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OBJECTIVE—Many prevalent diseases of advanced societies,
such as obesity-induced type 2 diabetes, are linked to indolent
mononuclear cell–dependent inflammation. We previously pro-
posed that blockade of �4 integrin signaling can inhibit inflam-
mation while limiting mechanism-based toxicities of loss of �4
function. Thus, we hypothesized that mice bearing an �4(Y991A)
mutation, which blocks signaling, would be protected from
development of high-fat diet–induced insulin resistance.

RESEARCH DESIGN AND METHODS—Six- to eight-week-
old wild-type and �4(Y991A) C57Bl/6 male mice were placed on
either a high-fat diet that derived 60% calories from lipids or a
chow diet. Metabolic testing was performed after 16–22 weeks of
diet.

RESULTS—�4(Y991A) mice were protected from development
of high-fat diet–induced insulin resistance. This protection was
conferred on wild-type mice by �4(Y991A) bone marrow trans-
plantation. In the reverse experiment, wild-type bone marrow
renders high-fat diet–fed �4(Y991A) acceptor animals insulin
resistant. Furthermore, fat-fed �4(Y991A) mice showed a dra-
matic reduction of monocyte/macrophages in adipose tissue.
This reduction was due to reduced monocyte/macrophage migra-
tion rather than reduced monocyte chemoattractant protein-1
production.

CONCLUSIONS—�4 integrins contribute to the development of
HFD-induced insulin resistance by mediating the trafficking of
monocytes into adipose tissue; hence, blockade of �4 integrin
signaling can prevent the development of obesity-induced insulin
resistance. Diabetes 57:1842–1851, 2008

O
besity leads to insulin resistance that results in
type 2 diabetes (1) and that contributes to
hypertension and cardiovascular disease (2).
Mononuclear cell–mediated inflammation in

obese adipose tissue plays a pathogenetic role in insulin
resistance (3,4). Thus, there is great interest in the possi-
bility of using anti-inflammatory strategies to ameliorate
obesity-induced insulin resistance.

Blockade of leukocyte adhesion is a proven therapeutic
strategy for a wide variety of inflammatory diseases (5). In

particular, inhibiting �4 integrins or their counter-
receptors (vascular cell adhesion molecule-1 [VCAM-1]
and mucosal adressin cell adhesion molecule-1 [MadCAM-
1]) blocks inflammatory responses mediated by mononu-
clear leukocytes (6). �4 integrin antagonists are of proven
benefit in several human inflammatory diseases (7,8).
These antagonists, such as the monoclonal antibody na-
talizumab, block ligand binding function, thus producing a
complete loss of �4 integrin function. Lack of �4 integrins
is embryonic lethal and results in defective placentation,
heart development, and hematopoiesis (9–11). Further-
more, natalizumab therapy has been associated with fatal
progressive multifocal leukoencephalopathy in humans,
possibly because of defective T-cell trafficking to the brain
(12,13). Thus, currently available �4 integrin antagonists
are of proven value in mononuclear cell–mediated dis-
eases; however, complete loss of �4 integrin function is
associated with developmental defects and abnormal
hematopoiesis.

As noted above, whereas �4 integrin antagonists show
promise for several autoimmune and inflammatory dis-
eases, mechanism-based toxicities may limit their use,
particularly in low-grade chronic inflammatory conditions,
such as obesity-induced insulin resistance. We recently
proposed an alternative strategy—blockade of �4 integrin
signaling—to perturb functions involved in inflammation,
while limiting mechanism-based adverse effects (14). �4
integrin signaling involves the binding of paxillin to the �4
integrin tail, and a point mutation (�4Y991A) that selec-
tively blocks this interaction reduces �4-mediated leuko-
cyte migration (15) and adhesion strengthening in flowing
blood (16) while sparing �4-mediated static cell adhesion
(17). Furthermore, mice bearing an �4(Y991A) mutation
are viable and fertile and have intact lympho-hematopoie-
sis and humoral immune responses; however, they exhibit
defective recruitment of mononuclear leukocytes in exper-
imental inflammation (18). Here, we report that the
�4(Y991A) mutation reduces mononuclear leukocyte infil-
tration of white adipose tissue (WAT) in high-fat diet–
induced obese mice and hence reduce high-fat diet–
induced insulin resistance. Thus, we establish that
blocking �4 integrin signaling can ameliorate the meta-
bolic consequences of high-fat diet–induced obesity.

RESEARCH DESIGN AND METHODS

Animals and animal care. The �4(Y991A) mice were previously described
and have been backcrossed nine times onto the C57BL/6 background (18). We
fed male mice (aged 6–8 weeks) either on high-fat diet, containing 60% fat by
weight (D12492; Research Diets) or on chow diet (10% fat; D12450B; Research
Diets) for 16–22 weeks. All experiments were approved by the University of
California San Diego Institutional Animal Care and Use Committee.
Glucose and insulin tolerance tests. We carried out glucose tolerance tests
(GTTs) and insulin tolerance tests (ITTs) as described previously (19) (see
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supplemental methods in the online appendix available at http://dx.doi.org/
10.2337/db07-1751).
Whole-blood and plasma measurements. Total white blood cell number
and differential counts were assessed by standard techniques (ACP Diagnostic
Lab, University of California, San Diego). We measured plasma insulin by
radioimmunoassay (Linco Research) and determined free fatty acids by
colorimetric assay (Wako). Plasma cytokines were measured by the core
laboratories of the Diabetes and Endocrinology Research Consortium (Uni-
versity of California, Los Angeles; LINCOplex assay for Mouse Cytokines,
http://www.derc.med.ucla.edu/core.htm). Plasma cholesterol and triglyceride
levels were measured by enzymatic methods using an automated bichromatic
analyzer (Abbot Diagnostics). All of these measurements were performed on
11 wild-type and 9 �4(Y991A) mice for high-fat diet and 6 wild-type and 5
�4(Y991A) mice for chow diet (Table 1).
Histochemistry. Adipose tissue was fixed overnight in 10% formaldehyde,
dehydrated in ethanol bath, and paraffin-embedded. Sections were stained
with hematoxylin-eosin (H-E) for observation of adipose tissue structure.
Pancreas isolation and determination of islet area. Pancreata were
isolated and fixed in 4% formalin overnight. Paraffin sections were generated
and stained with H-E. Pictures were taken of H-E–stained pancreas sections,
and the area of Langerhans islets and the total area of the pancreas were
measured using ImageJ software (NIH freeware). Islet area was depicted as
percentage of total pancreas area. Sections of four to seven mice per group
and at least six different pancreas areas per mouse were analyzed for
statistical significance using unpaired two-tailed Student’s t test. P values
�0.05 were considered significant.
Bone marrow transplantation. We injected bone marrow obtained from
wild-type and �4(Y991A) mice (4 � 106 cells) through the tail vein into male
C57BL/6 (4 months) and �4(Y991A) (4–6 months) mice that had been
irradiated (10 Gy) 4 h before. Mice were allowed 4 weeks for reconstitution of
donor marrow, which we verified by PCR (18).
Isolation of stromal vascular cells. Epidydimal fat pads were minced in
PBS and digested with collagenase (Roche) and DNase I (Sigma) for 1 h at 37°C.
Suspensions were then filtered through a 100-�m nylon cell strainer and
then spun at 1,000g for 10 min. The preadipocyte/adipocyte-enriched fraction
was removed. Isolated stromal vascular cells were resuspended in red blood
cell lysis buffer (10 mmol/l KHCO3, 150 mmol/l NH4Cl, and 0.1 mmol/l EDTA,
pH 8) for 5 min at room temperature. Cell suspension was centrifuged for 5
min at 500g, and stromal vascular cells were resuspended in PBS at 106

cells/100 �l.
Flow cytometry. Cells were harvested from WAT, peripheral blood, and bone
marrow and incubated in Fc blocker (rat anti-mouse CD16/32) for 20 min at
room temperature. The cells were then incubated with fluorescein isothiocya-
nate (FITC)-Ly-6G (1/200) and phycoerythrin (PE)-7/4 (1/50) (BD Biosciences/
PharMingen, San Diego, CA). Negative control staining was performed with
FITC-rat IgG2a/k and PE-rat IgG2a. Cell staining was analyzed with FACScan
flow cytometer using CellQuest software (BD Biosciences Systems).
Cell migration assay. Cell migration was assayed in a modified Boyden
chamber system using a 24-well transwell plate (8-�m pore size; Corning)
coated with 5 �g/ml VCAM-1 (R&D Systems). Monocyte chemoattractant
protein-1 (MCP-1) (R&D Systems) was added in the lower chamber at 1
nmol/l. Cells harvested from wild-type or �4(Y991A) bone marrow were
grown for 5–7 days in the presence of granulocyte macrophage–colony-
stimulating factor (5 �l of 0.1 mg/ml stock solution). Bone marrow–derived
macrophages (2 � 104) were kept in suspension in 1% serum containing
medium for 1 h at room temperature. Cells were then added to the top

chamber and incubated overnight at 37°C. Filters were fixed and stained with
crystal violet, and migrated cells in the lower chamber were enumerated.
RNA isolation and RT-PCR. Total RNA was isolated from WAT using
RNeasy Lipid Tissue kit (Qiagen). RT-PCRs were carried out as described in
the online appendix (20).
Statistical analysis. Means and SEs were calculated for all dependent
measures. Data were analyzed for statistical significance using the one- or
two-tailed Student’s t test. Significance was set at P � 0.05. For Fig. 1B, change
scores for the chow diet and high-fat diet data were determined using the total
area under the curve (AUC) (21).

RESULTS

�4(Y991A) mutation is protective against the development
of high-fat diet–induced glucose intolerance and insulin
resistance. To investigate the role(s) of integrin �4 inter-
action with paxillin in �4-mediated functions in vivo, we
previously generated and analyzed mice bearing a point
mutation in the �4 integrin tail (Y991A) that inhibits
paxillin binding with little detectable effect on the binding
of other proteins (18). To examine the potential effect of
this mutation on a model of human type 2 diabetes, these
�4(Y991A) mice and wild-type controls were placed on a
60% fat diet for 16–22 weeks. On this diet, wild-type
animals developed impaired glucose tolerance (Fig. 1A). In
contrast, mice bearing the �4(Y991A) mutation were par-
tially protected against high-fat diet–induced glucose in-
tolerance (Fig. 1A; Supplemental Fig. 1A). The increased
glucose tolerance in the high-fat diet–fed �4(Y991A) ani-
mals was not due to greater insulin release because these
mice released significantly less insulin than high-fat diet–
fed wild-type animals (P � 0.036) (Fig. 1B.). The wild-type
mice showed a greater increase in pancreatic �-cells than
those bearing the �4(Y991A) mutation (Fig. 1C) in re-
sponse to the high-fat diet. Because increased �-cells is an
early manifestation of insulin resistance (22), these find-
ings strongly suggested that the �4(Y991A) mutation
helped preserve sensitivity to insulin in fat-fed animals.
This idea was confirmed by the finding that the high-fat
diet–fed mutant mice showed a much greater insulin-
induced drop in blood glucose than the high-fat diet–fed
wild-type mice (Fig. 1D). Thirty minutes after administra-
tion of 0.85 units/kg insulin, plasma glucose decreased by
43% in the mutant fat-fed animals compared with a 28%
decline in wild-type animals. In contrast, the chow-fed
animals of both genotypes exhibited a 37% decline at 30
min (0.75 units/kg insulin injected). At later time points,
there was a statistically insignificant trend of greater
insulin-induced drop in chow-fed �4(Y991A) animals ver-

TABLE 1
Plasma measurements of lipids and adipokines in wild-type and �4(Y991A) mice

Normal chow diet High-fat diet
Genotype Wild type Y991A Wild type Y991A

n 6 5 10 9
Plasma free fatty acids (�mol � l�1 � ml�1) 0.71 � 0.23 0.44 � 0.07 0.89 � 0.15 0.61 � 0.09
Total cholesterol (mg/dl) 132.2 � 5.9 130.0 � 2.7 238.7 � 10.5* 203.0 � 27.9*
Plasma triglycerides (mg/dl) 41.2 � 2.5 42.7 � 2.4 42.4 � 2.6 46.6 � 4.6
MCP-1 (pg/ml) 22.0 � 3.5 25.67 � 6.1 43.25 � 16.6 47.0 � 20.5
Adiponectin (�g � ml�1 � g�1) 1.13 � 0.22 1.37 � 0.04 0.63 � 0.05* 0.68 � 0.03*
Leptin (pg/ml) 3,699 � 465 4,129 � 723 14,038 � 1,219* 10,222 � 1,878*
IL-6 (pg/ml) 0.63 � 0.01 0.89 � 0.09 1.51 � 0.68 1.62 � 0.44
Resistin (pg/ml) 900.3 � 60.6 1,104.3 � 67.4 1,446.4 � 108.6 1,270.8 � 68.6
TNF-� (pg/ml) 2.61 � 0.28 2.41 � 0.31 3.16 � 0.27 3.28 � 0.49

Data are means � SE. n values per group are indicated. *Significant difference between diet within genotype. None of these parameters were
statistically different between genotypes.
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FIG. 1. �4(Y991A) mutation protects mice against the development of high-fat diet–induced glucose intolerance and insulin resistance. A: In vivo
glucose homeostasis was assessed by GTT in wild-type (�) and �4(Y991A) mice (□) on high-fat diet (plain symbols) and normal chow (dotted
symbols). The results shown are means � SE for each time point. B: Plasma insulin concentrations during GTT were collected. They are
represented as total AUC, which was calculated using the trapezoidal method (see RESEARCH DESIGN AND METHODS for details). C: Size of pancreatic
�-cell islets (right) in wild-type (closed) and �4(Y991A) (open) mice was measured. Representative H-E staining of wild-type and �4(Y991A)
pancreas is also shown (left). Arrowheads indicate pancreatic islets. D: ITT was performed in wild-type (�) and �4(Y991A) mice (□) on high-fat
diet (HFD; left) and normal chow (Chow; right). Plasma glucose was significantly higher in wild-type mice fed high-fat diet than in all other groups
during both the GTTs and ITTs. No significant differences in plasma insulin during the GTT were found between the wild-type and �4(Y991A) mice
on chow diet. Plasma insulin and percentage of pancreatic �-cell islets were significantly higher in the wild-type mice after high-fat diet. n values
per group are indicated. *P < 0.05; **P < 0.01; ns, not significant.
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sus wild type. Thus, the �4(Y991A) mutation protects
against high-fat diet–induced insulin resistance.
The �4(Y991A) mutation did not affect caloric intake
or weight gain. Both wild-type and �4(Y991A) mice
exhibited the same caloric intake on high-fat diet (Fig. 2A,
left), which was about 1.5-fold higher than on chow diet
(Fig. 2A, right). Consistent with similar caloric intake, no
differences in weight gain were observed between wild-
type and �4(Y991A) mice (Fig. 2B, left and right). Animals
were weight matched before starting the 16 weeks of diet
[average starting weight for high-fat diet, 27.8 � 0.6 and
27.3 � 1.0 g for wild type and �4(Y991A), respectively; for
chow diet, 27.8 � 1.3 and 28.8 � 1.6 g for wild type and
�4(Y991A), respectively]). Gross histological analysis of
WAT isolated from high-fat diet–fed wild-type and
�4(Y991A) mice showed no statistical difference in adipo-
cyte size or number (Fig. 2C; Supplemental Fig. 1B).

Plasma levels of free fatty acids and triglycerides were
similar between wild-type and �4(Y991A) mice on both
diets (Table 1). Wild-type mice exhibited increased plasma
cholesterol on high-fat diet (238.7 � 10.5 mg/dl) in com-
parison with those on chow diet (132.2 � 5.9 mg/dl). The
�4(Y991A) mice on high-fat diet exhibited a statistically
insignificant trend to a lesser rise in cholesterol (203.0 �
27.9 vs. 130.0 � 2.7 mg/dl, high-fat diet vs. chow diet),
which may reflect a decrease in LDL levels. Plasma
adiponectin concentrations decreased to similar levels in
both high-fat–fed wild-type and �4(Y991A) mice. Plasma
leptin and resistin levels increased after high-fat diet, but
no differences were found between genotypes (Table 1).
High-fat diet–fed �4(Y991A) mice exhibited similar plasma
expression of proinflammatory cytokines, such as interleu-
kin-6 (IL-6), tumor necrosis factor-� (TNF-�), and MCP-1,
compared with wild-type mice (Table 1).
Bone marrow–derived cells are responsible for pro-
tection from high-fat diet–induced insulin resistance.
Even though �4 integrin is not present at the surface of
adipocytes (data not shown), it is widely expressed (23,24)
and is particularly prominent in the functioning of mono-
nuclear leukocytes. Moreover, bone marrow–derived
mononuclear cells contribute to insulin resistance (3,4,25).
To determine whether the protection against high-fat
diet–induced insulin resistance in the �4(Y991A) mice is
mediated through bone marrow–derived cells, we per-
formed bone marrow transplantation (BMT) experiments.
Six- to eight-week-old lethally irradiated (10 Gy) wild-type
male mice received bone marrow cells from either wild-
type or �4(Y991A) donor mice via tail vein injection.
Recipient mice were allowed 4 weeks for recovery and
reconstitution of the transplanted bone marrow and were
then placed on high-fat diet for 16–22 weeks before
metabolic experiments. Posttransplant chimerism was
evaluated by PCR on both groups. No wild-type �4 was
detected in blood collected from mice receiving bone
marrow from �4(Y991A) mice [�4(Y991A)-BMT]. Mice
transplanted with wild-type and �4 mutant [�4(Y991A)-
BMT] bone marrow gained equal amounts of weight on
high-fat diet compared with normal chow (data not
shown). Levels of plasma fatty acids, cholesterol, triglyc-
erides, adiponectin, and leptin were similar between ge-
notypes (data not shown).

Wild-type mice that received �4(Y991A) bone marrow
were partially protected against high-fat diet–induced glu-
cose intolerance (Fig. 3A) and insulin resistance (Fig. 3B)
compared with wild-type animals that received wild-type
bone marrow. When animals were fed a normal diet,

glucose tolerance was similar in mutant and wild-type
transplanted mice (Fig. 3A), but there was a statistically
insignificant trend toward increased insulin sensitivity in
chow-fed �4(Y991A) compared with wild-type marrow
recipients (Fig. 3C). In reverse BMT experiments, i.e.,
transplantation of wild-type bone marrow into lethally
irradiated �4(Y991A) mice, no mutant allele was detected
in �4(Y991A) animals receiving wild-type bone marrow,
confirming complete reconstitution of wild-type bone mar-
row in these animals. Wild-type marrow made �4(Y991A)
acceptor mice susceptible to glucose intolerance (Supple-
mental Fig. 2). Thus, bone marrow–derived cells are
responsible for the observed protection of �4(Y991A) mice
from high-fat diet–induced insulin resistance.
The �4(Y991A) mutation leads to a decrease in adi-
pose tissue monocyte/macrophages in high-fat diet–
fed mice. The foregoing experiments showed that the
effect of the �4(Y991A) mutation was manifest through
bone marrow–derived cells. Among bone marrow–derived
cells, �4 integrin is highly expressed on most mononuclear
leukocytes (26). Monocyte/macrophages are bone marrow–
derived mononuclear cells that mediate the inflammatory
response to high-fat diet, and macrophages contribute to
the pathogenesis of obesity-induced insulin resistance
(25,27). We therefore used flow cytometry to quantify the
presence of monocyte subpopulations, defined by the level
of expression of surface markers 7/4 and Ly6-G (28) in the
stromal vascular fraction (SVF) of WAT isolated from
wild-type and �4(Y991A) mice on chow or high-fat diet.
We used a combination of Ly-6G and 7/4 markers, de-
scribed by Tsou et al. (28), which define a cell population
uniformly positive for F4/80, CD11b, and CC chemokine
receptor 2 for CCL2/MCP-1 (CCR2) and phenotypically
identical to the inflammatory monocytes previously de-
scribed (29–32).

The accumulation of macrophages, associated with obe-
sity-induced insulin resistance, occurs predominantly in
epididymal WAT (25,33); hence we studied WAT from this
site. High-fat diet–fed �4(Y991A) mice exhibited a marked
reduction in the number of monocytes (7/4hiLy-6Gneg)
compared with high-fat diet–fed wild-type mice (0.8 � 0.13
vs. 2.88 � 0.49%) (Fig. 4A, top left panel) in WAT SVF. This
phenomenon was also observed (Fig. 4A, bottom left
panel) with 7/4dimLy-6Gneg cells (mixed monocyte/lympho-
cytes) (Y991A 3.77 � 1.43% vs. wild type 7.6 � 1.11%). In
contrast, when fed a normal diet, wild-type and �4(Y991A)
mice had similar percentages of both 7/4hiLy-6Gneg and
7/4dimLy-6Gneg cells in their WAT SVF (Fig. 4A, right
panels). These results were confirmed by the reduction in
mRNA for F4/80, a macrophage marker, in WAT from
fat-fed �4(Y991A) mice compared with wild-type mice
(Supplemental Fig. 1C). Thus, the �4(Y991A) mutation
leads to a reduction in monocyte/macrophage accumula-
tion in the WAT SVF in response to high-fat diet.

WAT monocyte/macrophages derive in part from periph-
eral blood monocytes, which in turn are derived from
the bone marrow. To investigate the cause of the
reduced monocyte/macrophage accumulation in WAT of
�4(Y991A) mice, we quantified monocyte subpopula-
tions in the peripheral blood and in the bone marrow of
wild-type and �4(Y991A) mice. In the high-fat diet–fed
mice, there was a reduction in the percentage (1.4 �
0.28 vs. 2.9 � 0.38% for Y991A and wild type, respec-
tively) and absolute number of monocytes in the periph-
eral blood of �4(Y991A) mice (Fig. 4A and B). In
contrast, there was no significant difference in the
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FIG. 2. Normal caloric intake, weight gain, and adipocyte size in �4(Y991A) mice compared with wild-type mice after high-fat diet. Calorie intake
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percentage of pure or mixed monocyte populations in
the bone marrow of high-fat diet–fed wild-type and
�4(Y991A) mice (Fig. 4A). Similarly, a slight monocyto-
penia was observed in the peripheral blood of normal
chow–fed �4(Y991A) mice (1.71 � 0.13 vs. 2.39 � 0.12%
for Y991A and wild type, respectively), and there was no
significant difference in abundance of 7/4hiLy-6Gneg and
7/4dimLy-6Gneg cells in the bone marrow (Fig. 4). Taken
together, these data suggest that the �4(Y991A) muta-
tion does not impair monocyte development. Rather,
they suggest that the mutation reduces mobilization of
these cells. These data do not define the relative contri-
butions of reduced egress from the bone marrow and
entry into the adipose tissue in high-fat diet–fed mice in
the observed reduced macrophage accumulation in
�4(Y991A) WAT.
�4(Y991A) monocyte/macrophages exhibit reduced

chemotaxis toward MCP-1. MCP-1 is an important
monocyte chemoattractant and is particularly implicated
in the mobilization of monocytes from the bone marrow
and the infiltration of adipose tissue with monocyte/
macrophages (34,35). Thus, we hypothesized that the
decreased 7/4hiLy-6Gneg and 7/4dimLy-6Gneg cells in WAT of
high-fat diet–fed �4(Y991A) mice could be due to impaired
migration in response to this chemokine. �4(Y991A) bone
marrow–derived macrophages showed reduced �4 inte-
grin–dependent MCP-1–driven migration relative to wild-
type cells (Fig. 5A). Thus, impaired �4 integrin–dependent
monocyte/macrophage migration can account for the de-
creased number of monocyte/macrophages detected in
WAT of fat-fed �4(Y991A) mice.

Chemokines, such as MCP-1, are produced by macro-
phages, endothelial cells, and adipocytes (4,36,37). De-
ficiency in MCP-1 production and/or secretion could
also contribute to an impairment of monocyte/macro-
phages migration into adipose tissue (4). Circulating
MCP-1 was increased approximately twofold after high-
fat diet, but no significant difference was observed
between genotypes (Table 1). The relative expression of
MCP-1 was also evaluated in the WAT of �4(Y991A) and
wild-type mice by RT-PCR (Fig. 5B). As expected from
the circulating level of MCP-1, no difference was ob-
served in MCP-1 mRNA expression in epididymal WAT
between genotype in high-fat diet–fed mice (Fig. 5B).
Thus, we ascribe the reduction in monocyte/macro-
phages in WAT in high-fat diet–fed mice to an impaired
migratory response to MCP-1 rather than to reduced
production of this chemokine.

The amelioration of insulin resistance in high-fat diet–
fed �4(Y991A) mice appears to depend on reduction of
monocyte/macrophages in WAT; these cells are the source
of cytokines, such as TNF-� and IL-6. Abdominal adipose
gene expression levels of TNF-�, IL-6, plasminogen acti-
vator inhibitor 1 (PAI-1), and leptin are positively linked
with insulin resistance. Levels of proinflammatory cyto-
kines TNF-� and IL6 were strikingly reduced (70 and 55%,
respectively) in �4(Y991A) compared with wild-type WAT
(Fig. 5C). In contrast, we observed similar levels for
fat-derived peptides leptin and PAI-1 in wild-type and
�4(Y991A) WAT. Thus, the reduction in monocyte/macro-
phages in WAT in high-fat diet–fed �4(Y991A) mice leads
to reduced production of pro-inflammatory cytokines
(TNF-� and IL-6) in WAT.
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DISCUSSION

�4 integrins are proven therapeutic targets in chronic
inflammatory diseases, such as multiple sclerosis; how-
ever, complete blockade of �4 integrin function can result
in defects in hematopoiesis, heart, and placental develop-
ment (9,11,38,39) and is associated with progressive mul-
tifocal leukoencephalopathy (13). Chronic low-grade
inflammation contributes to the development of insulin
resistance (40), and the adipose tissue macrophage is a
principal cell type responsible (27). Here, we report that
mice bearing the �4(Y991A) mutation are protected from
high-fat diet–induced glucose intolerance and insulin re-
sistance. The mutation did not block development of
monocytes in the bone marrow but impaired their migra-
tion in response to MCP-1, leading to a combination of
reduced egress into the blood and diminished accumula-
tion in adipose tissue. Reduction of �4(Y991A) mono-
cyte/macrophages in WAT consequently diminished pro-
inflammatory cytokine (IL-6 and TNF-�) production,
which can explain the amelioration of insulin resistance
in these mice. This is the first study showing a role for
integrin signaling in the pathogenesis the metabolic
consequences of diet-induced obesity.

�4 integrins are important in the pathogenesis of high-
fat diet–induced insulin resistance because they mediate
the localization of monocyte/macrophages to adipose tis-
sue. In particular, we found that a point mutation that
impairs �4 integrin signaling led to markedly improved
glucose tolerance and insulin sensitivity in high-fat diet–
fed mice. The �4(Y991A) mice become obese on a high-fat
diet, but they remained insulin-sensitive. This insulin-
sensitive phenotype can be conferred by transplanting
bone marrow from �4(Y991A) mice into irradiated wild-
type host animals. In the reverse experiment, fat-fed
�4(Y991A) mice receiving wild-type bone marrow were
insulin resistant. Thus, bone marrow–derived cells are
responsible for this protective effect, most likely by limit-
ing accumulation of inflammatory adipose tissue macro-
phages. Recent studies have begun to classify macrophage
subpopulations with differing roles in insulin resistance;
future studies will be required to define effects of the
�4(Y991A) mutation on these subpopulations (41–44). It is
noteworthy that improvement of glucose tolerance in
mutant mice fed a high-fat diet is not complete. This
implies that other factors could contribute to glucose
intolerance induced by high-fat diet. These results add
insulin resistance/type 2 diabetes to diseases in which �4
integrins may serve as therapeutic targets.

Consistent with our results, MCP-1 deficiency or dele-
tion of the MCP-1 receptor (CCR2) reduced monocyte
egress from the bone marrow (28) and accumulation of
macrophages in adipose tissue (4), and MCP-1 or CCR2 KO
mice are partially protected from high-fat diet–induced
insulin resistance (4,45). Thus, deletion of CCR2 or its
main ligand leads to a similar phenotype as shown here for
the �4(Y991A) mice. Furthermore, we demonstrated a
defect in CCR2-driven chemotaxis in �4(Y991A) mono-
cytes. These relationships suggest that CCR2-mediated
monocyte recruitment is linked to the binding of paxillin
to the �4 integrin cytoplasmic domain.

The phenotypes observed in the �4(Y991A) and
�4(Y991A)-BMT animals are remarkably similar to those
observed in mice deficient in Sorbs1 gene, which encodes
cbl-associated protein (Cap) (19). These mice are also
protected from high-fat diet–induced insulin resistance,

and this protection can be transferred to wild-type mice by
BMT of Cap-null bone marrow. Furthermore, Cap deletion
resulted in reduced numbers of monocytes/macrophages
in both blood and adipose tissue, and Cap knockdown led
to decreased migration in the RAW264.7 macrophage cell
line. Previously, Cap was shown to mediate signals for the
formation of stress fibers and focal adhesions through
interaction with the focal adhesion kinase p125FAK, an
effector directly linked to paxillin binding to �4 integrin
(15), and Cbl is required for macrophage spreading and
migration. Thus, the relationship between Cap and �4-
paxillin interaction in the pathogenesis of insulin resis-
tance is an area of potential future interest.

Chronic inflammation can be a primary mediator of
obesity-induced insulin resistance, and inflammation is
recognized as one of the contributors to the metabolic
syndrome (or syndrome X) and type 2 diabetes (46). This
study establishes a new role for �4 signaling in the
development of high-fat diet–induced insulin resistance
through its action on monocyte/macrophage trafficking. It
also suggests that blockade of �4 signaling can improve
insulin sensitivity and reduce inflammation, which could
translate into clinical benefit in type 2 diabetes.
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