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ABSTRACT
Engineering of cellular biomolecules is an emerging landscape presenting creative therapeutic 
opportunities. Recently, several strategies such as biomimetic materials, drug-releasing scaffolds, 
stem cells, and dynamic culture systems have been developed to improve specific biological 
functions, however, have been confounded with fundamental and technical roadblocks. Rapidly 
emerging investigations on the bioengineering prospects of mammalian ribonucleic acid (RNA) is 
expected to result in significant biomedical advances. More specifically, the current trend focuses 
on devising non-coding (nc) RNAs as therapeutic candidates for complex neurological diseases. 
Given the pleiotropic and regulatory role, ncRNAs such as microRNAs and long non-coding RNAs 
are deemed as attractive therapeutic candidates. Currently, the list of non-coding RNAs in 
mammals is evolving, which presents the plethora of hidden possibilities including their scope 
in biomedicine. Herein, we critically review on the emerging repertoire of ncRNAs in neurological 
diseases such as Alzheimer’s disease, Parkinson’s disease, neuroinflammation and drug abuse 
disorders. Importantly, we present the advances in engineering of ncRNAs to improve their 
biocompatibility and therapeutic feasibility as well as provide key insights into the applications 
of bioengineered non-coding RNAs that are investigated for neurological diseases.
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Introduction

Noncoding RNAs (ncRNAs) are a large cluster of 
non-protein coding nucleic acid species that have 
multiple functions in diverse cellular processes. 
Based on the biological functions and size (i.e., 
length of nucleotides) ncRNAs are divided into 
several types such as, ribosomal RNAs (rRNAs), 
transfer RNAs (tRNAs), small nucleolar RNAs 
(snoRNAs), small nuclear RNAs (snRNAs), guide 
RNAs (gRNAs), microRNAs (miRNAs), long non- 
coding RNAs (lncRNAs) and telomerase RNAs 
[1–3]. Importantly, regulatory ncRNAs can be 
classified into microRNAs (miRNAs), small inter-
fering RNAs (siRNAs), long noncoding RNAs 
(lncRNAs), Piwi-interacting RNAs (piRNAs), pro-
moter-associated RNAs (PARs), and enhancer 
RNAs (eRNAs) [1–3]. Several ncRNAs perform 
important roles in a wide range of biological and 
pathological processes. As such, interest in ncRNA 
biology has grown throughout biomedicine, bio-
medical informatics, and clinical sciences. In addi-
tion, the field of ncRNA research has witnessed 
significant progress in recent years due to amalga-
mation of new-age sequencing ‘omics’ technolo-
gies that have contributed to the growing 
repository of big-data in biomedicine [4,5].

The dynamic expression and functionality across 
cell/tissue types has made ncRNAs attractive thera-
peutic targets. More recently, there have been inten-
sive efforts for establishing siRNAs and miRNAs 
therapeutics against several diseases including cancer, 
cardiovascular, genetic disorders as well as to combat 
viral-induced pathogenesis [6–11]. Currently, there 
are extensive developments in laboratory investiga-
tion approaches to test the therapeutic feasibility of 
ncRNAs. For instance, the therapeutic feasibility of 
ncRNAs is being extensively tested in cell and tissue 
engineering and models of human diseases including 
cancer, vascular diseases and neurodegeneration by 
strategies that include the use of antisense oligonu-
cleotides (ASOs), small interfering RNAs (siRNAs), 
short hairpin RNAs (shRNAs), anti-microRNAs 
(antimiRs), miRNA mimics, miRNA sponges, circu-
lar RNAs (circRNAs) whose details have been 
reviewed elegantly in previous studies [12–14]. The 
mainstream approaches for ncRNA-based tissue 
regeneration therapy include altering endogenous cel-
lular activity using ncRNAs to influence the behavior 

of resident stem/progenitor cells, cells incorporated 
into tissue engineered constructs, or modulating the 
fate of both implanted and endogenous cells with 
selected ncRNAs [15–18]. MicroRNAs (miRNAs) 
are 18 ~ 21 nucleotides long, single stranded non- 
coding RNAs with pleiotropic functions [19,20]. 
MiRNAs are products of RNA Polymerase II driven 
transcription which target mature mRNAs in the 
cytoplasm based on the degree of sequences comple-
mentarity (seed, 2–8 nucleotides) between the 5ʹ end 
of the miRNA and 3ʹregion of the target mRNA 
(Figure 1). MiRNA-dependent activity is primarily 
post-transcriptional that results in either mRNA 
degradation or halting of translation machinery, 
which in both cases represses target gene expression 
(Figure 1). On the other hand, lncRNAs are defined as 
RNA transcripts longer than 200 nucleotides (nts) 
that are transcribed from intergenic and regions 
upstream of gene promoters, enhancer-coding 
regions including the anti-sense strands of protein- 
coding genes that can exist in both polyadenylated 
and non-polyadenylated states as illustrated in 
Figure 1 [1,21–23]. LncRNAs are associated with 
multiple mechanisms of action, such as chromatin 
modification, microRNA sequestration by sponging, 
scaffolding for protein interaction to regulate protein 
activity, transcriptional regulation by activation or 
repression via transcription factors, mRNA stabiliza-
tion, splicing modulation, and modulation of transla-
tion and degradation of target mRNAs [1,21–23]. A 
brief description on the maturation of miRNA, 
lncRNA and other ncRNA species including the cir-
cular intronic RNAs (ciRNAs) along with their estab-
lished cellular functions is illustrated in Figure 1.

It is no doubt that ncRNAs such as miRNAs, 
lncRNAs, circRNAs are abundant in the CNS. For 
instance, more than 40% of lncRNAs are expressed 
in the CNS whereas, several circRNAs and 
miRNAs are enriched in the neurons and their 
synaptic junctions. For example, studies have 
established several ncRNAs including miRNAs 
(miR-124, miR-125b, miR-21, miR-9), lncRNAs 
(Gomafu, Neat1) and circular RNAs (CDR1-AS) 
are highly expressed in the brain in a region or, 
cell-type-specific manner [24–29]. For instance, 
miR-124 is abundantly expressed during early 
stages of embryonic development and neuronal 
differentiation during adulthood whereas, miR-21 
is enriched in the microglia [25]. Similarly, miR- 
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Figure 1. Cellular fates of miRNA and LncRNA maturation. (a) microRNAs, transcribed as primary transcripts from intergenic (pri- 
miRNA) or, intronic regions (mirtrons, non-canonical). DROSHA-DiGeorge syndrome critical region 8 (DGCR8) complex processes the 
pri-mRNA structures to produce precursor (pre-mRNA) sequence which is exported from the nucleus to the cytosol for further 
processing by DICER1 and helicase activity to produce a mature 18–22nts long sequence that undergoes ribonucleoprotein (RNP) 
assembly with the family of Argonaute proteins (AGO1-4), called as RNA-induced silencing complex (RISC) complex. (b) Long non- 
coding RNAs are products of Pol II transcription from intergenic regions. They are presumed to undergo processing events including 
capping, splicing and polyadenylation, in some cases. From left – Natural anti-sense transcripts are transcribed from the opposite 
(complementary) strands of mRNAs (usually coding in nature). Anti-sense lncRNA and MALAT-1 associated RNA (mascRNA) are 
produced because of RNAse P processing. U-A-U triple helix at the 3ʹends of mascRNA provides structural stability. sno poly-
adenylated RNAs (SPA) are 3ʹpolyadenylated and produced from read-through transcripts that are assembled with sno ribonuclear 
proteins (snoRNPs). In contrast, sno-lncRNAs lack a 5ʹm7G cap and 3ʹ poly (A) tail and are produced from excited introns post splicing 
events. Finally, the circular intronic RNAs (ciRNAs) are also a product of intron excision post splicing events often produced as an 
outcome of 3ʹexonuclease activity.
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383 is a neuronal enriched miRNA that is abun-
dantly expressed in the brain stem and the cere-
bellum region [25]. On the other hand, lncRNAs 
such as Gomafu, MALAT-1 and Neat 1 are impli-
cated in glial specification and synaptic plasticity 
[30]. Overall, these studies establish the impor-
tance of ncRNAs in the development and function 
of the mammalian brain and present the feasibility 
of therapeutic targeting of the enriched and abun-
dantly expressed ncRNA species in neurological 
diseases. The improvement in genomic tools and 
advances in high power computational algorithms 
in amalgamation with ‘omics’ technologies has 
significantly advanced our knowledge on the role 
of several ncRNAs in phases of brain development 
to their alterations in diseased states. Neurological 
diseases or central nervous system (CNS) disorders 
are broadly defined by the loss of neurons featur-
ing irreversible tissue injury that is manifested in 
dramatic phenotypic and behavioral changes. 
Extensive research and current discoveries have 
established that both miRNAs and lncRNAs are 
critical determinants of gene expression changes 
and phenotypic outcomes in neurological diseases. 
More recently, there is an increasing attention 
toward understanding the role of circular ncRNA 
species in healthy and diseased states of the mam-
malian brain [29,31,32]. Recently there is a major 
drive in establishing circRNA species as effective 
stage-specific biomarkers for neuropsychiatric dis-
orders [33–36]. Collectively, the altered expression 
of ncRNAs such as miRNAs, lncRNAs and 
circRNAs in circulation (blood, serum, cerebrosp-
inal fluid, CSF) in diseased conditions establishes 
their importance as biomarkers for disease diag-
nostics. Therefore, the development of ncRNA 
based therapeutic approaches could advance the 
existing repertoire of CNS therapeutics and could 
further our understanding of ncRNA biology in 
the healthy and diseased states of the mammalian 
brain. We acknowledge that the repertoire of 
ncRNAs in the brain is constantly emerging. 
However, our understanding of ncRNA regulation 
and function is primarily based on the evidence 
gained from miRNAs and lncRNAs. Hence, we 
critically review the role of ncRNAs (especially 
miRNAs, lncRNAs) in the major neurological dis-
eases such as Alzheimer’s disease, Parkinson’s dis-
ease, along with neuroinflammation and drug 

abuse disorders that present a global healthcare 
burden and unmet clinical need. In this review 
we also discuss on the bioengineering approaches 
of these ncRNAs especially miRNAs and lncRNAs 
that are currently underway to improve their ther-
apeutic and diagnostic feasibility for neurological 
diseases.

ncRNAs implicated in neurological disorders

ncRNAs confer a high level of regulation by 
governing gene expression changes at both tran-
scriptional and post-transcriptional levels impli-
cated in the development and function of the 
CNS. Novel high-throughput molecular and ima-
ging technologies have established their function 
in neuronal development, differentiation, synapse 
function as well as in regulation of behavior and 
cognition. In the recent years an extensive line of 
evidence has underscored the critical role of 
ncRNAs in brain development, blood brain bar-
rier formation and regulation, stress response, 
cellular homeostasis, and neuronal plasticity 
[37–48]. In addition, loss of function studies 
have revealed the diseased/pathological outcomes 
associated with ncRNA function [49–52]. While 
there are several elegant reviews that can be 
referred to gain insights into the role of ncRNA 
species in each of the neurological diseases, in 
this section we aimed to provide a general over-
view of the status and role of ncRNAs that are 
abundantly expressed in the CNS and are drama-
tically altered in Alzheimer’s disease, Parkinson’s 
disease and other neurovascular inflammatory 
conditions.

Alzheimer’s disease (AD)

Alzheimer’s disease is a complex neurodegenera-
tive disorder and is the predominant cause of 
elderly dementia [53,54]. The symptoms mark 
a slow yet progressive memory loss and cognitive 
decline due to the impairment of region-specific 
neurons and cellular circuits, which eventually 
lead to neuronal death/loss. In this regard, several 
miRNAs and lncRNAs have been identified as key 
factors that are essential for the regulation of cog-
nitive functions and memory processes in AD 
[55,56]. For example, in a mouse model of AD 
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(Tg2576 mice), miR-124 was found to be drama-
tically induced in the hippocampus, which was 
directly associated with deficits in synaptic com-
munication and memory dysfunction [57]. Studies 
have shown that expression of several miRNAs 
was altered in AD pathology, such as miR-30a-5p 
and miR-128 [58]. In the brains of transgenic 
animals of AD, a reduction of miR-298 and miR- 
328 was detected, which was associated to higher 
β-amyloid precursor protein converting enzyme 
(BACE1) protein [59]. In related models the level 
of miR-195 has been reported to negatively corre-
late with BACE1 protein expression [60]. miR-124 
has also been shown to negatively correlate with 
BACE1 expression in mouse PC12 cells and pri-
mary cultured hippocampal neurons exposed to 
Aβ treatments [61,62]. Overexpression of miR-98 
has been shown to induce Aβ production and tau 
phosphorylation in vivo, whereas inhibition of 
miR-98 exhibits opposing effects [63]. In primary 
cultures of human brain cells and in brain speci-
mens from AD patients, it has been shown that 
miRNAs are altered that may have effects on Aβ 
deposition [64–67].

With regards to lncRNAs in AD pathology, 
BACE1-AS, a natural antisense transcript (NAT), 
which is a transcript that is endogenously tran-
scribed from β-amyloid precursor protein cleaving 
enzyme 1 mRNA sequence has been shown to 
trigger production and aggregation of Aβ through 
BACE1 activity, leading to detrimental effects [68]. 
In a recent study, BC200 RNA was discovered in 
quantifiable levels specifically in AD patients com-
pared to a gradual decreasing trend seen in the 
normal age-matched control group [69], and sup-
pressing BC200 inhibited BACE1 expression [70]. 
It is important to note that the direct role of 
BACE1 in AD pathology remains unclear. 
Moreover, the antisense transcript 17A expression 
has been found to be upregulated via the inflam-
matory signaling leading to increased secretion of 
Aβ in the cerebral tissue from AD patients [71]. 
Another natural antisense transcript, NAT-Rad18 
that acts by silencing Rad18 mRNA, has reported 
to be upregulated followed by Aβ-derived neuro-
toxic apoptosis [72]. Studies have also shown that 
the complimentary strand of Glial cell-derived 
neurotrophic factor (GDNF) codes for GDNFOS 
lncRNA, which shows distinctive expression 

patterns in postmortem middle temporal gyrus 
from AD patients compared to age-matched nor-
mal group [73].

Parkinson’s disease

Parkinson’s disease (PD) is considered 
a multifactorial and aging-related progressive dis-
ease, commonly characterized by movement- 
associated disabilities that depend on the extent 
of neurodegeneration [74,75]. It is established 
that motor dysfunction in PD underlies loss of 
dopaminergic neurons, specifically in midbrain’s 
substantia nigra [74]. The motor deficits in PD 
primarily include bradykinesia, rigidity, and tre-
mor [75]. Using high throughput techniques such 
as RNA sequencing, microarray and microRNA 
qPCR profiling, studies have reported involvement 
of several microRNA and lncRNA species in PD 
pathology [76]. For instance, in the postmortem 
human brain miR-30b in the substantia nigra and 
miR-30 c-2 and miR-30d in cingulate gyri were 
found to be induced in PD patients compared to 
healthy controls [77,78]. Moreover, induced miR- 
30b was detected in the exosomes isolated from 
the cerebrospinal fluid of PD patients [79]. 
Differential expression levels of miR-30 family 
members have also been reported in the peripheral 
blood, plasma and serum of PD patients by several 
research groups [80–82]. Similarly, miR-29a, miR- 
29b-1 and miR-29b-2 were upregulated in the 
anterior cingulate gyri of PD patients [78] 
Moreover, miR-29b and miR-29 c were downre-
gulated in the PBMCs of PD patients [80] whereas, 
decreased miR-29a was observed in the blood 
sample of both drug-treated and untreated PD 
patients as compared to healthy controls [83]. 
Based on these observations, it can be suggested 
that blood serum levels of miR-29a and miR-29 c 
decrease with the severity of PD pathology [84]. 
miR-29 has been shown to regulate various pro-
cesses that are important in PD development, such 
as apoptosis [85–87], neuronal survival [86], 
senescence [88,89], motor function [86,90], 
immune regulation [91–93], and epigenetic mod-
ifications [94,95]. Studies have also reported 
alteration in expression of let-7 family of 
miRNAs i.e., let-7d-5p, let-7 f-5p and let-7 g in 
both the prefrontal cortex and blood of PD 
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patients [96]. In the central nervous system, miR- 
26a was observed to be upregulated in the sub-
stantia nigra tissues and in the exosomes isolated 
from the cerebrospinal fluid of PD patients as 
compared to healthy controls [77,79], and similar 
findings have been also reported in the striatal 
tissues of rodent PD models [97].

On the other hand, recent studies have discov-
ered the involvement of several lncRNA species in 
Parkinson’s pathology. For instance, NEAT1 levels 
were significantly upregulated in the peripheral 
blood of PD patients [98] and has been shown to 
sponge miR-124 to accelerate Parkinson’s pathol-
ogy [99]. Homeobox (HOX) transcript antisense 
RNA (HOTAIR), ~2.2kb nucleotide long non- 
coding transcript found at the HOXC genetic 
locus has been reported in PD progression [100]. 
Studies have revealed a notable decrease in MAPT- 
AS transcripts encoded from the antisense strand 
of microtubule-associated protein tau (MAPT) in 
brain regions of PD-derived tissue [101].

Neurovascular inflammation

Both miRNAs and lncRNAs have been shown to 
play crucial roles in the control of brain function 
[102–104]. Inflammation is one of the important 
factors that is involved during ischemia-induced 
brain damage. Pro-inflammatory secretory factors 
such as IL-1ß, IL-6, TNF-α are robustly induced in 
response to the damaged blood vessels, tissue 
injury and cellular apoptosis [105,106]. The com-
bined effect exacerbates brain injury thus making 
it irreversible. One of the significantly affected 
signaling pathways is the NF- kß pathway sought 
to be a prime target for miRNA-mediated regula-
tion [107]. For instance, miR-146a has been shown 
to inhibit NF-kß signaling by targeting its adaptor 
proteins, tumor associated necrotic factor 6 
(TRAF6) and receptor associated kinase-1 (RAK- 
1), involved in signal activation [107,108]. miR- 
146 and miR-9 regulate NF-kß signaling in rodent 
models of experimental stroke [107,109]. In 
another study miR-155 was shown to regulate 
inflammation by promoting TNF- α and IL-1 ß 
expression via toll-like receptor 4 (TLR4) response 
in transient middle cerebral artery occlusion 
(tMCAO) model [110]. Stroke-induced ischemic 
damage induces oxidative stress mediated cell 

death causing irreversible tissue injury followed 
by secondary brain damage. Induced reactive oxy-
gen and nitrogen species (ROS and RNS), hydro-
gen peroxide and free radicals are resultants that 
subsequently damage the neurovascular unit via 
apoptosis, cellular dysfunction and exacerbated 
pro-inflammatory signaling [111,112]. Clinically, 
the additive response of several molecular events 
underlying stroke pathology determines the infarct 
volume. Several microRNAs have been accounted 
to regulate an array of molecular events underlying 
pathology associated with stroke-induced ischemia 
[113–116]. For instance, knockdown of miR-23a- 
3p in the cerebro-ventricular brain region of mice 
exposed to tMCAO reduced infarct volume in 
models of ischemia/reperfusion injury [117]. On 
the other hand, microRNA miR-424 was shown to 
positively regulate superoxide dismutase activity 
where knockdown using antagomiRs in the cere-
bro-ventricular region rescued infarct volume via 
inhibition of cellular apoptosis [118]. In the serum 
of acute ischemic stroke patients, miR-15a, miR- 
16, miR-17-5p, miR-125b-5p, miR-125a-5p, miR- 
143-3P and miR-106b-5p have been detected in 
elevated levels [119,120]. When miR-106b-5p was 
inhibited in rat brain post tMCAO, significant 
recovery was observed in neurological deficit 
scores and infarct volume [121]. Stroke pathology 
significantly affects angiogenesis by altering the 
levels of angiogenic factors (for instance, vascular 
endothelial growth factor A, VEGF-A) essential for 
vascular remodeling and functional recovery post- 
stroke. Over the past few years, several miRNAs 
have been reported to regulate VEGF-A expression 
in models of experimental stroke. For instance, 
miR-140-5p, miR-377, miR-150, miR-107 and 
miR-210 have been shown to post- 
transcriptionally regulate VEGF-A mRNA levels 
by targeting its 3ʹ untranslated region (UTR). 
Ischemia has been shown to induce angiogenesis 
via the induction of HIF-1alpha dependent VEGF- 
A/Notch signaling axis and downregulation of 
miR-153-3p [122].

Other species of small non-coding RNA include 
small nucleolar RNA (snoRNA), piwi-interacting 
RNA (piRNA), endo-siRNA, vault RNA, yRNA, t 
RNA-derived stress-induced RNA, telomere small 
RNAs, centromere repeat-associated RNA, 
microRNA-offset RNA, tRNA-derived RNA 
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fragments and splice-site RNAs that are involved 
in several aspects of development and function 
[123,124]. Although this diverse family of small 
non-coding RNAs, microRNAs are the most 
extensively studied in experimental models of neu-
roinflammation essentially due to their stability 
with a well-defined maturation cycle together 
with the access of current molecular tools and 
techniques. The depth of knowledge gained from 
the miRNAs and their function has served as 
a catalyst toward the development of efficient 
tools to study the molecular and cellular function 
of non-coding RNAs.

It is evident that tremendous advances have 
been made toward understanding the role of non-
coding RNAs especially microRNAs. However, the 
focus is now steadily shifting toward understand-
ing the role of lncRNAs in development and dis-
eases of the mammalian brain. In general, the 
widespread use of RNA sequencing (RNA-seq) 
screens has led to the discovery of promising can-
didates that could pave the way for unveiling the 
therapeutic potential of ncRNAs. It can also be 
envisioned that lncRNAs can potentially serve as 
efficient tools for personalized medicine based on 
their specific expression patterns in each diseased 
condition or in a given population. Numerous 
challenges remain to be resolved before lncRNAs 
can reach clinical application. The evolving func-
tional repertoire of lncRNAs highlights their invol-
vement in more than one mechanism in diseased 
states adding layers of complexity to their mole-
cular characteristics. For instance, single nucleo-
tide polymorphisms (SNPs) in ANRIL and H19 
have been associated with risks of cancer develop-
ment and cardiovascular disease [125,126]. 
Additionally, the low conservation of lncRNAs 
across evolution of mammalian species is 
a bottleneck in their discovery and functional vali-
dation [127–129]. Based on the knowledge gath-
ered from microRNAs, it is often suggested that 
the conserved secondary structure of lncRNAs is 
also of higher importance than its full-length 
sequence. A key challenge to overcome constitutes 
the modes of tissue-specific delivery and ensuring 
the functionality in the targeted cell types of the 
anti-sense oligos targeting a specific lncRNA. 
There is a significant lack of in-depth understand-
ing of lncRNA function. Moreover, the translation 

of lncRNA-based therapy into clinical applications 
is a long haul that is faced by challenges in under-
standing the molecular function as well as phar-
macological features that include route of delivery, 
stability of RNA drug in both circulation and cells, 
duration of treatment, dosage adjustment, and off- 
target effects. Hence, extensive efforts are needed 
for a thorough characterization and functional 
validation of lncRNAs in neuronal and neurovas-
cular pathology, both at the molecular and at the 
cellular level. A table with the list of miRNAs and 
lncRNAs well reported in the brain and CNS of 
patients with neurological disorders are listed in 
Table 1.

Disease-specific ncRNAs that have been 
reported with significantly altered expression in 
patients are listed in the table have been summar-
ized Alzheimer’s disease, Parkinson’s disease, for 
Schizophrenia and Huntington’s disease.

It is known that ncRNAs are pleiotropic mole-
cules that exhibit multiple functionalities. With 
regards to the therapeutic prospects of ncRNAs, 
it is also important to identify the genetic or mole-
cular targets of ncRNAs that are implicated in 
diseased states. Therefore, given this pathophysio-
logical importance we have summarized some of 
the widely reported miRNA and lncRNA species 
and their experimentally validated genetic targets 
in respective neurological diseases in Table 2.

Abbreviations of gene names: GSK-3β (Glycogen 
synthase kinase-3-beta); CAMKK2 (Calcium/ 
Calmodulin Dependent Protein Kinase Kinase 2); 
SIRT1 (Sirtuin 1); ROCK1(Rho Associated Coiled- 
Coil Containing Protein Kinase 1); CFH (comple-
ment factor H); TRAF-6 (TNF Receptor Associated 
Factor 6); IL-1 (Interleukin-1); IRAK-1(Interleukin 
1 Receptor Associated Kinase 1); FOXQ1 (Forkhead 
Box Q1), PTGS2(Prostaglandin-Endoperoxide 
Synthase 2); CDK5 (Cyclin Dependent Kinase 5); 
DUSP6 (dual-specificity phosphatase 6); PPP1CA 
(Protein Phosphatase 1 Catalytic Subunit Alpha); 
BACE-1 (beta-site amyloid precursor protein cleav-
ing enzyme); PTPN (Protein Tyrosine Phosphatase 
Non-Receptor); NR3C1(Nuclear Receptor Subfamily 
3 Group C Member 1); FGF-7(Fibroblast Growth 
Factor 7); SORL1 (Sortilin Related Receptor 1); 
BDNF (Brain-derived neurotrophic factor); GDNF 
(Glial cell-derived neurotrophic factor); EPHB2 
(Ephrin type-B receptor 2); RAD18 (RAD1 
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Checkpoint DNA Exonuclease 18); LRP1 (LDL 
Receptor Related Protein 1); HMGB2 (High 
Mobility Group Box 2); SNCA(Alpha-synuclein); 
MAPK-JNK(Map kinase- Jun Kinase); PARK2 
(Parkin2); LRRK2 (Leucine Rich Repeat Kinase 2); 
ATG5 (Autophagy Related 5); USP6 (Ubiquitin 
Specific Peptidase 6); NEDD4 (Neuronal precursor 
cell-expressed developmentally downregulated 4); 
USP3(Ubiquitin Specific Peptidase 3); DNMT3A 
(DNA methyltransferase 3 alpha); TET2 (Ten- 
Eleven Translocation 2); E2F1 (E2F Transcription 
Factor 1); PINK1 (PTEN Induced Kinase 1); TAK1 
(Transforming Growth Factor-Beta-Activated 
Kinase 1); TAB3(TGF-Beta Activated Kinase 1 
(MAP3K7) Binding Protein 3); UCH-L1(ubiquitin 
carboxyl-terminal esterase L1); NLRP3 (Nod like 
receptor family pyrin domain containing 3); 
SOCS3 (Suppressor Of Cytokine Signaling 3); 
CASP1(Caspase 1); QK1(Quaking Homolog, KH 
Domain RNA Binding 1); SRSF (Serine And 
Arginine Rich Splicing Factor); SF1(Splicing 

factor 1); DISC1 (Disrupted-in-Schizophrenia 1); 
ERBB4 (Erb-B2 Receptor Tyrosine Kinase 4); 
GATA2 (GATA-binding factor 2); DPYSL3 
(Dihydropyrimidinase Like 3); PTBP2 
(Polypyrimidine Tract Binding Protein 2); MMP-9 
(Matrix Metallopeptidase 9); STAT-4 (Signal 
Transducer And Activator Of Transcription 4); 
MeCP2 (Methyl-CpG Binding Protein 2); ZO-1 
(Zonula occludens-1); FZD3 (Frizzled 3); NRG2/3 
(Neuregulin 2/3); SYN2/3 (Synapsis2/3); ATXN1 
(ataxin-1); HTT (Huntingtin); SOX9 (SRY-Box 
Transcription Factor 9); P53 (tumor suppressor 
protein coding gene 53); PGC1(Peroxisome 
Proliferator-Activated Receptor Coactivator 1).

Other neurological diseases

Dysregulated miRNA biogenesis and activity are 
directly implicated in the pathogenesis of several 
complex neurodegenerative and psychiatric dis-
eases. Altered expression of miRNAs such as 

Table 1. List of non-coding RNAs (miRNAs, lncRNAs) detected in the brain regions and cerebrospinal fluid of patients 
suffering from neurological diseases.
Alzheimer’s disease

ncRNA species Patient brain region References

mir-29 Hippocampus [130–133]
miR-15, miR-125, miR-146, miR-222, miR-29 Cerebrospinal fluid
miR-15, miR-153, miR-455-3p, miR-219 Brain tissue
miR-46, miR-9, miR-101, miR-106 Cortex, Hippocampus
miR-125b, miR-107 Cortex tissue
miR-140-5p Cerebellum, Hippocampus
miR-501-3p, miR-93 Serum
NDM29, 17A Cerebral Cortex
GDNFOS, MALAT1 Cerebrospinal fluid

Parkinson’s disease
miR-30 family Substantia Nigra [76,134–137]
miR-29 family Mesencephalon, Prefrontal cortex
Let-7 family Mesencephalon, Prefrontal cortex, Substantia Nigra
miR-485 Substantia Nigra, Caudate Putamen
miR-26 Striatum, Substantia Nigra
miR-200 Midbrain tissue
miR-151 Prefrontal cortex
miR-1, miR-28, miR-374 Substantia Nigra
miR-200a-3p, miR-542-3p, miR-144-5p, miR-151a-3p,  

let-7 f-5p, miR-27a-3p, miR-125a-5p, miR-423-5p
Cerebrospinal fluid

AK127687, UCHL1-AS1, and MAPT-AS1 Cerebellum
HOTAIRM1, lnc-MOK-6:1, and RF01976.1–201 Circulating PBMCs
lincRNA-p21, Malat1, SNHG1 Brain tissue

Schizophrenia
GOMAFU Cortical gray matter, Superior temporal gyrus [102,138,139]
PINT, GAS5, IFNG-AS1, FAS-AS1 Blood, PBMC in circulation

Huntington’s disease
HAR1F, HAR1R Striatum [133,140,141]
HTTAS_v1 Frontal cortex
Neat1 Brain tissue
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miR-181b, Let-7 g, miR-26b, miR-30b, miR29b, 
and miR-106b has been reported in the postmor-
tem brain tissue of schizophrenia patients [182– 
184]. Fragile X syndrome is a disease characterized 
by severe mental retardation which is caused by 
the loss of RNA-binding protein fragile X mental 
retardation protein (FMRP). Genetic knockdown 
of FMRP mitigates the effect of miR-125b and 
miR-132 on dendritic spine morphology [185]. 
Studies have identified that miR-125b directly tar-
gets the NR2A subunit of the N-methyl- 
D-aspartate receptor (NMDAR), and that gluta-
mate receptor NR2A mRNA which is associated 
with FMRP, supporting the idea that FMRP func-
tions as a target engagement for miRNA activity 
[185,186]. Evidence also indicates a strong 

association between miRNA and Huntington’s dis-
ease (HD) pathology given the dysregulation in 
transcription and processing of microRNAs 
[187]. In the brains of HD patients, miR-29a, 
miR-132, and miR-330 have been observed to be 
expressed in higher levels [188,189]. Significant 
downregulation of miR-22, miR-128, miR-29 c, 
miR-138, miR-132, miR-218; and miR-674, miR- 
344, and miR-222 has also been identified in the 
mouse models of HD [190]. Several miRNAs such 
as miR-142-3p, miR-145, miR-146a/b, miR-22, 
miR-155, miR223/-3p, miR-584, and miR-326 
have been also reported to be induced in multiple 
sclerosis (MS) patients implying their involvement 
in the pathogenic inflammatory process observed 
in MS. Dysregulation of various miRNAs targeting 

Table 2. List of non-coding RNAs (miRNAs, lncRNAs) with their respective genetic targets reported in neurological 
disorders.
Alzheimer’s disease

ncRNA species Direct and indirect 
molecular targets

References

miR-9 family (miR-9-5p) GSK-3β, CAMKK2, SIRT1 [142–144]
miR-146 family 

(miR-146a)
ROCK1, CFH, TRAF-6, IL-1, IRAK-1 [145,146]

miR-125b FOXQ1, PTGS2, CDK5, DUSP6, PPP1CA, Bcl-W [147,148]
miR-124 BACE-1, PTPN, NR3C1 [149–151]
miR-107 BACE-1, FGF-7 [152,153]
BACE1-AS BACE-1 [154,155]
51A SORL1 [156]
BDNF-AS BDNF, GDNF, EPHB2 [156]
NAT-Rad18 RAD18 [157]
LRP1-AS LRP1, HMGB2 [158]

Parkinson’s disease
miR-30 family SNCA, PARK2, LRRK2, ATG5, USP6, NEDD4, USP3 [78,80,159]
miR-29 family DNMT3A, TET2 [160,161]
Let-7 family E2F1 [162]
miR-181 p38 MAPK/JNK, PARK2 [163,164]
miR-26 PTEN, PINK1, TGF-β/JNK pathway, TAK1, TAB3 [76]
lincRNA-p21 sponge for the miR-181 family [165]
NaPINK1 PINK1 [166]
UCHL1-AS1 UCH-L1 [167]
MALAT1 SNCA [135]
HOTAIR LRRK2 [168]
SNHG1 NLRP3 [169]

Schizophrenia
AC006129.1 SOCS3, CASP1 [170]
Gomafu/MIAT QK1, SRSF, SF1, DISC1, ERBB4 [30,171]
miR-132 DNMT3A, GATA2, DPYSL3, PTBP2, MMP-9, STAT-4 [172,173]
miR-30a 

miR-195
BDNF [174]

BDNF-AS BDNF [175]
miR-212 MMP-9, MeCP2, STAT4, ZO-1 [173]
miR-137 NRG2/3, SYN2/3, ATXN1, ERBB4, GSK3B, FZD3, PTGS2 [176]

Huntington’s disease
HTTAS_v1 HTT [177]
miR-124 PGC1, BDNF, SOX9 [178]
miR-29 c P53 [179,190]
MEG3 HTT [180]
TUG1 P53 [181]
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the inflammatory activity of various immune cells 
has also been extensively reported [191–194].

Substance (drug) abuse and addiction are 
a debilitating disorder characterized by compulsive 
drug seeking behavior. At the molecular level, it is 
established that miRNAs play critical roles in 
synaptic plasticity, neuronal communication and 
signaling, which are significantly altered in the 
presence of drugs of abuse [195,196]. For example, 
multiple studies have demonstrated the involve-
ment of miRNAs in cocaine addiction. Extended 
exposure to cocaine induces miR-212 concomitant 
with the increase of total and phosphorylated 
c-response element binding protein (CREB) in 
the dorsal striatum of rats, a key region involved 
in the development of compulsive cocaine use 
[197]. In a miRNA profiling study of cocaine- 
induced plasticity genes, it was shown that the 
miRNAs let-7d and miR-124 are down-regulated, 
with concomitant induction of miR-181a in the 
mesolimbic dopaminergic system under chronic 
cocaine exposure [198,199]. Using next- 
generation miRNA sequencing method several 
miRNAs were identified that exhibit cocaine- 
induced expression changes, such as the miR-8 
family members miR-429 and miR-200a/b in the 
nucleus accumbens and striatal synapses [200]. 
Recently, the role of poly(ADP-ribose) polymer-
ase-1 (PARP-1) was identified in plasticity, mem-
ory, and cocaine addiction [201,202]. Employing 
in vivo models, we reported that PARP-1 was 
modulated by both miR-125b and miR-124 that 
were significantly downregulated with cocaine 
exposure [27,203]. This dose-dependent nature of 
addiction was implicated in cocaine-induced acti-
vation of PARP-1-induced signaling for the main-
tenance of ATP levels in the dopaminergic 
neurons [27,203,204]. Specifically, cocaine expo-
sure downregulated both miR-125b and miR-124 
in the nucleus accumbens (NAc), however only 
miR-124 expression was dramatically altered in 
the hippocampus and ventral tegmental area 
(VTA) [27,198,203]. Other studies have also 
found that miR-495, let-7, and miR-212/132 were 
significantly downregulated in the NAc region 
upon cocaine treatments that could regulate sev-
eral canonical reward pathways [205]. Recent stu-
dies have also identified lncRNAs that are altered 
in key reward regions upon cocaine exposure. For 

instance, lncRNAs TRAF3IP2_AS1 (tumor necro-
sis factor receptor-associated factor 3-interacting 
protein 2_antisense 1) and PRKCQ_AS1 (protein 
kinase C theta antisense 1) are reported to be 
significantly altered in cocaine abusers [206]. In 
another study using transcriptome profiling 
approach, lncRNA Gas5 was identified to be 
important in inducing cocaine-mediated effects 
in the mouse nucleus accumbens (NAc) [207]. 
Using rodent model of methamphetamine abuse, 
research also reveals dramatic alterations in the 
lncRNA expression profile in the nucleus accum-
bens [208].

Collectively, not only these ncRNAs are asso-
ciated with drug abuse, but they are also associated 
with several brain diseases suggesting the involve-
ment of novel miRNAs and lncRNAs whose mole-
cular role and functional characterization demands 
further investigation.

Bioengineering of ncRNAs for neurological 
diseases

Bioengineering is the application of engineering 
principles to improve bio-molecular applications 
to address key challenges in medicine and biology. 
Bioengineering of ncRNAs can range from nano-
particle-based functionalization to engineering 
nucleoside chemistry to improve the delivery and 
pharmacological properties both in vitro and in 
vivo. In this regard, bioengineering of ncRNAs is 
a rapidly evolving field that is anticipated to revo-
lutionize nucleic acid therapeutics for various 
human diseases including neurological and neuro-
degenerative disorders. Emerging pre-clinical and 
clinical evidence has established that miRNAs are 
secreted in bodily fluids suggestive of effective 
early-stage biomarkers and therapeutics [209– 
211]. Therefore, the aim of selectively sensing, 
enriching, and capturing the changes in miRNA 
expression profile in a wide range of sample types 
is critical. Hence, bioengineering of miRNAs via 
magnetic nanoparticle (MNP) or polymer-based 
functionalization may provide enhanced therapeu-
tic features when compared to traditional 
approaches [212]. A summary of various bioengi-
neering applications employed for miRNAs and 
lncRNAs are presented in Figure 2. For instance, 
using assemblies of nano-(Fe2O3) particles in 
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combination with Pt nanoparticles have been used 
for the detection of miR-21, polydopamine–func-
tionalized (Fe3O4) core nanoparticles with carbon 
dots have been used for sensing of miR-167, and 
(Fe3O4) nanoparticles with carboxyl-modifications 
have been used in microfluidic devices to quantify 
miRNA-200a-3p [212]. Moreover, Fe3O4-Ag (iron 
oxide-silver) core shell nanoparticles have been 
utilized for the capture and detection of miRNAs 
such as miRNA let-7b with an improved sensitivity 
in the lower femto-Molar (fM) range. Such proof- 
of-concept studies have been performed in a rela-
tively homogeneous system without the interfer-
ence of blood, cellular factors, complex tissue 
architecture etc., and thus it should be noted that 
the number of studies performed in natural body 
fluids is highly limited. The ability of concentrat-
ing circulating miRNAs on the MNPs by surface 
conjugation or functionalization approaches has 
resulted in a number of highly efficient miRNA 
sensing devices [212,213]. Cationic polyurethance 
(PU) short branch polyethylene imine (PEI) nano-
complexes have been developed as vehicles for 

miR-145 delivery to inhibit brain tumor by target-
ing genes such as Sox4 and Oct4, in vitro [214]. 
Similarly, anti-miR-21 nanoparticles co- 
encapsulating the drug doxycycline have demon-
strated enhanced cell apoptosis and reduced tumor 
growth in brain tumor models [215]. Gold nano-
particles covalently functionalized with miR-182 
have been tested to selectively deliver miR-182 to 
brain tumors that has resulted in reducing tumor 
size [216]. Similarly, gold nanoparticles loaded 
with anti-miR-92b in apo-lipoprotein E coated 
liposomes have been shown to efficiently traverse 
through the blood brain barrier to reduce tumor 
size in mouse model of glioblastoma [217]. 
Another advanced engineering approach includes 
‘artificial miRNAs’, where the mature miRNAs 
sequence is replaced in the primary miRNA tran-
script for a complementary sequence to target the 
gene of interest [218,219]. When artificial miRNAs 
are transfected into mammalian cells, they 
undergo natural miRNA processing and produce 
the mature miRNA that directly targets the mRNA 
due to its sequence complementarity and it is 

Figure 2. Bioengineering of ncRNAs for biomedical applications. Both miRNAs and lncRNAs can be used for several therapeutic 
and diagnostic applications based on the bioengineering approaches used that include encapsulation of ncRNAs in functionalized 
nanoparticles, lipid/polymer based nanocarriers, terminal modifications including biotin or fluorophore tagging or chemical 
modifications by adding functional groups (i.e., 2ʹO-Methyl, P = S bonds) or by bridging the 2ʹoxygen with 4ʹcarbon as represented 
in the figure.
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postulated that this approach restricts the off- 
targets effects of a natural mature miRNA in cells 
[218,219]. These findings clearly establish that we 
are beginning to learn about the therapeutic 
aspects of bioengineering of miRNAs. 
Additionally, adeno-associated virus 5 (AAV5)- 
mediated delivery of miRNAs to the brain is cur-
rently being investigated as a ‘gene therapy’ in 
non-human primates in model of Huntington’s 
disease [220]. The discussed proof-of-concept stu-
dies provide a foundation and present the feasibil-
ity for investigation of bioengineered miRNAs for 
neurological diseases such as Alzheimer’s disease, 
Parkinson’s disease as well as other neuropa- 
thologies.

Based on current research trends, the future 
points toward development of cost-efficient func-
tionalized approaches with improved biocompat-
ibility for early capture, detection and delivery of 
miRNAs in disease systems [212,213]. Additional 
engineering of miRNAs includes nucleic acid 
modifications that improve the stability and tar-
get specificity of miRNAs when present in the 
cellular environment. RNA molecules are 
unstable due to the presence of a 2′ hydroxyl 
(OH) group [221]. Other strategies include che-
mical modifications such as phosphothiorate 
group, phosphodiester group and lock nucleic 
acid modifications for miRNA and small RNA- 
based therapeutics (Figure 2). Therefore, engi-
neering of the nucleosides by incorporation of 
2′-O-methyl (2′OMe)-modifications improves 
off-target effects without affecting basal immune 
response [222,223]. Similarly, 3ʹ cholesterol 
groups are also used to improve the delivery 
and bioavailability of small RNAs as cholesterol 
is a physiological and structural component of 
animal cell membranes [224].

It must be noted that the diverse functionality of 
lncRNAs presents multiple ways in which these 
ncRNAs can be targeted. At the same time these 
diverse features pose a great deal of challenge in 
the therapeutic pipeline given the nonspecific 
events that could arise due to manipulation of 
a given lncRNA in the cell. However, reports sug-
gest that lncRNAs can be targeted using engi-
neered anti-sense oligos (ASOs) or by 
manipulating the levels of naturally occurring anti-
sense transcripts (NATs) [13,17,225].

Therapeutic feasibility of ncRNAs

The use of ncRNAs to treat human diseases is rapidly 
developing and so are the approaches to engineer 
ncRNAs for therapeutic and diagnostic compatibil-
ity. Several evidence point to the critical role of 
miRNAs and lncRNAs in disease models ranging 
from CNS pathologies, drug abuse to viral-induced 
nervous system disorders [226–230]. As of now, we 
are beginning to understand the molecular role of 
lncRNAs whereas, with regards to miRNAs the field 
is witnessing a transition for small RNA therapeutics 
[52,231–235]. Several reports have elegantly 
described various RNA-based therapies that include 
antisense oligonucleotides (ASOs), short hairpin 
RNAs (shRNAs), ASO anti-microRNAs (anti- 
miRs) and small interfering RNAs (siRNAs), that 
have been developed for liver diseases, muscular 
disorders, CNS diseases and cancer [12–14]. 
Currently, approximately 10 RNA-based therapeu-
tics are approved by the FDA and multiple small 
RNA therapeutic approaches are in stages of clinical 
investigation for complex CNS and rare genetic dis-
orders [17,225]. Importantly, we and others have 
discussed on the scope of ncRNA-based therapeutic 
applications in diseases such as COVID-19-induced 
neurological disorders, systemic inflammation and 
cardiovascular diseases [6,230,236–240]. As an 
example, in 2018, the FDA approved ‘Patisiran’- 
the first therapy based on administration of RNAi 
(siRNA-based) for the treatment of rare progressive 
polyneuropathy caused by hereditary transthyretin- 
mediated amyloidosis. This drug works by targeting 
the 3ʹUTR region of transthyretin mRNA [241,242]. 
Neurological and neurovascular diseases present 
a global healthcare burden and an unmet clinical 
need [243–247]. Hence, the observation that 
miRNAs modulate expression of candidate genes in 
various diseases has suggested researchers to develop 
miRNA-based therapeutic strategies [13,231, 
243,248]. Depending on the data available, a mimic 
or an antagonist of miRNAs could be explored as 
therapeutic agent. For example in the case of 
Alzheimer’s disease, it was shown that the injection 
of antisense oligonucleotides (ASO) into the CSF of 
nonhuman primates reduces target RNA (tau) 
expression in the brain regions analyzed, including 
the hippocampus [249]. Based on these data, 
a clinical trial to test a tau ASO in patients with 
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mild AD is currently under investigation by Biogen, 
IONIS Pharmaceuticals (NCT03186989). Similarly, 
miRNA silencing is thought to be an attractive ther-
apeutic modality in many other neurodegenerative 
diseases, including Alzheimer’s disease, Parkinson’s 
disease and amyotrophic lateral sclerosis (ALS) 
[250–253]

A recent study focused on identification of 
unique lncRNAs that could serve as targets for 
therapeutic agents [254]. Abnormalities of 
lncRNAs that are involved in many fundamental 
neuronal cell properties are considered a hallmark 
of nervous system disorders [24]. Oligonucleotide 
therapy using an ASO that is single stranded < 
40nucleotides may modulate various mechanisms 
in consequence by binding to complementary tar-
gets such as mRNA, miRNA, and NATs [255]. In 
this context, the drug potential of ASO against 
lncRNA in Angelman syndrome (AS) was postu-
lated. Patients with genetic defects in AS present 
with malfunctioning nervous system features, 
caused by a maternally inherited defect in 
UBE3A, a gene that encodes for E3 ubiquitin ligase 
[256]. ASO restored UBE3A mRNA that was 
silenced by lncRNA, an antisense transcript of 
small nucleolar RNA host gene 14 (SNHG14; pre-
viously known as UBE3A-ATS) in intact paternal 
UBE3A in vivo [257] and in patients, showing 
a promising approach to clinical treatment [256]. 
Moreover, ASOs that target naturally occurring 
antisense transcripts (NATs) have been shown to 
induce brain-derived neurotrophic factor (BDNF) 
in vivo to improve neurological outcomes [258]. 
Importantly, using in vivo models it was discov-
ered that these antisense-NATs targeting BDNF 
are reported to have higher degree of permeability 
through the blood brain barrier [258]. In addition, 
lncRNA MALAT1 was suggested for application as 
a treatment strategy related to cancer [259,260]. 
The silencing of MALAT1 by siRNA or ASO has 
been reported to exhibit positive regulations in 
in vivo models of tumorigenesis by improving 
features such as tumor cell proliferation, migra-
tion, invasion, and apoptosis in various cancer 
types including lung cancer [261262], pancreatic 
cancer [262] and multiple myeloma [259]. 
LncRNAs have drawn considerable attention in 
the past decade and currently there is a lack of 
lncRNA-based or targeting therapeutics in the pre- 

clinical or clinical domain. However at present 
most of the attention is diverted on claiming the 
value of lncRNAs as a diagnostic i.e., stage-specific 
biomarker. However, it is expected that the field of 
lncRNAs will witness rapid progress in both basic 
and clinical sciences.

Conclusion and outlook

Although we have gained insight into some of the 
key species of this evolving family of RNA, a vast 
majority of information is yet to be discovered. 
The field is currently innovating to overcome the 
several challenges in developing ncRNA-based 
therapeutics and diagnostics. It is important to 
acknowledge that bioengineering of ncRNAs is 
a relatively young field that needs extensive inves-
tigation. The feasibility of chemical modifications, 
genetic engineering approaches, compatibility of 
biopolymers, and oligonucleotide biochemistry 
are some of the key domains that can be advanced 
by the introduction of interdisciplinary appro- 
aches. Considering an example better and 
improved delivery modalities such as polyethylene 
glycol, hyaluronic acid or polymers with improved 
retention, biocompatibility and low degradability 
and low immunogenicity must be tested using 
disease relevant in vivo models. Another major 
problem for CNS therapeutics is the site or region- 
specific delivery of candidate ncRNAs such as, 
miRNAs to specific diseased sites in the brain. 
The development of effective miRNA delivery sys-
tems is vital as the delivery vehicle must allow 
miRNAs to cross the blood–brain barrier, which 
remains a major hurdle in neurodegenerative and 
neurovascular therapeutics. As miRNAs are easily 
degradable, the delivery and engineering systems 
can also be innovated to stabilize and extend the 
life of the miRNAs. Moreover, host cell endocyto-
sis mechanisms must be exploited to improve the 
barrier permeability of engineered anti-sense oli-
gos, small RNA mimics or delivery cargos. 
Similarly, lncRNAs can be investigated for their 
therapeutic prospects given their direct role in 
chromatin modifications as well as their direct 
impact in messenger RNA stabilization and post- 
transcriptional regulation. Furthermore, it is 
debated that using ncRNAs as a therapeutic mod-
ality may be a double-edged sword due to their 
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multifaceted biological function and pleiotropic 
properties. Hence, effective methods of bioengi-
neering ncRNAs are postulated as the future to 
improve our understanding on the therapeutic 
efficacy and feasibility of ncRNAs for neurological 
as well as related disorders. Often in vitro investi-
gation provides clear cut results however are far 
from physiological relevance in contrast with 
in vivo approaches that are complex and include 
species variations and challenges in replication 
disease etiopathologies. Overall, given the tremen-
dous advances have been made in nucleic acid 
modifications and delivery systems individually 
based on specific RNA species, a successful trans-
lation will require the integration of interdisciplin-
ary expertise to improve the therapeutic index and 
feasibility of ncRNAs for neurological and neuro-
degenerative diseases.

Highlights

● ncRNAs are critical regulators of gene func-
tion and play key roles in brain development 
and function.

● Bioengineering improves the therapeutic feasi-
bility of ncRNAs for pre-clinical and clinical 
testing.

● Bioengineering of ncRNAs is key to develop-
ment of novel diagnostics and therapeutics 
for neurological disorders.
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