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Abstract

Plant height, heading date, and yield are the main targets for rice genetic improvement. Ghd7 is a pleiotropic gene that
controls the aforementioned traits simultaneously. In this study, a rice germplasm collection of 104 accessions (Oryza sativa)
and 3 wild rice varieties (O.rufipogon) was used to analyze the evolution and association of Ghd7 with plant height, heading
date, and yield. Among the 104 accessions, 76 single nucleotide polymorphisms (SNPs) and six insertions and deletions were
found within a 3932-bp DNA fragment of Ghd7. A higher pairwise p and h in the promoter indicated a highly diversified
promoter of Ghd7. Sixteen haplotypes and 8 types of Ghd7 protein were detected. SNP changes between haplotypes
indicated that Ghd7 evolved from two distinct ancestral gene pools, and independent domestication processes were
detected in indica and japonica varietals respectively. In addition to the previously reported premature stop mutation in the
first exon of Ghd7, which caused phenotypic changes of multiple traits, we found another functional C/T mutation (SNP
S_555) by structure-based association analysis. SNP S_555 is located in the promoter and was related to plant height
probably by altering gene expression. Moreover, another seven SNP mutations in complete linkage were found to be
associated with the number of spikelets per panicle, regardless of the photoperiod. These associations provide the potential
for flexibility of Ghd7 application in rice breeding programs.
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Introduction

Extensive archaeological evidence indicates that rice was first

domesticated along the middle and lower Yangtze River corridors

in South China about 8000 years ago [1,2]. In this domestication

process, two genetically distinct Oryza sativa subspecies, indica and

japonica, were formed. These two rice subspecies can be

distinguished by both DNA markers and morphologic character-

istics [3]. Genotyping by Londo et al. [4] showed that indica and

japonica subspecies arose from genetically distinct gene pools within

a common wild rice ancestor (Oryza rufipogon) in South Himalaya

and Southern China respectively. The domestication of the two

subspecies occurred independently in different ecological and

geographical environments. In both subspecies human selection

has maintained the introgressions containing the most agricultur-

ally valuable alleles [5]. Besides the two subspecies (indica and

japonica), a deeper population structure has been defined by

previous researchers, subdividing them into five genetically distinct

subpopulations: indica, aus, temperate japonica, tropical japonica and

aromatic [6].

Recently, candidate gene association analysis has been used to

trace the origin of agronomically important alleles and to explore

the domestication process of cultivated rice. For example, a single

nucleotide polymorphism (SNP) in the predicted DNA-binding

domain of the grain-shattering gene, Sh4, reduced the degree of

shattering, resulting in a critical improvement in the rice harvest

[7]. The Sh4 mutation is prevalent in all cultivated rice varieties

but is absent in wild rice, implying an essential role for this allele

during rice domestication[7–9]. In a segregating population

resulting from a cross between japonica and indica, a single

nucleotide change located 12 kb upstream of another shattering

gene in rice, qSH1, was found to decrease the expression of qSH1

and consequently reduced grain shattering. In this case, the

mutation was limited to the temperate japonica subpopulation without

dissemination, indicating that independent domestication process-

es of subpopulations existed during the evolution of rice [10].

Similarly, a temperate japonica subpopulation specific allele showing

limited dissemination was established for the waxy gene where an

intron splice donor site mutation is responsible for the absence of

amylose in the rice endosperm starch [11]. The Rc gene

responsible for red seed color in wild rice showed two types of

domestication selection sweeps. In one type, a frame-shift deletion

within Rc was found in 97.9% of white rice varieties. This deletion

originated in japonica and then was transferred into indica [12,13].

In another case, a natural allelic variant of Rc called Rc-s, which is

present in ,3% of white accessions and shows limited dissemi-

nation, has a stop codon that originated in indica [12,13]. The

association analysis of the cloned domestication genes in a

population has offered an opportunity to better understand the

gene function and has provided insight into the evolutionary

history of rice.

Yield is one of the most important traits that has been closely

examined in the history of domestication; however, it is a complex

trait determined by three component traits: number of panicles,

number of grains per panicle, and grain weight, all of which are

quantitative traits controlled by quantitative trait loci and
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influenced by environmental conditions [14]. Although this

quantitative trait is under the control of numerous genetic

components, a few key discrete genetic loci appear to be involved

in yield increase during rice domestication [15]. Recently, a

number of genes that control rice yield and adaptation have been

identified through map-based cloning. For example, an amino

acid substitution in PROG1 protein changed the rice plant

architecture from the prostrate growth of wild rice to the erect

growth habit of domesticated rice, concurrently resulting in

increased grain yield [16,17]. In addition, haplotype analysis

revealed that this PROG1 allele was fixed during rice domestication

since identical alleles were detected in all accessions of O. sativa

[16,17].

Heading date (HD) is also an important determinant of rice

yield. Rice is a short-day plant, with the distribution of the

ancestral species located in the tropics. The domesticated rice

growing area was extended to the Northern latitudes by

selecting accessions with appropriate heading dates [18].

Flowering in rice is controlled by Hd3a, which is regulated by

two independent genes: Hd1 and Ehd1[19–22]. An association

study of these three major flowering genes in the japonica

subspecies revealed that the variations in Hd1 protein, Hd3a

promoters, and Ehd1 expression levels all contribute to the

diversity of HD [23].

Another important yield component is plant height (PH). Plant

architecture, including PH, has been subjected to strong selection

throughout the domestication of rice. As a result, grain yield has

been significantly increased by growing semi-dwarf varieties,

which enhances absorbance of sunlight and provided stronger

resistance to lodging [24].

Ghd7 has pleiotropic effects on three agronomic traits (PH, HD,

and spikelets per panicle [SPP]) [25]. Ghd7 delays HD, increases

PH and panicle size, and results in enhanced gene expression of

Ehd1 and Hd3a under long-day conditions. Expression pattern

analysis suggested that Ghd7 may function upstream of Ehd1 and

Hd3a in the rice flowering pathway. Association analysis of 19 rice

cultivars identified five allelic variants of Ghd7. The Ghd7 alleles

with strong genetic effects were shown to increase grain yield by

adapting to the long growing season of tropical regions and the

Ghd7 alleles with no or reduced effect found in temperate regions

shortened the rice life cycle to ensure seed setting [25].

Candidate gene-based association mapping takes advantage of

historical and evolutionary recombination events in a natural

population to resolve complex trait variation to individual

nucleotides [26]. Moreover, for a pleiotropic gene, association

mapping can also dissect the trait correlations at the gene level

because different polymorphic sites can be independently

associated with different traits [27]. For example, the maize

pleiotropic gene Dwarf8, which affects both flowering time and

PH, was shown to contain two SNPs that are independently

associated with the two related traits [28]. The pleiotropic gene

Ghd7 is an important gene that has been widely used in

traditional breeding and is also a good target in molecular

breeding. In this study, we sequenced a germplasm collection of

104 accessions of cultivated rice (O. sativa) and 3 common wild

rice varieties (O. rufipogon) to identify the diverse alleles/

haplotypes and key SNPs in Ghd7 affecting PH, HD, SPP

phenotypes. Indica and japonica subspecies showed two indepen-

dent evolutionary processes of Ghd7. In addition to the point

mutation causing a premature stop codon in Ghd7 that caused a

reduction in all three assayed traits, two more mutations were

detected, both of which have contributed independently to rice

genetic improvement.

Results

Population Structure
24 SSR markers were randomly selected from one each short

and long arms of the 12 rice chromosomes, all of them were shown

to be polymorphic among the 104 rice accessions. Individual SSR

markers contained between 2–11 alleles with an average of 4.4

alleles for each marker. A significant population structure

identified in the germplasm collection can be classified into three

subpopulations because the highest log likelihood scores of the

population structure were observed when the number of

populations was set at 3 (K = 3; Figure 1). The first subpopulation

(subpopulation 1) contained 53 accessions and was represented by

83% of the indica varieties; the other two subpopulations

(subpopulations 2 and 3) contained 51 accessions and were

represented by 88% of the japonica varieties (Table S1). Thus, we

defined subpopulation 1 as the indica subpopulation and subpop-

ulations 2 and 3 were categorized as the japonica subpopulation.

Moreover, within the two japonica subpopulations, Lemont, a

variety that was proven to be a tropical japonica variety [29], and

Nipponbare, a classic temperate japonica variety, were distributed

between subpopulations 2 and 3. Thus, the two japonica

subpopulations may correspond with a deeper population

structure division (tropical japonica and temperate japonica).

Nucleotide Diversity and LD of Ghd7
The whole genomic DNA sequence of Ghd7 from the 104

cultivars was sequenced and analyzed for its nucleotide diversity.

In total, 76 SNPs and 6 insertions and deletions (InDels) were

detected in the aligned 3923 basepairs (Figure S1). Across the Ghd7

gene, 6 SNPs for every kilobase (p= 0.00621, Table 1) were found

between two randomly sampled accessions in this population.

Varied DNA polymorphisms were observed in different regions of

the Ghd7 genome (Table 1). In the whole germplasm population,

the pairwise nucleotide diversity parameter (p) and the level of the

Watterson estimator (hw) in the promoter were 2- to 3-fold higher

than that in the other regions. Tajima’s D values reached a

significant positive level in the entire Ghd7 genomic region,

including the promoter (P,0.05). Considering the strong popu-

lation stratification, we also tested these parameters within the two

subpopulations (indica and japonica). The values of the p and hw in

the promoter were also 2- to 3-fold higher than that in the other

regions, but Tajima’s D values showed a negative value and

reached a significant level both in the promoter and the whole

gene region of japonica subpopulation. LD was detected in the

whole genomic region of Ghd7, and no LD decay was observed

within the whole genome (Figure S2).

Comparison of Sequences and Haplotype Analysis
The analyzed 104 accessions contained 16 haplotypes according

to the detected 76 SNPs and 6 InDels (H0, H1–H15 in Figure S1).

Accessions Hejiang 19 and Mudanjiang 8 were defined as

haplotype H0 since both contained one premature stop codon in

the first exon of Ghd7. 53 SNPs with a bi-allele frequency of .5%

were considered for haplotype analysis. Eleven haplotypes (H1–

H11) were constructed from the remaining 102 O. sativa cultivars

(regardless of rare SNP site, H12 belongs to H2, H13–H15 belong

to H1). Haplotypes H2–H4 and H6–H11 were represented mainly

by accessions from the indica subpopulation (subpopulation 1) and

hence were placed into the indica haplogroup. Haplotypes H1 and

H5, together with haplotype H0, mainly contained accessions

from japonica subpopulations (subpopulations 2 and 3) and were

categorized into the japonica haplogroup (Figure 2a). In addition,

two clades were detected through a phylogenetic tree analysis

Evolution and Association Analysis of Ghd7 in Rice
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(Figure 2b), which also corresponded to the indica-japonica

haplogroup division.

Ghd7 showed low nucleotide diversity within the japonica

haplogroup. The japonica haplogroup contained only three

haplotypes (H0, H1, and H5) which were defined by three SNPs

at positions S_363, S_1075, and S_1629 (indicated in red in

Figure 2a). However, the indica haplogroup showed various

haplotypes of Ghd7, in which haplotype H3 showed completely

different SNP alleles (indicated in yellow in Figure 2a) from the

japonica haplogroup (indicated in light blue in Figure 2a). In

addition, haplotypes H4 and H6–H11 from the indica haplogroup

partly contained japonica SNP alleles, and eight new mutation sites

(indicated in red) were noted and accumulated in these haplotypes.

Moreover, the Ghd7 alleles from the three wild rice varieties (O.

rufipogon) were sequenced. WR1 from Myanmar contained

completely identical SNP alleles with haplotype H3 from the

indica haplogroup. WR2 and WR3 from Taiwan and Dongxiang

(Jiangxi Province of China) carried alleles that have four and one

SNPs respectively with the haplotype H1 from the japonica

haplogroup in sequence.

Ghd7 Protein Diversity
Considering that the nucleotide diversity in the coding region

cannot exactly represent the protein diversity owing to synony-

mous SNPs in exons, Ghd7 protein diversity was analyzed in the

present study (Figure 3). Eight protein types were identified in this

population; nine non-synonymous SNPs (indicated in white), two

synonymous SNPs (indicated in gray), and one premature stop

codon were detected in the coding region. Haplotypes H2, H3,

H7, and H8 shared the same protein type (number of accessions:

N = 40), equivalent to the Ghd7-1 type in the previous study [25],

the japonica haplogroup (haplotypes H1 and H5) shared the same

protein type with Ghd7-2 (N = 39), and haplotype H10 (1

accession: Teqing) encoded the Ghd7-3 protein type. In addition,

the two accessions with a premature stop codon (Hejiang19 and

Mudanjiang8) contained protein type Ghd7-0. Besides the four

protein types reported previously by Xue et al. [25], four new

protein types: Ghd7-4 (N = 17), Ghd7-5 (N = 3), Ghd7-6 (1

accession: MOLOK), and Ghd7-7 (1 accession: Shufeng101) were

found in this study corresponding to haplotypes H4, H6, H9 and

H11, respectively. We compared the functions of the 4 major

Figure 1. Population structure for 104 accessions. Three colors indicate the populations; red, green, and blue indicate the subpopulations 1, 2,
and 3, respectively. Every accession is represented by a single vertical line with the lengths proportional to each of the subpopulations. The figure is
created by STRUCTURE.
doi:10.1371/journal.pone.0034021.g001

Table 1. Summary of DNA polymorphic sites of Ghd7 genome.

Parameter Entire region Promoter 59UTR Exon 1 Intron Exon 2 39UTR

Length, bp 3923 1263 210 444 1646 330 30

SNP sites 76 45 0 8 19 4 0

InDels 6 4 0 0 2 0 0

Whole population

P 0.0062 0.0124 – 0.0039 0.0035 0.0038 –

h 0.0037 0.0069 – 0.0035 0.0022 0.0023 –

Tajima’s D 2.1730* 2.5443* – 0.2990 1.6448 1.2658 –

indica group

P 0.0028 0.0050 – 0.0027 0.0015 0.0030 –

h 0.0036 0.0068 – 0.0034 0.0019 0.0026 –

Tajima’s D 20.7306 20.8374 – 20.4747 20.6505 0.3128 –

japonica group

P 0.0013 0.0029 – 0.0006 0.0006 0.0004 –

h 0.0033 0.0066 – 0.0016 0.0021 0.0014 –

Tajima’s D 22.1742* 21.9697* – 21.2926 22.2250** 21.3005 –

p, average number of nucleotide differences per site between two sequences; h, Watterson estimator; Tajima’s D, test for neutral selection.
*Significant at P,0.05;
**significant at P,0.01.
doi:10.1371/journal.pone.0034021.t001
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Ghd7 protein types (Ghd7-0, Ghd7-1, Ghd7-2 and Ghd7-4) on

the three target traits (Table 2). Significant differences in all the

three target traits were detected between Ghd7-0 and the other

three types both in LD and SD. As compared to Ghd7-2 and

Ghd7-3, Ghd7-4 showed earlier heading and larger SPP in 2010.

The result revealed the protein diversity of Ghd7 is critical for the

variation of HD and SPP in LD conditions.

Association between SNPs and Traits
Taking the population structure data as covariates (Table S1),

we used GLM to identify SNP–trait associations separately in the

three planting tests. The varieties included in haplotypes H1–H5

were analyzed. Other haplotypes were excluded because of limited

accession numbers (No. of accessions = 1,3). A significantly

associated SNP (S_555) was detected with PH in all three planting

tests (Table 3), and it was also associated with SPP in the long-day

conditions of the 2007 planting test. SNP (S_555) is a C/T

mutation located at 918 bp upstream of ATG. The T allele was

found only in haplotype H2 and it was the only difference between

haplotypes H2 and H3 (Figure 2a). Moreover, seven other SNPs

(S_194, S_278, S_968, S_1804, S_1808, S_3207, and S_3635)

were detected relating to SPP in all three planting tests; these seven

SNPs were in complete linkage and were differentially detected

between H4 and the other four haplotypes. These seven SNPs

Figure 2. Haplotype analysis of the Ghd7 gene region in the 104 cultivars. (a) The Ghd7 containing two exons (indicated in gray) and the
entire length of the 3923-bp genome is shown in graphics on the top. The position of every SNP is shown in the first row (SNP frequency.5%).
Twelve haplotypes (H0–H11) were detected in the 104 cultivars of O. sativa, which can be divided into an indica group (ind-G) and a japonica group
(jap-G) based on the population structure analysis. The number of cultivars (cvs) in every subpopulation is shown in the right columns: Q1 indicates
the indica population and Q2 and Q3 indicate the japonica population. Yellow represents polymorphisms characteristic of the indica haplogroup,
light blue shows the japonica haplogroup polymorphisms. Red indicates the new mutation. WR1–3 indicates the three wild rice varieties of
O.rufipogon. (b) Phylogenetic tree of the twelve haplotypes (H0–H11).
doi:10.1371/journal.pone.0034021.g002

Figure 3. Protein diversity of Ghd7. The two exons (indicated in black rectangle) and the 59 and 39 UTRs (indicated in white rectangle) of Ghd7
are shown in graphics on the top. The first row indicates the position of the SNPs, the last row reveals the amino acid change. Gray indicates
synonymous SNP. Eight types of Ghd7 protein were identified. Ghd7-0 was a permutation type. Hap indicates the haplotypes that share the same
protein type. The numbers in the right column are the numbers of cultivars (cvs) represented in every protein type.
doi:10.1371/journal.pone.0034021.g003
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were also significantly associated with HD in both long-day

condition planting tests. In addition, another 10 SNPs (S_30,

S_58, S_207, S_392, S_857, S_876, S_2652, S_3252, S_3346,

S_3815) were significantly associated with SPP in both the 2007

long-day and 2010 short-day planting tests. The genotype at 10

SNP sites in haplotype H4 (indica group) was introgressed from

japonica haplogroup (Figure 2a).

The average PH, HD, and SPP of each haplotype in the three

planting tests were compared separately within indica and japonica

subpopulations to define the haplotype–trait association (Table 4).

The standard deviation of the mean values of the three traits was

large because of the high trait diversity in this population. The

haplotype H3 showed a significantly higher PH than haplotype H2

(with a T mutation at S_555) in all three tests.

The Association SNP S_555 was Related to the Gene
Expression Level

Considering that the associated SNP S_555 was located in the

promoter of Ghd7, the gene expression levels of 81 varieties

included in haplotypes H1–H5 were measured to identify its

Table 2. Comparison of means of three traits among the major 4 protein types.

Ghd7-0 Ghd7-1 Ghd7-2 Ghd7-4

Means±SD N Means±SD N Means±SD N Means±SD N F ratio P

PH(2007LD) 77.7610.1a 2 130.4631.8b 40 121.8629.6b 39 125.5627.3b 17 2.2243 0.0904

HD(2007LD) 48.061.9a 2 89.6613.9b 40 86.5611.5b 39 81.463.9b 17 9.1804 0.0000

SPP(2007LD) 49.2617.4a 2 162.7655.4b 39 146.2644.7b 33 200.0631.3b 10 6.5769 0.0005

PH(2010LD) 2 2 118.8632.7a 31 119.5633.0a 31 111.9626.9a 17 0.3501 0.7057

HD(2010LD) 2 2 83.6614.4a 31 84.7614.0a 31 75.463.9b 17 3.2020 0.0462

SPP(2010LD) 2 2 173.3648.9a 25 143.8642.2b 23 189.5642.3a 17 5.4496 0.0066

PH(2010SD) 73.568.6a 2 112.5627.3b 38 114.1629.9b 36 114.3631.0b 17 1.2695 0.2897

HD(2010SD) 57.161.9a 2 83.869.2b 38 80.769.4b 36 79.963.7b 17 6.6881 0.0004

SPP(2010SD) 55.5611.3a 2 157.3645.7b 28 139.6657.8b 33 178.3626.6b 16 5.1143 0.0028

The first line indicates the main 4 protein types. SD, standard deviation; N, number of cultivars tested. Means followed by different letters each row are significantly
different at P = 0.05 within one environment. F ratio and probability based on one-way analysis of variance.
doi:10.1371/journal.pone.0034021.t002

Table 3. Results of GLM association of SNP traits.

Trait PH HD SPP

Site P R2 P R2 P R2

2007 Long-day condition

S_555 0.0019 0.0998 – – 0.0235 0.0555

7 SNP in LDa – – 0.0125 0.0657 0.0178 0.0605

10 SNP in LDb – – – – 0.0097 0.0716

2010 Long-day condition

S_555 0.0367 0.0582 – – – –

7 SNP in LD – – 0.0329 0.0581 0.0141 0.0664

2010 Short-day condition

S_555 0.0033 0.0975 – – – –

7 SNP in LD – – – – 0.0068 0.0833

10 SNP in LD – – – – 0.0183 0.0639

Result of structure-based association mapping (P,0.05) of haplotypes H1–H5,
by GLM analysis of TASSEL. R2, the total variation explained by the SNP.
a7 SNPs in LD:S_194, S_278, S_968, S_1804, S_1808, S_3207, and S_3635. They
were in complete linkage disequilibrium and gathered in haplotype H4.
b10 SNP in LD:S_30, S_58, S_207, S_392, S_857, S_876, S_2652, S_3252, S_3346,
and S_3815. They were in complete linkage disequilibrium and they were the
introgressed SNPs transferred from japonica to indica.
doi:10.1371/journal.pone.0034021.t003

Table 4. Comparison of means between different haplotypes
in the three traits.

Trait PH HD SPP

Hap. Means±SD N Means±SD N Means±SD N

indica

H2(2007LD) 111.8616.1a 21 85.969.4a 21 169.2662.4ab 21

H3(2007LD) 149.2633.8b 17 94.4618.0b 17 147.7643.3a 16

H4(2007LD) 125.5627.3a 17 81.463.9a 17 200.0631.3b 10

H2(2010LD) 103.0620.5a 16 81.4611.9ab 16 160.0638.9a 15

H3(2010LD) 135.4636.5b 14 85.8617.4a 14 189.0659.1a 9

H4(2010LD) 111.9626.9a 17 75.463.9b 17 189.5642.3a 17

H2(2010SD) 97.8614.8a 21 83.666.6a 21 152.9634.4a 15

H3(2010SD) 127.9629.1b 15 84.2612.7a 15 154.3658.4a 11

H4(2010SD) 114.3631.0ab 17 80.063.7a 17 178.3626.6a 16

japonica

H1(2007LD) 122.9632.4a 28 88.3612.8a 28 143.8651.4a 23

H5(2007LD) 119.1621.9a 11 81.965.2a 11 151.7624.7a 10

H1(2010LD) 120.5637.5a 22 86.8615.6a 22 128.0631.4a 14

H5(2010LD) 117.0619.6a 9 79.367.6a 9 168.4646.6b 9

H1(2010SD) 112.5633.0a 26 79.9610.6a 26 141.3665.6a 24

H5(2010SD) 118.2620.5a 10 82.865.0a 10 135.1631.1a 9

Hap, haplotype; SD, standard deviation; N, number of cultivars tested. Within an
environment, means followed by different letters are significantly different at
P = 0.05.
doi:10.1371/journal.pone.0034021.t004
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relationship to the three investigated traits. Of haplotypes H2 and

H3, which shared the same Ghd7-1 protein type, haplotype H2 (T

allele at SNP S_555) showed a significantly lower expression level

than that seen in haplotype H3 (C allele at SNP S_555) (Table 5).

Moreover, a significant correlation between the gene expression

and PH was also detected in the varieties of haplotype H2 and H3

(Table 6). However, other haplotypes (H1, H4 and H5) also had a

C allele but showed a lower expression level than H3.

To further confirm the function of SNP S_555 in regulating

gene expression, we compared the promoter activity of H2 and H3

by using a previously described GUS quantitative activity assay

[30]. The Ghd7 promoters of haplotypes H2 and H3 were cloned

and fused with GUS (beta-glucuronidase) gene, and then trans-

formed to rice callus by Agrobacterium. We compared the GUS

activity of the rice positive callus. The callus carrying the GUS gene

driven by haplotype H3 promoter showed stronger GUS activity

than that of haplotype H2 (Figure S3).

Expression Analysis of Ehd1
Ehd1 was confirmed to be a downstream gene of Ghd7 based on

previous study [25]. Thus, it was used as an indicator to reflect the

Ghd7 gene activities. Ehd1 protein was reported to be functionally

conserved based on the previous work [23]. An amino acid

substitution in TC65 (G219R) was previously shown to decrease

DNA binding activity of Ehd1 [19] and caused late flowering in

both Long-day and Short-day conditions. In order to confirm the

Ghd7 function pattern, we investigated the allele variation of Ehd1

within the whole population. The most important amino acid

substitution (G219R) did not exist in our population except for

TC65 (NO.103). Thus, Ehd1 itself does not cause large variation of

phenotypes in the population. In addition, we found a 21-bp

insertion in the fourth intron, which has not been previously

reported. The 21-bp insertion was mainly present in the indica

subpopulation but not in japonica subpopulation. This result still

confirmed the conservation of Ehd1 although 5 exceptions existed

(Table S1).

The expression of Ehd1 was evaluated throughout this

population, and the expression showed a high correlation with

PH and HD (Table S2). A significant correlation with Ghd7

expression level was detected in haplotypes H2 and H3 (Table S3),

in which Ghd7 showed a high variation in expression but with the

same protein type of Ghd7-1. The negative correlation between

them was also consistent with the previous photoperiod study of

Ghd7 [25]. Moreover, significant difference in Ehd1 expression was

detected between H2 and H3 haplotypes (P,0.05). Taken

together, the associated SNP_555 functions through altering

Ghd7 expression level, and further modulating Ehd1 expression, a

known downstream gene of Ghd7.

Discussion

Genetic Variation of Ghd7
The significant positive Tajima’s D parameters in the promoter

and the entire genomic region of Ghd7 suggested that the

population stratification or balancing selection occurred in this

locus during rice evolution and breeding. However, Tajima’s D

parameters changed to a negative value in most of the analyzed

regions when this parameter was estimated separately in the two

subpopulations. The negative parameters reached a significant

level in the promoter, intron, and whole region of the japonica

subpopulation, and the negative values of Tajima’s D can result

from positive selection. However, MOLOK in haplotype H9 and

Ninghui21 in haplotype H2 are two japonica varieties based on a

whole genome population structure analysis, but they possess Ghd7

indica haplotypes (see Figure 2a). When re-calculating this

parameter in the japonica subpopulation excluding the two

varieties, Tajima’s D becomes 20.454 and is not significant.

Thereby, the negative significant Tajima’s D in japonica subpop-

ulation probably resulted from a large amount of low frequency

mutations, but not from any type of selection. Thus, more

evidence is still needed before we define the selection sweep model

of Ghd7.

Moreover, when comparing the pairwise nucleotide diversity

parameter (p) with the genome-wide average level of the two

subspecies (0.0016 for indica and 0.0006 for japonica of 517

landraces in China [31]), the p value of the Ghd7 (0.0028 for indica

and 0.0013 for japonica) was about twice that of the average level.

This probably resulted from a wider geographical distribution of

this germplasm, as it comprised varieties worldwide. In addition,

the nucleotide diversity in the promoter of Ghd7 was twice that of

the coding region in both the indica and japonica subpopulations,

indicating the presence of higher diversity in the promoter region

of Ghd7. The mutations in the promoter do not cause changes to

the protein leading to lower selection pressure, which probably led

to accumulation of neutral mutations in the promoter region

during domestication. Therefore, the high diversification of

promoter provided the flexibility to adapt to various environments

or to satisfy different developmental requirements. In addition,

Ghd7 is a pleiotropic gene and changes to Ghd7 protein may result

in changes in the three traits (PH, HD and SPP) simultaneously.

However, in many cases, cultivars having taller PH and later HD

were not advantageous for rice production, but cultivars with ideal

PH, proper HD, and many SPP were more desirable, which can

be a result of selection of mutations in the promoter that affected

Ghd7 transcription. In accordance with this, the SNP S_555 in the

promoter region was associated with the expression level of Ghd7

and PH rather than HD and SPP. This result implied that this

promoter variation had an important role in regulating the

expression of Ghd7 and PH formation.

Ghd7 Alleles of indica and japonica Originated from Two
Distinct Ancestral Gene Pools

Comparing the Ghd7 sequences from the 104 varieties (O. sativa)

to the three wild rice varieties (O. rufipogon), haplotype H3 from the

indica haplogroup showed an identical allele to the wild variety

WR1, which suggested that it might be the original indica

haplotype. In addition, haplotype H1 from the japonica haplogroup

had close similarity to WR2 and WR3. As with H3 and the indica

situation, H1 is possibly the original japonica haplotype. Moreover,

these two possibly original gene haplotypes (H3 and H1) carried

completely different alleles in the 43 SNP sites (indicated in yellow

and blue, respectively, in Figure 2a). These results implied that

Ghd7 alleles in indica and japonica independently originated from

Table 5. Comparison of expression levels in H1–H5.

Hap. Protein type S_555 Mean ± SD N

H2 Ghd7-1 T 1.4561.64a 21

H3 Ghd7-1 C 2.8661.76b 16

H4 Ghd7-4 C 1.4960.76a 10

H1 Ghd7-2 C 1.6360.98a 24

H5 Ghd7-2 C 1.4860.79a 10

Hap, haplotype; SD, standard deviation; N, number of cultivars tested;
characters not connected by the same letter are significantly different at
P = 0.05.
doi:10.1371/journal.pone.0034021.t005
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two distinct ancestors, which is a result consistent with the previous

conclusions that the two subspecies of rice (japonica and indica) were

domesticated from two distinct ancestor gene pools [5]. In

addition, the average expression levels of Ghd7 also showed a

significant difference between the two original haplotypes H1 and

H3. The indica original haplotype, H3, showed significantly higher

Ghd7 expression than the original japonica haplotype, H1 (Table 5),

which suggested diversity in gene expression levels existed also in

the two distinct gene pools. These results indicated that the

divergence of the indica and japonica subspecies predated rice

domestication. However, a continuous and distinct introgression

between the two subspecies was observed in the indica and japonica

subspecies, suggesting Ghd7 has undergone repeated selection over

the long history of domestication. Moreover, two varieties

(haplotype H9: MOLOK; haplotype H2: Ninghui21), which

belonged to the japonica subpopulation according to the whole

genome population structure analysis, had a Ghd7 allele of indica

type, and vice versa (haplotype H5: Dular) (Figure 2a). This may

have happened via a chromosome fragment introgression between

the two subspecies, as it did in the rice pericarp color-deciding

gene Rc [12].

Association between the Three Traits and the SNP Alleles
of Ghd7

The SNP S_555 (C/T) significantly decreased the Ghd7 gene

expression level in haplotypes H2 and H3. SNP S_555 further

altered the expression of Ehd1 gene, which was reported to be

regulated downstream of Ghd7. GUS activity assay experiment

also revealed its function in gene expression regulation.

Moreover, we found that this C/T mutation made a cis-

element YACT change from CACT to CATT using the

PLACE programs (http://www.dna.affrc.go.jp/PLACE/). This

tetranucleotide (CACT) is a key component of mesophyll

expression module 1; its mutation can significantly decrease

promoter activity based on a previous study [32]. However, the

remaining haplotypes (H1, H4, and H5) except H3 with a C

allele at S_555, showed a lower expression level similar to H2,

suggesting that the tetra nucleotide (CACT) was not the unique

cis-element regulating Ghd7 expression. In addition, in haplo-

types H2 and H3, the expression level of Ghd7 was only

correlated to PH (Table 6), suggesting that of the three traits

simultaneously controlled by Ghd7, PH is more sensitive to the

expression of Ghd7. However, it is noteworthy that the

expression levels of Ghd7 were not the unique factors related

to trait performance because different haplotypes encoded

different Ghd7 proteins with distinct functions. Of these,

haplotypes H2 and H3 shared the Ghd7-1 protein type, H1

and H5 shared the Ghd7-2 protein type, and H4 encoded the

specific Ghd7-4 protein type (Figure 3). Hence, the diversity of

Ghd7 protein was the key factor to regulate phenotype

variation, and the expression level of Ghd7 could also contribute

to phenotypic diversity. This implied that different functional

alleles of Ghd7 probably contribute to phenotypic diversity by

having varied effects on PH, HD and SPP.

The seven SNPs that associated with SPP in all three planting

tests were present only in haplotype H4 of the five major

haplotypes tested (indica haplotypes H2, H3, and H4; japonica

haplotypes H1 and H5). The associations between SNP S_555 and

PH, the seven complete linked SNPs and SPP in this study were

present regardless of photoperiod. However, these seven mutations

were associated to HD only in long-day conditions, indicating that

HD is more sensitive to the photoperiod. These results were easily

understandable because Ghd7 has enhanced function under long-

day conditions [25]. We also checked the expression level of Ehd1

for varieties within haplotype H4. Throughout the whole

population, the expression level of Ehd1 in H4 was the lowest as

compared to other haplotypes. Moreover, no correlation was

detected between expression level of Ehd1 and HD. Thus, it is

speculated that Ehd1 expression cannot reflect the function of the 7

SNP in haplotype H4, the special Ghd7 protein of H4 together

with its expression level can regulate related traits in a unique

pathway. More work would be needed to answer how the 7 SNPs

contribute to these trait performances.

In addition, 10 other SNPs were associated to SPP in both the

2007 long-day and 2010 short-day planting tests. The 10 SNPs

were introgression alleles between japonica and indica haplogroup,

such as haplotype H4 and H1 (Figure 2a). It is understandable that

the structure-based association analysis cannot sufficiently distin-

guish the true associations of those alleles that were differentially

related among subgroups because their distributions coincided

with population structure [33,34]. Thus, more evidence is needed

to confirm this association using a large natural population

representing a wider genetic resource.

New Strategies of Ghd7 for Rice Breeding
Besides the previously reported premature stop mutation in

japonica subspecies that leads to a reduction in all three traits [25],

two other kinds of mutations associated with PH, HD, and SPP

were identified. These three kinds of mutations functioned

separately for rice adaptation and breeding. For example, in the

indica subspecies, the mutation of C to T at SNP S_555 reduced

the gene expression level and decreased PH; this variation allowed

the plant to be more resistant to lodging without an influence on

HD and yield. On the other hand, haplotype H4 carried the seven

completely linked association mutations; among all the investigat-

ed accessions, 17 possessed haplotype H4, including many typical

high-yield varieties widely grown in South and East China, such as

Nanjing11, Guichao 2, Fengaizhan, and Huanghuazhan. This

indicated the favorable allele (H4) was well utilized in developing

rice of high yielding variety. In addition, Teqing (H10), a variety

widely cultivated in South China in the 1980s, carried a strong

allele of Ghd7 [25], which also showed similar SNP alleles to

Table 6. Spearman correlation analysis between expression level and three traits in three planting tests.

PH HD SPP

N R P N R P N R P

2007LD 37 0.49 0.002 37 0.07 0.70 37 20.26 0.12

2010LD 29 0.37 0.050 29 20.07 0.74 23 20.03 0.88

2010SD 35 0.47 0.005 35 20.06 0.73 25 20.25 0.23

N, number of varieties tested; R, correlation coefficient.
doi:10.1371/journal.pone.0034021.t006
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haplotype H4. However, in the case of japonica subspecies, when

the planting area was extended into temperate zones (northern

regions), a significant shortage of HD was required for plants to set

seeds. Thus, only the previously reported premature stop mutation

of Ghd7 in japonica subspecies [25], which creates the rice

photoperiod insensitivity, can complete its life cycle in a short

summer period.

The natural variations of Ghd7 contribute greatly to rice

adaptation and genetic improvement. These three kinds of

mutations provided us a theoretical clue to the flexible use of

this pleiotropic gene Ghd7 in modern molecular breeding [27].

Specific markers could be developed for selection of the favorable

haplotypes to meet the demand for varieties in different ecotypes.

Materials and Methods

Plant Materials and Phenotypic Data Collection
A total of 104 accessions of O. sativa comprising 59 indica, 43

japonica, and 2 accessions with admixed genetic background

were used. Most accessions are landraces, but some correspond

to modern cultivars. An additional three common wild rice

varieties (O.rufipogon) were from IRRI (International Rice

Germplasm Collection). The basic information for each

germplasm appears in Table S1. The plants were grown three

times on a bird net-equipped field on the experimental farm of

Huazhong Agricultural University, Wuhan, China. No specific

permits were required for the described field studies, and the

field studies did not involve endangered or protected species.

Planting dates were 19 May 2007, 19 May 2010, and 25 June

2010. Plants sowed on 19 May grew mostly under long-day

conditions, whereas those sowed on 25 June were mostly under

short-day conditions. Ten plants were transplanted in a single

row with 16.5 cm between plants and 26.4 cm between rows for

every accession. Field management was performed according to

normal agricultural practices. HD was defined as the days from

sowing to the appearance of the first panicle. SPP was measured

as the total number of spikelets per plant divided by its panicle

number. PH was measured from the surface of the ground to

the tip of the tallest panicle in the plant. Except for two

marginal plants in each side, eight independent plants were used

to score the three phenotypic data sets.

DNA Extraction, PCR, and Sequencing
Fresh leaves were harvested from field-grown plants and

genomic DNA was extracted using the cetyl-trimethyl ammo-

nium bromide method [35]. Genomic DNA including 1263-bp

promoter regions, 210-bp 59 UTR, 774-bp coding region, 1646-

bp intron, and 30-bp 39 UTR were amplified from genomic

DNA using LA Taq (Takara). Table S4 provides a list of all

primers used for polymerase chain reactions (PCRs) and

sequencing. PCRs were conducted using standard PCR

protocols with 26GC buffer I (Takara). For sequencing, 5 mL

PCR product was digested with 5 U EXOI (Biolabs) and

0.13 U Shrimp Alkaline Phosphatase (Takara) together with

16PCR buffer and incubated at 37uC for 1 h; the reaction was

stopped by maintaining the PCR product in 80uC for 20 min.

To ensure accuracy, sequencing was independently performed

three times in both forward and reverse primers on ABI 3730

with BigDye terminator sequencing kits (Applied Biosystems).

Sequence contigs were assembled by SEQUENCHER 4.1.2

(Gene Codes Corporation). Sequences of the 12 haplotypes of

Ghd7 can be found in the GenBank/EMBL data libraries with

accession codes of JF926532–JF926543.

Gene Expression Analysis and Quantitative GUS Activity
Assay

Leaves from three to five independent plants of each accession

were harvested 22d after germination, when they were in the

vegetative growth period under long-day conditions, to minimize

the difference in developmental stage among accessions. Total

RNA was extracted using TRIzol (Invitrogen). Total RNA (2 mg)

was reverse-transcribed using SuperScriptII reverse transcriptase

(Invitrogen) in a final volume of 20 mL to obtain cDNA. Real-time

PCR was performed using gene-specific primers in a total volume

of 25 mL with 2 mL of the reverse-transcribed product, 0.25 mM

gene-specific primers, and 12.5 mL SYBRH Premix Ex TaqTM

(Takara) on a 7500 real-time PCR system (Applied Biosystems)

according to the manufacturer’s instructions. Four technical

replicates were performed for each sample. The rice Actin gene

was used as the internal control. The expression level data were

obtained using the relative quantification method. Table S4 lists

the primers used for this analysis.

The promoters of H2 and H3 haplotype Ghd7 were isolated and

fused with GUS (beta-glucuronidase) gene, respectively. The

constructs were transformed independently to ZhongHua 11, a

japonica variety. After 3 times selection with Hygromycin, the

positive callus was used for GUS activity evaluation. The method

for quantitative GUS activity assay was followed a previous work

[30].

Population Structure Analysis
Twenty-four simple sequence repeat (SSR) markers, one each in

the short and long arms of the 12 rice chromosomes, were

randomly selected for genotyping the 104 ricevarieties according

to the genetic map developed by Temnykh et al. [36]. The 24

markers were RM529, RM522, RM526, RM211, RM411,

RM60, RM518, RM348, RM574, RM274, RM508, RM412,

RM427, RM172, RM339, RM408, RM553, RM321, RM484,

RM239, RM224, RM479, RM247, and RM463. PCR was

performed as described above and PCR products were separated

on 4% polyacrylamide denaturing gels to determine the alleles of

each marker. Program STRUCTURE 2.3.2 [37] was used to infer

population structure using a burn-in of 10,000, a run length of

100,000, and a model allowing for admixture and correlated allele

frequencies. The number of subpopulations K from two to five was

tested and five independent runs yielded consistent likelihoods of

the population structure for each K. The most probable structure

number of K was calculated based on Evanno et al. [38] using an

ad hoc statistic DK based on the rate of change in the log

probability of data between successive K values.

Statistical Analysis
The genomic sequences and protein sequences were aligned by

ClustalW 2.0.9, and the alignments were used as an input format

into TASSEL [39]. Nucleotide diversity and Tajima’s D statistics

were calculated using the DnaSP 5.0 program [40]. Linkage

disequilibrium (LD) was estimated by using standardized disequi-

librium coefficients (D9) and squared allele-frequency correlations

(r2) for pairs of SNP loci according to the TASSEL program.

TASSEL was also used to identify SNP–trait associations by

generating a general linear model (GLM). The difference of gene

expression level and the trait comparison of each haplotype were

examined by ANOVA, and the Duncan multiple range test and

critical test were conducted if the analyses were significant

(P,0.05). Correlation between three traits and gene expression

level was examined by the Spearman correlation coefficient test.

Statistical analysis was performed by the STATISTICA software
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(StatSoft 1995). The evolutionary relationship among the 12

haplotypes were inferred using the UPGMA method and

phylogenetic analyses were conducted in MEGA4 software [41].

Supporting Information

Figure S1 16 haplotypes of Ghd7 in the 104 rice
varieties. The position of every SNP and InDels are shown in

the first row (SNP frequency.1%). Two exons indicated in gray

and one intron of Ghd7 were shown in the second row. The

number ‘‘0’’ indicates deletion. 16 haplotypes (H0–H15) were

detected in the 104 cultivars of O. sativa, which can be divided into

an indica group (ind-G) and a japonica group (jap-G) based on the

population structure analysis. The number of cultivars (cvs) in

every subpopulation is shown in the right columns: Q1 indicates

the indica population, Q2 and Q3 indicate the japonica population.

Yellow represents polymorphisms characteristic of the indica

haplogroup, light blue shows the japonica haplogroup polymor-

phisms. Red indicates the new mutation.

(TIF)

Figure S2 Linkage disequilibrium over the whole geno-
mic of Ghd7.
(TIF)

Figure S3 Relative GUS activity between the promoter
of H2 and H3.
(PDF)

Table S1 Basic information for 104 tested rice acces-
sions.

(XLS)

Table S2 Correlation coefficients between the expres-
sion levels of Ghd7/Ehd1 and the three related pheno-
types in the whole population.

(PDF)

Table S3 Correlation coefficients between the expres-
sion levels of Ghd7/Ehd1 and the three related pheno-
types within haplotypes H2 and H3.

(PDF)

Table S4 Primers used in this research.

(PDF)
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