were down-regulated. We

found a consistent pattern across genes, with a tendency for

stronger up-regulation in YRI LCLs at 78% of up-regulated genes

with population differences in response (Figure S3). Interacting

eQTLs are enriched among genes with population differences in

response compared to all expressed genes (odds ratio = 6.0,

p = 5.461023) while no-interaction eQTLs are not enriched (odds

ratio = 0.99).

IL6 secretion is affected by a GC-only cis-regulatory
polymorphism

The attenuation of the immune response by GCs is partially

mediated by decreased secretion of pro-inflammatory molecules.

We measured the secreted levels of 9 pro-inflammatory proteins

(IL1a, IL6, IL8, IP10, MDC, Rantes, TNFa, TNFb) and 1 anti-

inflammatory protein (IL10). Five pro-inflammatory proteins

showed significant differential secretion in response to GCs in

LCLs (TNFa, TNFb, Rantes, IP10 and IL1a –Table S3); all five

showed lower secretion levels in the presence of GC, consistent

with the immune-repressive role of GCs. To identify genetic

variation that influences GC-mediated regulation of protein

secretion, we tested HapMap SNPs for association with log fold

change in secretion at each protein. Similar to our eQTL results,

we found significant associations (at a FDR,0.2) only when we

limited our search to SNPs near the genes that encode each

protein (i.e. we found no significant associations in genome-wide

or a candidate gene analysis). Testing SNPs within 100 kb of each

cytokine, we found a significant association between secretion

response at IL6 and genotype at a SNP ,56 kb downstream

(rs10225286, p = 1.961024, FDR = 0.1, Figure 4). Because this

SNP did not show strong evidence of an effect on IL6

transcriptional response, we propose that it affects secretion

through a mechanism independent of mRNA levels or that it

affects transcriptional response at a different treatment time point.

Discussion

Here, we report a genome-wide scan for genetic variation that

influences the GC-mediated regulation of transcription and

protein secretion. The cellular response to GCs depends on a

well-characterized set of regulatory proteins (i.e. the GR and

interacting proteins). This provided us with a set of strong

candidate loci to perform trans-eQTL mapping tests. Despite this,

we found no evidence for trans-acting factors. In contrast, the

strongest signal from an unbiased genome-wide scan was a SNP

associated with transcriptional response at a nearby gene, and

even more eQTLs were revealed when we limited our analysis to

SNPs within 100 kb of each gene. Numerous studies have tested

genetic variation within or near the GR and interacting

transcription factors for association with patient response to GC

treatment. These studies have found mostly rare functional

polymorphisms that are unlikely to explain most heritable

variation in GC response (reviewed in [54]). Furthermore, rare

polymorphisms in the GR have dramatic phenotypic effects (e.g.

extreme hypoglycemia and hypertension [55]), as expected for a

master regulator that influences all downstream processes. Instead

of genetic variants in master regulators, our results suggest that cis-

regulatory polymorphisms that interact with GC treatment at

target genes could play an important role in GC response, as first

suggested based on observations at the SGK1 gene [56]. These

findings suggest that future attempts to identify genetic variation

Glucocorticoids Interact with Cis-Polymorphisms
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associated with clinical response to GCs may benefit from focusing

on likely cis-regulatory polymorphisms that impact response at

individual GC target genes, instead of testing master regulators of

the GC response pathway.

We found that associations between genotype and transcrip-

tional response could be discriminated into distinct categories

based on the configuration of genotypic effects across treatment

conditions. These categories likely correspond to specific genetic

Figure 3. Population differences in transcriptional responses and allele frequency differences at an interaction eQTLs. a) Observed
population differences in log-fold change (y-axis) are plotted against predictions based on genotypic effects and differences in allele frequency
(x-axis). Genetic predicted values are significantly correlated with observed differences in response (r2 = 0.33, p = 5.361023). b) The global distribution
of the C allele at rs689459, which is associated with up-regulation of NQO1 expression by GCs. c) The effect of the population-specific GC-only eQTL at
NQO1 by population. In plots on the far right, each small dot corresponds to an individual and is color-coded based on genotype (red = homozygous
for G allele, purple = heterozygous, and blue = homozygous for C allele). Large dots represent genotypic means. Genotype is coded as copies of the C
allele at rs689459. Relative expression corresponds to log2-transformed microarray intensities.
doi:10.1371/journal.pgen.1002162.g003
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mechanisms. GC-only eQTLs may reflect polymorphisms that

influence the binding of transcription factors that are only active in

the presence of GC treatment (e.g. the GR and interacting

transcription factors). In support of this hypothesis, we found that

GC-only eQTLs tended to affect up-regulated genes (13 of 18).

Although the causative polymorphism may not be among the

genotyped SNPs, we found examples of GC-only eQTLs where

most of the signal centered on a SNP that disrupts a predicted GR

binding site, such as the eQTN for C9orf5 (rs10816772, p for motif

match = 6.861023).

Control-only eQTLs are compatible with a variety of

mechanisms. For example, they may reflect polymorphisms that

disrupt the binding of regulatory complexes, like NFkB, that are

directly inhibited by the GR (e.g. through protein-protein

interaction). Consistent with this, we found examples of control-

only eQTLs where most of the signal centered on a SNP that

disrupts a predicted binding site for a transcription factor directly

inhibited by GR, such as the eQTN for FBXL6 (rs10448143,

matrix and core similarity for NFkB.0.9). Direct inhibition of

transcription factors by GR generally leads to down-regulation of

target genes. However, we found equal numbers of control-only

eQTLs affecting up-regulated and down-regulated genes (4 of

each), so additional mechanisms must explain some fraction of

control-only eQTLs. These may include genetic effects on

regulatory elements that are indirectly inhibited by GC treatment

(e.g. through GR competition for access to DNA by another

transcription factor) or polymorphisms that affect transcriptional

response at secondary targets.

The different categories of interactions identified by our method

may also have distinct phenotypic interpretations. Polymorphisms

with GC-only effects on expression are likely to directly affect the

action of the GC-activated regulatory machinery. In contrast,

polymorphisms with control-only effects have no impact on the

cellular processes in the presence of GCs, but may still affect

phenotype by influencing variation in a ‘pre-treatment’ state. For

example, genetic effects on pro-inflammatory cytokine levels prior to

GC exposure could affect the amount of time cells take to reach the

optimal, lower levels required to effectively suppress inflammation. In

summary, control-only QTLs may contribute more to variation in

underlying disease mechanisms, while GC-only QTLs may contrib-

ute to variation in GC pharmacodynamics. However, we also note

that, given their lower rates of validation and replication, there may

be a higher false positive rate for control-only eQTLs.

Inter-ethnic differences in GC response have been observed

clinically [13,14], and the prevalence of many GC-regulated

physiological traits differs across human populations [57]. By

combining association mapping with comparisons between

populations, our study allowed a direct assessment of the

genetic basis of population differences in the cellular response to

GCs. We found that ancestry had substantial and systematic

effects on the transcriptional response to GCs, with a tendency

for stronger up-regulation after GC treatment in YRI LCLs.

Possible causes of such patterns include: non-genetic ‘confound-

ers’ (e.g. differences in immortalization procedure [58]), trans-

acting alleles that increase response and are at higher frequency

in YRI, or multiple, independent cis-acting alleles that increase

response in YRI at up-regulated genes. Our data favor the last

explanation. It seems unlikely that non-genetic ‘confounders’

explain all or most of the population differences, as we found

that the measured ‘confounders’ showed limited evidence of

effects on transcriptional response or differences between

populations (Figure S5). Although we cannot exclude the

possibility that population differences reflect a trans-acting

eQTL with differences in allele frequency, we found little

support for this explanation. Instead, we found evidence

suggesting that population differences may reflect differences

in allele frequency at cis-regulatory polymorphisms, as genes

with population differences in response were more likely to have

local interaction eQTLs. The possibility that a stronger response

in YRI reflects differences in allele frequency at cis-regulatory

polymorphisms is particularly interesting from an evolutionary

perspective, as differences in allele frequency acting in a

consistent direction (i.e. increasing GC responsiveness) across

multiple independent QTLs are usually interpreted as evidence

of polygenic adaptation [59–61].

In addition to these biological insights, we contribute novel

statistical methodology for mapping response phenotypes and

identifying gene-environment interactions. These methods are

applicable for any setting contrasting genotypic effects between

two conditions (with paired measurements), including pharmaco-

genetic studies of clinical response to drug therapy (e.g. [62]) and,

especially, functional genomic studies of genetic effects on

treatment response similar to the one presented here. These

methods provide a more powerful alternative to mapping a

measure of response (e.g. log fold change), which fails to

distinguish among different types of interactions, or comparing

Figure 4. Secretion QTL for IL6. Genotype is coded as copies of the minor allele. Log fold change in secretion corresponds to the difference
between dex and control of covariate-corrected, quantile-normalized, log2-transformed estimates of relative quantity from ELISA assays. In plot on
the right, each small dot corresponds to an individual and is color-coded based on genotype (red = homozygous for major allele,
purple = heterozygous, and blue = homozygous for minor allele). Large dots represent genotypic means.
doi:10.1371/journal.pgen.1002162.g004

Glucocorticoids Interact with Cis-Polymorphisms

PLoS Genetics | www.plosgenetics.org 8 July 2011 | Volume 7 | Issue 7 | e1002162



results from mapping separately in each condition, which ignores

the paired nature of the data.

In summary, this study provides an initial characterization of the

genetic basis of variation within and between human populations for

a key physiological regulator and commonly administered pharma-

ceutical. The biological insights and statistical tools presented here

extend our current understanding of the genetic basis of variation in

response to GCs, and will aid future efforts to characterize the

genetics of response to this and other treatments.

Materials and Methods

Cell culture and dexamethasone treatment
All cellular experiments described were conducted in lympho-

blastoid cell lines (LCLs), B lymphocytes transformed with Epstein-

Barr virus, that were collected as a part of the International

HapMap project. LCLs were thawed and passed once in RPMI

media supplemented with 15% fetal bovine serum, then washed

twice with phosphate-buffered saline and moved to RPMI media

supplemented with 15% charcoal-stripped fetal bovine serum.

After one passage in media with charcoal-stripped fetal bovine

serum (corresponding to a minimum culturing time of 5 days),

LCLs were seeded in the evening at a density of 56105 cells/ml.

After an overnight incubation, LCLs were treated with 1026 M

dexamethasone, and an equal amount of vehicle solution (solution

composed of 1% ethanol and 99% cell culture media) as a negative

control for treatment. For each LCL, one set of dex and control

aliquots was treated for 8 hours (to quantify mRNA abundance)

and the other for 24 hours (to assay inflammatory protein

secretion). The study design is depicted in Figure S6. LCLs were

thawed, cultured and treated in batches completely balanced by

treatment, population, technician and time of day. For quality

control purposes, biological replicates were performed for one

batch of four cell lines and both expression and treatment response

were highly replicable (Figure S7). Collection of all samples took 4

months.

RNA extraction and array hybridization
For each expression study described in the preliminary data,

total RNA was extracted from each cell culture sample using the

QIAgen RNeasy Plus mini kit, and was found to be of high quality.

RNA was extracted from all 240 samples over the course of 5 days.

Total RNA was then reverse transcribed into cDNA, labeled,

hybridized to Illumina HumanHT-12 v3 Expression BeadChips

and scanned at the Southern California Genotyping Consortium

(SCGC: http://scgc.genetics.ucla.edu/) at the University of

California at Los Angeles. Each RNA sample was hybridized to

two separate arrays (i.e. in two technical replicates). To avoid

batch effects on RNA measurements, all 480 microarrays were

hybridized within 7 days. Summary data (e.g. mean intensity of

each probe across within-array replicates) were obtained using the

BeadStudio software (Illumina) at the SCGC. The microarray data

has been deposited in the Gene Expression Omnibus (GEO),

www.ncbi.nlm.nih.gov/geo, under accession number GSE29342.

Low-level analysis of microarray data
Low-level microarray analysis was performed using the

Bioconductor software package LUMI [63] in R (http://www.

r-project.org). We used applied variance stabilizing transformation

[64] to all arrays, removed probes with intensities indistinguishable

from background fluorescence levels in all samples (leaving 23,700

expressed probes), and performed quantile normalization across all

arrays. Probes were annotated by mapping to the RNA sequences

from RefSeq using BLAT. To avoid ambiguity in the source of

a signal due to cross-hybridization of similar RNA species, probes

that mapped to multiple genes were excluded from further

analyses. Probes that contained one or more HapMap SNPs were

also removed from further analyses to avoid spurious associations

between expression measurements and SNPs in linkage disequi-

librium.

Measurement and correction for confounders
To avoid spurious results and to reduce noise due to potential

confounders, we measured several covariates relevant to LCL biology

including: EBV genome copy number, growth rate and mitochon-

drial genome copy number. EBV and mitochondrial genome copy

number were assessed using Taqman Gene Expression Assays (Assay

# Hs02596867_s1 for mitochondria and Pa03453399_s1 for EBV).

RNaseP was used as an endogenous control for both assays. We then

used linear regression to remove the effects of these potential

confounders at each gene and confounder-corrected data were used

in all subsequent analyses.

Identification of differentially expressed genes
In order to identify genes that, on average across individuals,

changed expression levels upon treatment with GCs, we

performed multiple linear regression at each gene with treatment

as the covariate of interest while taking other measured covariates

into account. To reduce the effects of outliers, microarray intensity

values were quantile normalized to a N(0,1) distribution across all

samples (treated and untreated). We used the distribution of p-

values observed when sample labels are permuted (ten permuta-

tions were used), an empirical estimate of the p-value distribution

under the null, to estimate the false discovery rate (FDR). We used

the online tool DAVID [65,66] to identify biological categories

enriched among differentially expressed genes, using all genes

expressed in LCLs (based on microarray data) as a background.

SNP imputation
We used all HapMap SNPs for all mapping experiments

described. As TSI LCLs were only typed for phase III SNPs, we

used the CEU population sample to impute genotypes at all

HapMap phase I and II SNPs. Similarly, we imputed SNPs for

phase III YRI LCLs based on the YRI LCLs included in phase I

and II. Imputation was performed using BIMBAM [67], which

infers missing genotypes based on correlations between missing

and typed genotypes observed in samples where all genotypes are

typed. QTL mapping results were not qualitatively different if

using imputed or genotyped SNPs.

Genetic mapping of log-fold change in expression
We tested for association between all HapMap SNPs and

transcriptional response at each gene, using log fold change in

expression (GC-treated over control-treated expression) as a

measure of response. For our candidate gene-based scan for

trans-acting eQTLs that influenced response, we tested all

HapMap SNPs within 500 kb and 100 kb (in two separate sets

of analyses) of genes encoding the GR and transcription factors

that interact with the GR. Interacting transcription factors include

the genes that encode the components of the NFkB complex, AP1,

Oct1, Oct2, CREB, ETS1, STAT3, STAT5, STAT6, C/EBP,

TFIID, T-bet, PU.1/Spi-1, Smad3, Smad4, Smad6, COUP-TFII,

IRF3, STIP1, Hic5/Ara55, and nTrip6 [29]. P-values calculated

with permutated genotype labels were used as an empirical null

distribution. In order to maintain the correlation structure across

genes, the same permutation seed was used for all genes in both

candidate gene tests and the genome-wide scan. Ten permutations
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were performed for the test of variation within 500 kb, 100

permutations were used for the test of variation within 100 kb and

3 permutations were used for the genome-wide scan. For mapping

log fold change at SNPs within 500 kb or 100 kb of each gene,

permutation seeds were set separately at each gene. Association

tests were performed using a combination of Python, the R

statistical package and the genetic association mapping program

PLINK.

Bayesian regression for identifying genetic associations
and interaction with treatment

We developed a novel Bayesian statistical framework for genetic

association analysis in settings where measurements are available

on the same individuals in two different conditions (in our case,

GC-treated and control-treated). Our methods extend and impro-

ve the methods from Barber et al. (2009) to explicitly consider

‘‘qualitative interaction’’ models where genetic variants are associ-

ated with measurements in only one of the two conditions. Our

method takes into account both sample pairing and the intra-

individual correlation of measurements under the two conditions.

We describe our method in greater detail in Text S1. These

methods are implemented in software called BRIdGE (Bayesian

Regression for Identifying Gene-Environment interactions), which

is available on the Stephens and the Di Rienzo laboratories’ web

pages (http://stephenslab.uchicago.edu/software.html, http://

genapps.uchicago.edu/labweb/index.html).

Allele-specific quantitative PCR on cDNA to assay allelic
imbalance

We used TaqMan quantitative genotyping assays to test for allelic

imbalance at coding SNPs in LD with eQTLs that interacted with

GC treatment. Imbalanced expression of the two coding alleles is an

independent line of evidence for a cis-acting regulatory polymor-

phism and for the configuration of the effect in the two treatment

conditions (i.e. the interaction model). Total RNA from an aliquot of

the same culture samples used to hybridize microarrays (this was a

separate RNA extraction as that used to hybridize microarrays) was

synthesized into cDNA using the High-Capacity cDNA Reverse

Transcription Kit (Applied Biosystems, Foster City, CA) according to

the manufacturer’s protocol. Taqman SNP Genotyping Assays were

used to quantify relative mRNA abundance of each allele on an ABI

PRISM 7900HT Sequence Detection System. To account for

differences between the two fluorochromes, a standard curve was

built for each of the two alleles using serial dilutions of a genomic

DNA from an individual that was heterozygous at the coding SNP.

For each assay, we calculated the natural log-ratio between the two

different alleles. The numerator of this ratio was always the allele

associated with increased expression in the corresponding treatment

condition. Within each treatment, we quantile normalized allelic log-

ratios and used a one-tailed t-test to identify significant differences in

average allelic log-ratios between heterozygotes and homozygotes (as

an empirical null distribution of allelic log-ratios) at the eQTL.

Overlap with other genetic association studies
We compared our eQTL results to multiple genetic association

studies including Qiu et al. (2011) and those in the GWAS catalog.

For each interaction eQTL, we compared evidence at the most

associated SNP in our data when it was tested in both studies.

When the most associated SNP was not tested in the comparison

dataset, we identified the best proxy SNP for each eQTL among

those tested in both studies. To ensure that the best proxy SNP

captured the pattern at the original eQTL, we required the proxy

SNP to show strong evidence of association for the same eQTL

model as the original eQTL (BF for association.500 and posterior

probability for model.0.5).

Comparing transcriptional response between
populations

We contrasted the transcriptional response to GCs between

YRI and TSI LCLs. Differences in transcriptional response

between populations will result in differences in average expression

levels that differ depending on treatment, as opposed to GC-

independent population differences that will be identical in both

treatments. As this is analogous to gene-environment interactions,

we used the same statistical framework to identify genes with

differences in transcriptional response between populations (see

Bayesian regression for identifying genetic associations and

interaction with treatment in Text S1). Covariate-corrected

expression levels were quantile normalized across individuals

(both YRI and TSI) for each gene to reduce the effect of outliers.

As population differences at the phenotypic level may reflect

population differences in response following a consistent pattern

across many genes, we identified the direction of population

differences at each gene in terms of log-fold change.

Quantification of inflammatory markers in the cell culture
medium and identification of secretion QTLs that interact
with GC treatment

A multianalyte ELISA assay (Millipore) was performed on the

culture medium of the cell aliquots treated for 24 hours. The assay

was performed at the Flow Cytometry Facility at the University of

Chicago, according to the manufacturer instructions. Two

technical replicates were run for each sample. Samples were

assayed in batches balanced by treatment and population. For

each analyte, the average quantity across technical replicates was

calculated and used for all subsequent analyses. The correlation

structure between paired aliquots for each sample (GC and

control) was visually inspected (Figure S8). A small subset of

samples with low quantity detected showed no correlation between

GC and control aliquots because of noise in the measurement at

low concentrations. Consequently, these samples were excluded

from downstream analyses. Secretion levels were highly correlated

across proteins, likely representing a latent factor that generally

affects secretion levels. To remove the effect of this latent factor,

we used linear regression to correct secretion levels at each protein

by secretion levels at all other measured proteins.

Supporting Information

Figure S1 Transcriptional response to GC treatment in LCLs. a)

We identified 4,568 differentially expressed genes including up-

and down- regulated genes. b) Sub-sampling shows that the

number of differentially expressed genes identified is a function of

sample size. Larger sample sizes tend to identify genes with c) more

variable and d) smaller responses. Aberrantly high, relative to the

overall trend, median coefficients of variation and low log-fold

changes at the smallest sample size (n = 4) likely reflect increased

sampling noise due to a very small sample size.

(TIF)

Figure S2 Results from Bayesian method for mapping interac-

tions with treatment is compared to the traditional frequentist test

for association with response (i.e. association between genotype

and log-fold change). The quantiles of the observed p-value

distribution (minimum p-value per gene) are plotted against

expected quantiles (based on 10 permutations). The p-value

threshold corresponding to a FDR,0.1 is marked by a horizontal
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grey line. Genes with significant interaction eQTLs identified by

the Bayesian multivariate method at a posterior.0.7 are shown in

red for the GC-only model and in blue for the control-only model.

Interactions identified by our method include both top hits from

the frequentist analysis and a number of additional genes,

indicating that our approach provides increased in power to

detect polymorphisms that interact with treatment and affect

response.

(TIF)

Figure S3 A stronger response to GCs is observed in YRI LCLs

at up-regulated genes. Strength of response, measured by log-fold

changes (GC/control), is depicted by intensity and color, with red

corresponding to lower log-fold change and blue corresponding to

higher log-fold change, for a) up-regulated and b) down-regulated

genes with significant population differences in transcriptional

response. Rows represent genes and columns represent individu-

als. The vertical black lines represent the separation between the

populations.

(TIF)

Figure S4 Observed p-values for association between genotype

and log-fold change in expression (GC/control) are plotted against

p-values from permutations, representing expectations under the

null, for a) SNPs within 500 kb (only SNP with minimum p-value

is plotted for each gene) of the gene that encodes the GR and b)

SNPs within 500 kb of transcription factors known to interact with

the GR. c) SNPs within 500 kb of each of the interacting

transcription factors and d) within 100 kb of each of the

interacting transcription factors.

(PDF)

Figure S5 Differences between TSI and YRI LCLs in the

distribution of factors known to affect LCL biology. We do not

observe significant differences in a) EBV genome copy number

(p = 0.824) or b) growth rate (p = 0.477). c) We did observe a

significantly higher level of mitochondrial genome copy number

among YRI LCLs (p = 0.0463).

(TIF)

Figure S6 The study design used in this experiment is shown.

For each of 116 LCLs, one aliquot was treated with the synthetic

GC dexamethasone and another aliquot was treated with the

vehicle for dexamethasone (EtOH) as a treatment control. Two

sets of paired aliquots were treated for each LCL, one for 8 hours

and the other for 24 hours. RNA was extracted from aliquots

treated for 8 hours and hybridized to two replicate arrays (for a

total of 4 arrays hybridized per LCL). Supernatant from the

aliquots treated for 24 hours were used to assay protein secretion.

(TIF)

Figure S7 a) Pair-wise correlations between technical replicates

(red), representing duplicate RNA hybridizations, tend to be larger

than correlations between randomly drawn pairs of arrays (grey),

suggesting a limited contribution from RNA hybridization to

variation in these measurements. b) Pair-wise correlations of

expression levels between biological replicates are always larger

(red) than randomly drawn pairs of LCLs (grey), similarly

suggesting that variation in cell culturing and treatment protocols

described here contribute little to variation in expression

measurements. c-d) Log-fold changes (GC/control) across the

4,568 differentially expressed genes compared between biological

replicates to assess the reproducibility of response. c) Correlations

between biological replicates (red) are higher than expected when

comparing randomly drawn pairs of LCLs (grey), suggesting that

variation from cell culturing and treatment does not explain the

majority of variation in response between LCLs. d) Correlations

between replicate pairs are shown for transcriptional response

across differentially expressed genes.

(TIFF)

Figure S8 Correlation between secretion levels across individ-

uals for each protein. Secretion levels represent log-transformed

ELISA measurements of protein quantity. Horizontal and vertical

lines in each plot indicate the threshold used to identify meaningful

secretion measurements.

(TIF)

Figure S9 Distribution of minor allele frequency for each

candidate eQTN categorized by model. No significant difference

is observed, based on Mann-Whitney U test, between control-only

and GC-only eQTNs (p = 0.26), GC-only and no-interaction

eQTNs (p = 0.94), or control-only and no-interaction eQTNs

(p = 0.19).

(TIF)

Figure S10 Quantile-quantile plots showing the distribution of

p-values from mapping the log fold change and log sum (sum of log

expression values in GC-treated and control-treated samples) at genes

affected by no-interaction eQTLs. No deviation from null expecta-

tions are observed for association with log fold change, while a very

strong deviation from expectations under the null is observed for

association with the log sum. This is consistent with the stable effect of

eQTL genotype on expression at these genes. SNPs within 100 kb

were tested against log fold change at each gene. Observed minimum

p-values per gene are shown as black dots. Minimum p-values from

permutations are shown as grey dots.

(TIF)

Table S1 Association between gene expression and EBV copy

number, mitochondrial copy number, and growth rate.

(PDF)

Table S2 eQTLs that interact with GC treatment.

(PDF)

Table S3 Effects of GC treatment on cytokine secretion.

(PDF)

Table S4 Maximum likelihood estimates of the proportion of

genes with an association following each model for all the

predictor variables we tested against gene expression.

(PDF)

Table S5 SNPs showing strongest signal for interaction from the

SNP-based Bayesian analysis.

(PDF)

Text S1 Supplementary Materials and Methods.

(PDF)
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