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Abstract: In recent years, the concept of “shortcuts to adiabaticity" has been originally proposed to
speed up sufficiently slow adiabatic process in various quantum systems without final excitation.
Based on the analogy between classical optics and quantum mechanics, we present a study on fast
non-adiabatic compression of optical beam propagation in nonlinear gradient refractive-index media
by using shortcuts to adiabaticity. We first apply the variational approximation method in nonlinear
optics to derive the auxiliary equation for connecting the beam width with the refractive index of the
medium. Then, the gradient refractive index is inversely designed through the perfect compression
of beam width with the appropriate boundary conditions. Finally, the comparison with conventional
adiabatic compression is made, showing the advantage of our shortcuts.

Keywords: shortcuts to adiabaticity; non-adiabatic compression; nonlinear beam propagation

1. Introduction

In recent decades, beam propagation in the paraxial approximation has been extensively
investigated for many years in the applications of integrated optics waveguide and optical
communications [1–3]. With the advent of all-optical networks, the novel directional couplers,
polarizers, optical dense wavelength division multiplexing (DWDM) are of crucial importance in a
photonic integrated circuit, which is a device that integrates multiple (at least two) photonic functions
and such is similar to an electronic integrated circuit [4]. Among them, quantum-classical analogies
give rise to the elegant ideas for developing above-mentioned optical elements in terms of the similarity
between the Helmholtz equation and the Schrödinger equation [5,6]. In detail, adiabatic passages
and their variants, including rapid adiabatic passage (RAP) and stimulated Raman adiabatic passage
(STIRAP) in quantum optics, provide several approaches to realize optical waveguide couplers and
beam splitters with high efficiency and good tolerance [7–9]. More recently, two concepts, the adiabatic
elimination and STIRAP, have been combined to achieve the all-optical coherence control of optical
transmission in three-coupled waveguides, with emphasis on the applications to the state-of-the-art
integrated optics and optical quantum computing [10]. Moreover, other interesting cases have been
studied in optical waveguides with nonlinearity [11] and PT-symmetry [12], where the adiabatic
criteria could be influenced or improved. However, the length of most optical devices designed
from adiabatic passages should be long enough to fulfill adiabatic criteria, which does not meet the
requirement of miniature in integrated optics.
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In recent years, the techniques of “shortcuts to adiabaticity" (STA) have been put forward to
reproduce the slow adiabatic but within short time, see reviews [13,14]. It includes two common
protocols, invariant-based inverse engineering [15,16] and counter-diabatic driving (or equivalently
transitionless quantum algorithm) [17–20]. In particular, the inverse engineering based on
Lewis–Riesenfeld invariant [21] has been first proposed in Ref. [16] for frictionless atom cooling
in harmonic traps. In this manner, the trap frequency is inversely designed from the Ermakov equation
derived from the dynamical invariant, such that the fast expansion of harmonic trap is achieved
without final excitation or heating. Immediately afterwards, such theoretical proposals have been
experimentally verified for the frictionless cooling of cold atoms and Bose-Einstein condensates in
magnetic traps [22,23]. Moreover, this has been applicable to other systems which most closely resemble
the harmonic oscillator and two or three-level systems [24], i.e., mechanical resonator [25], classical RCL
circuit [26], photonic lattice [27,28], nitrogen-vacancy (NV) center spin [29,30], and superconducting
circuit [31]. More interestingly, there exists freedom left in the method of inverse engineering by
only fixing the boundary condition, thus the optimal control theory can be supplemented with
perturbation theory to maximize the stability of shortcuts-to-adiabaticity protocols with respect to
noise and systematic errors [32–34]. In this context, the compatible coupled optical waveguides have
been designed from STA, and the better tolerances with respect to input wavelength and spacing errors
are achieved as well [35–39]. Similar ideas can be applicable to mode converters [40], polarization
rotators [41] and waveguide junctions [42] in the applications of optical waveguides.

The variational approximation method is commonly used for analyzing the stability and collapse
of soliton solution in nonlinear optics [43,44] and Bose-Einstein condensates [45,46]. Very recently,
we have managed to combine variational approximation and inverse engineering for designing
the STA in the more complex systems, where there does not exist dynamical invariant and
invariant-based inverse engineering cannot be directly applied. For instance, the fast non-adiabatic
soliton compression [47] and consequent nonlinear Feshbach heat engine [48] have been studied by
using variational control implementing STA. Lately, these results have been also extended to the
shortcuts-to-adiabaticity controls for temporal soliton in optical waveguide [49], coherent many-body
particles in power-law potentials [50] and transmon superconducting qubits [51].

In this article, we combine variational approximation and inverse engineering to design fast
optical beam propagation in nonlinear gradient refractive-index media. In contrast to moment analysis
of paraxial propagation [52], we first apply variational approximation to derive the auxiliary differential
equation for connecting the beam width with the gradient refractive index. Then, we design STA
protocols for fast compression by engineering gradient refractive index, as compared to the previous
adiabatic pulse compression/decompression in optical fiber [53,54]. These results can be also exploited
in the optical fiber with the nonlinear effect induced from absorbing atoms [55].

The paper is organized as follows. In Section 2, the variational approximation method is applied
to find the auxiliary differential equation to connection the beam width with the guiding coefficient,
which is basic for implementing STA. After determining the adiabatic beam propagation as a reference
in Section 3, we elaborate the inverse engineering for speed up, by choosing appropriate boundary
conditions in Section 4. The numerical simulations are also performed through the beam propagation
method for checking the stability. Finally, brief conclusion is presented in Section 5.

2. Variational Approximation Method

We consider the one-dimensional optical beam propagation along the z axis in a local medium
with a longitudinal modulation of the refractive index. In this case, the evolution of the monochromatic
optical beam in paraxial approximation is governed by the following (dimensionless) nonlinear
Schrödinger equation (NLS) [52]:

i
∂u
∂z

+
1
2

∂2u
∂x2 + |u|2u− α2(z)x2u = 0. (1)
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Here z is the propagation coordinate, normalized by the diffraction length zR = 2πw2
0/λ, and x

is the transversal coordinate, normalized by the beam waist w0 [56,57], where λ is the wavelength
(the vacuum wavelength λ0 divided by n, the index of refraction) and w0 is the beam waist, the radial
size of the beam at its narrowest point. u is the slowly varying envelope of the spatial part of the
electric field, α(z) is guiding coefficient, related to the refractive index of the medium and the wave
vector, and the Kerr-type nonlinear coefficient is constant. Noting that we do not consider the gain
and loss in the optical fiber, but Equation (1) is still valid, with modifying the effective coefficient of
Kerr-type nonlinearity [54]. In such nonlinear system, the dynamics can be described approximately
with the following Gaussian ansatz

u(x, z) = A(z)e
− x2

2a2(z) eiθ(z)+ic(z)x2
, (2)

where u is the optical wave field with A(z), a(z), θ(z) and c(z) being the complex amplitude, width,
phase, and curvature of the beam respectively. According to the normalization,

∫
|u|2dx = P, the input

power P fulfills P = aA2√π.
Using the variational approximation method, the re-normalized Lagrangian density

corresponding to Equation (1) is given in the following form:

L =
i
2

(
u∗

∂u
∂z
− u

∂u∗

∂z

)
− 1

2
|∂u|2

∂x
+

1
2
|u|4 − α2(z)x2|u|2. (3)

Substituting Equation (2) into the above Lagrangian density Equation (3) and integrating over x, we
obtain the averaged Lagrangian as

L =
∫
Ldx = −A2a

√
π

dθ

dz
− A2a3√π

2
dc
dz
− A2√π

4a
− A2√πc2a3 +

A4√πa
2
√

2
− A4√πα2a3

2
. (4)

According to the Euler-Lagrange equations,

d
dz

(
∂L
∂qj
′

)
− ∂L

∂qj
= 0, qj ≡ {a, c, θ}, (5)

we follow the standard procedures of the variational approach, and finally obtain

δL
δa

= −Pa
dc
dz

+
P

2a3 −
P2

2
√

2πa2
− 2Pc2a− Pα2a = 0, (6)

δL
δc

= −2Pca2 + Pa
da
dz

= 0, (7)

δL
δθ

= 0. (8)

It should be noted that Equation (8) implies that θ does not play any role in the variational dynamics.
Moreover, from Equations (6) and (7), we obtain the auxiliary differential equation

d2a
dz2 + 2α2(z)a =

1
a3 −

P√
2π

1
a2 , (9)

which connects the dynamic evolution of the beam width with the guiding coefficient α(z).
This resembles the generalized Ermakov equation obtained for effectively one-dimensional
Bose-Einstein condensates (BECs) governed by the Gross–Pitaevskii equation including the nonlinear
atom-atom interaction and the time-varying harmonic trap [58]. As a result, the width of the optical
beam a can be manipulated by modulating the parabolic profile of refraction index through Equation (9),
in the presence of Kerr-type nonlinearity. Normally, one can solve Equation (9) numerically to achieve
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the beam propagation, when the profile of refractive index is fixed. However, the propagation distance
should be long enough to fulfill the adiabatic criteria, thus avoiding the distortion (or transition).
Now, sharing the concept of STA in Refs. [16,47,58], our idea presented here is to first choose the
trajectory of a by fixing the initial and final boundary conditions, and later the profile of refractive
index is designed inversely, such that one can always implement the same task but within a shorter
propagation distance.

3. Effective Potential and Adiabatic Reference

The variational method for STA is applied in particular systems that cannot be treated by means
of other existing approaches (invariant-based inverse engineering and counter-diabatic driving).
Our main motivation is to design STA for fast compression of optical beam from initial profile u(x, 0)
to final one u(x, z f ) by designing the parabolic refractive index. After obtaining Equation (9), we shall
analyze the stability of beam propagation in terms of perturbative Kepler problem [59], to determine
the adiabatic reference for further acceleration.

We assume that Equation (9) is analogous to the classical Newton equation for a fictitious particle
with unit mass moving in a parabolic potential with the perturbation resulting from the nonlinear
interaction. The classical one-particle system is conservative, and the total energy E reads

E = ȧ2/2 + V(a), (10)

where the first term is kinetic energy (The dot refers to derivative with respect to z) and the second
term is the potential energy V(a) is

V(a) =
1

2a2 −
P

a
√

2π
+ α2(z)a2. (11)

From Figure 1, we can see that V(a) has a minimum point, corresponding to the stationary
propagation of optical beam, since the total energy (potential energy) for the fictitious particle is
minimized with zero kinetic energy. Moreover, according to Figure 1, the optical beam is supposed
to be more localized with increasing P, as the equilibrium width a at the minimum of V(a) becomes
smaller. This makes our variational approximation invalid at certain point. Classical analogy implies
that the stable equilibrium exists at the minimum of the potential energy. The mass center of optical
beam determined by the width a oscillates back and forth around this point due to the force −∂V/∂a.
Aiming to obtain the stationary solution as an adiabatic reference, we choose

α2(z) = Aeβz. (12)

According to ∂V/∂a = 0, the adiabatic reference can be achieved as the solution of

1
a3

c
− P√

2π

1
a2

c
− 2α2(z)ac = 0, (13)

which yields the initial and final beam widths,

ac(0) = 1, ac(z f ) = 0.5, (14)

with the parameters A = 0.3, β = 0.01, P = 1, z f = 306. In this case, it implies that äc(0) = äc(z f ) = 0
naturally, see the detailed discussions later on the boundary conditions. Therefore, we can use the
long propagation distance z f = 306 with such gradient refractive index to compress the width of
optical beam by half. In what follows we will use STA protocol to shorten the propagation distance,
while keeping the same result.
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Figure 1. The potential energy V(a) for a fictitious particle with unit mass as the function of the beam
width a. Here the parameters are α2(0) = 0.3 and P = 1 (solid red), P = 0.1 (dashed black), and P = 10
(dash-dotted blue).

4. Inverse Engineering for Fast Compression

Now it is ready for us to design STA based on the inverse engineering [47,58] to compress the
optical beam within finite short propagation distance z f . To this end, we design a(z) by assuming the
following simple polynomial ansatz [16,47,58]

a(z) = ai − 6(ai − a f )s5 + 15(ai − a f )s4 − 10(ai − a f )s3, (15)

with s = z/z f , satisfying the boundary conditions

a(0) = ai, a(z f ) = a f , (16)

ȧ(0) = ȧ(z f ) = ä(0) = ä(z f ) = 0. (17)

Here the boundary conditions (16) should coincide with the initial and final values of beam width (14),
given by the adiabatic reference, such that ai = ac(0) and a f = ac(z f ), and the other boundary
conditions are postulated for the smooth changes of refractive index at initial and final edges.
Interestingly, these boundary conditions (17) also imply the minimum potential energy V(a) and
zero kinetic energy at initial and final points, since the first and second derivatives of a are null.
This guarantees that our designed STA protocol can compress the optical beam with the same initial
and final conditions as the adiabatic reference. Of course, different ansatz can be also used for
interpolating the six boundary conditions mentioned above. However, they are not optimal at all.
One can further optimize it, for instance, by minimizing the propagation distance [58].

Figure 2 depicts the evolution of beam width designed by STA (solid red) and adiabatic protocols
(dashed blue), where the propagation distances z f = 306 (adiabatic) and z f = 5 (STA) are different.
By using polynomial ansatz (15), we interpolate the STA evolution of beam width by fixing the initial
and final boundary conditions (14) solved from an adiabatic reference. Obviously, the trajectory a(z)
designed from STA does not follow the adiabatic one ac(z), the solution of Equation (13). From Figure 2,
it is obvious that the beam width can be compressed from its initial value a = 1 to final value
a = 0.5 after propagating a distance z f = 306 for adiabatic case while it could be achieved only
after propagating a distance z = 5 in STA case. In the experiment [56], the relevant parameters are
λ0 = 0.5 µm, n = 2.3, and the divergence of Gaussian beam, θ0 = 15.7 mrad, such that the diffraction
length distance zR = 2πw2

0n/λ0 ' 561.465 µm, determined by the beam waist w0 = λ0/πnθ0 '
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4.4075 µm. Therefore, the propagation distance can be significantly reduced from z f = 17.18 cm to
z f = 0.28 cm in nonlinear media.

0 0.2 0.4 0.6 0.8 1

z/z
f

0.5

0.6

0.7

0.8

0.9

 
a

Figure 2. The evolution of beam width designed by STA (solid red) and adiabatic protocols (dashed
blue), where the initial and final values are fixed by Equation (14). Parameters: a(0) = ai = 1 and
a(z f ) = 0.5 are the same for STA and adiabatic protocols, but the propagation distance z f = 306
(adiabatic) and z f = 5 (STA) are different. P = 1 and the other parameters are the same as those in
Figure 1.

Next, we can engineer the guiding coefficient, relevant to the parabolic profile of refractive
index, through the generalized Ermakov equation, see Equation (9), once the trajectory a(z) is fixed.
In Figure 3, we compare the function of α2(z), designed from STA and adiabatic protocols with
different distances z f . Their initial and final values α2(0) = 0.03 and α2(z f ) = 6.4 are determined
from Equation (13), which are consistent for both STA and adiabatic protocols due to the boundary
conditions. However, there are two different things required for further clarification. The profile of
refractive index for adiabatic reference is exponentially growing function (12), which is not smooth at
z = 0 and z = z f . Moreover, the profile of refractive index for STA is not as smooth as the adiabatic
one, it will be changed from attractor to repeller when the propagation distance becomes shorter.
This could set the physical constraints on STA, when the refractive index requires to be a negative
value, leading to the loss of optical beam in practical metamaterial.

To give the intuitive picture, the density plot of the effective potential, α2(z)x2, i.e., the parabolic
profile of refractive index, is further shown in Figure 4. We can clearly see that the parabolic profile of
refractive index changes drastically for STA protocol, while the one for adiabatic reference is smooth.
In addition, this tell us the effective potential is similar to the time-modulating harmonic traps for
atom cooling, which can be implemented by the refractive-index gradient along the radial direction,
for instance, in the core of a graded-index optical fiber [52]. Since the designed refractive index is
n ∝ α2(z)x2, the effective potential becomes repulsive repeller for a very short distance, which implies
the negative refractive index. In this situation, the experimental implementation could be more
complicated, and the loss in metamaterial with negative refractive index also sets the limit to STA in
such optical systems.
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Figure 3. Guiding coefficient, α2(z), relevant to the parabolic profile of refractive index, for designed
STA and adiabatic protocols, when z f = 5 (solid red), z f = 0.6 (dot-dashed black) for STA protocols
are compared with adiabatic references z f = 306 (dashed blue).
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Figure 4. Density plot of effective potential, α2(z)x2, corresponding to the parabolic profile of the
refractive index, where the adiabatic reference (a) and STA protocol (b) are presented with the same
parameters as those in Figure 2.

By using a pseudo-spectral numerical method [4], i.e., split-step Fourier method (or beam
propagation method), we solve NLS (1) with our designed guiding coefficients. Figure 5a shows
that in a Kerr-type nonlinear medium, the Gaussian beam is diffracted during transmission without
the parabolic refractive index, and the beam width becomes boarder. This clarifies the significant role
of parabolic refractive index. Figure 5b,c further illustrate the beam propagation in the presence of
different parabolic refractive index, corresponding to Figure 4a,b. The numerical simulation confirms
the beam width of optical beam can be compressed from a((0) = 1 to a(z f ) = 0.5 by using adiabatic and
STA protocols. However, there is remarkable difference between the resulting propagation distances.
From Figure 5, the adiabatic propagation distance requires z f = 306, while the STA one is decreased
up to z f = 5. All results are consistent with the theoretical predictions. By inversely engineering the
refractive index, one can compress the optical beam efficiently within a short propagation distance.
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Figure 5. Beam propagation by using the split-step Fourier method, for free space without parabolic
refractive index (a), adiabatic reference (b), and STA protocol (c). All the parameters are the same as
those in Figure 2.

Finally, we shall discuss the validity of our method. We check the fidelity for different methods as
the function of propagation distance z f , in Figure 6, where the fidelity is defined as

F = |〈ure f (x, z f )|u(x, z f )〉|2, (18)

with ure f (x, z f ) being the targeted solution, see Equation (2), and u(x, z f ) being the final numerical
result. In Figure 6, we find that the fidelity of STA protocol is almost 1, while it decreases dramatically
for adiabatic reference. Clearly, the adiabatic compression by using the guiding coefficient (12) requires
the propagation distance longer than z f = 250 while the propagation distance can be decreased up
to z f = 5. Moreover, one can try the bright-soliton ansatz of hyperbolic secant. However, when the
Kerr-type nonlinearity is weak, the Gaussian assumption is still reasonable of soliton, see the similar
analysis for Bose-Einstein condensates in Refs. [45,47,58]
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 z
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lit
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Figure 6. Fidelity versus the propagation distance z f for adiabatic reference (blue dotted) and STA
protocol (red dotted). All parameters used here are the same as those in Figure 2.

5. Conclusions

In summary, we have proposed an efficient method for fast non-adiabatic compression or
decompression of optical beam propagation in nonlinear gradient refractive-index media. This is the
optical analogy of frictionless expansion/compression of weakly interacting atoms in time-modulating
harmonic traps [47,58]. We apply the variational approximation method to NSL equation, describing
the monochromatic beam propagation in paraxial approximation. Consequently, the auxiliary
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differential equation is obtained to connect the beam width with the guiding coefficient. Then, the
parabolic refractive index is designed inversely by fixing the boundary conditions, determined by an
adiabatic reference. By using split-step Fourier method, we confirm numerically that STA manages to
compress the optical beam with much shorter propagation distance, as compared to adiabatic reference.

Finally, we should mention several extensions for further exploration. For example, one can
combine the optimal control theory and inverse engineering for minimize the distance [58]. Instead of
parabolic refractive index, the Kerr-type nonlinearity can be also engineered for designing STA.
Moreover, the gain/loss [53,54], cubic/quintic nonlinearity, distributed dispersion [60] and even
absorbing atomic media [55] in such optical systems provide alternatives with more flexibility.
Our method proposed here is of interest with other applications of pulse compression in nonlinear
optical fiber, waveguide interconnection, mode transformer for miniaturized optical circuits,
and others [61,62].
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