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Despite advanced discoveries in cancerology, conventional treatments by surgery, chemotherapy, or radiotherapy remain in-
effective in some situations. Oncolytic virotherapy, i.e., the involvement of replicative viruses targeting specific tumor cells, opens
new perspectives for better management of this disease. Certain viruses naturally have a preferential tropism for the tumor cells;
others are genetically modifiable to present such properties, as the lytic cycle virus, which is a process that represents a vital role in
oncolytic virotherapy. In the present paper, we present a mathematical model for the dynamics of oncolytic virotherapy that
incorporates multiple time delays representing the multiple time periods of a lytic cycle. We compute the basic reproductive ratio
R0, and we show that there exist a disease-free equilibrium point (DFE) and an endemic equilibrium point (DEE). By formulating
suitable Lyapunov function, we prove that the disease-free equilibrium (DFE) is globally asymptotically stable if R0 < 1 and
unstable otherwise. We also demonstrate that under additional conditions, the endemic equilibrium is stable. Also, a Hopf
bifurcation analysis of our dynamic system is used to understand how solutions and their stability change as system parameters
change in the case of a positive delay. To illustrate the effectiveness of our theoretical results, we give numerical simulations for
several scenarios.

1. Introduction

)e continuous improvement of conventional treatments in
cancerology (surgery, chemotherapy, and radiotherapy)
allows for a major progress in the fight against cancer.
Nevertheless, in some situations, these modes of therapy
may be ineffective. )e development of new therapeutic
strategies, therefore, appears essential in order to improve
the healing of this disease. )us, in the last decades, viro-
therapy of cancers appears to be a credible alternative to
some situations, due to advanced discoveries and accurate
informations about viruses and also the production of
recombinant viral vectors which can be used in cancer gene
therapy. )e use of replicative viruses as antitumor thera-
peutic agents (oncolytic viruses) is based on the idea that

they reproduce preferentially within the tumor cells; how-
ever, normal cells remain immune to infection. )ese viruses
(oncolytic viruses) are either virus with a natural ability to
replicate preferentially within tumor cells or viruses geneti-
cally modified to hold this property. Genetic modifications
are primarily used to improve the specificity of viruses against
tumor cells, by targeting a particular surface molecule, by
deleting specific viral genes required for replication in healthy
cells, or by using activatable viral promoters only in tumor
cells [1]. Using viruses to treat cancer is not a new concept.
Viruses have attracted interest as anticancer therapeutics
since the beginning of the 20th century. However, for several
years, research in this field was limited due to technological
limitations. In the last 30 years, by increasing understanding
of the nature of viruses, their mechanisms of oncolytic

Hindawi
Computational and Mathematical Methods in Medicine
Volume 2019, Article ID 1732815, 12 pages
https://doi.org/10.1155/2019/1732815

mailto:adilelalamilaaroussi@gmail.com
https://orcid.org/0000-0002-0727-5213
https://orcid.org/0000-0001-7808-4169
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/1732815


activity and their ability to manipulate and exploit genetically
has prompted a new wave of oncolytic virotherapy. Today,
there is extensive literature describing progress in both
theoretical and clinical trials of oncolytic viruses. For more
details, we refer the interested reader to [2–7].

Mathematical modeling of oncolytic virotherapy can
illuminate the underlying dynamics of treatment systems
and lead to optimal treatment strategies. Several studies have
been the subject of the study of virotherapy. )e first
mathematical models of oncolytic viral therapy used ordi-
nary differential equations to describe the fundamental
interactions between two types of tumor cells (infected cells
and uninfected cells) [8, 9]. Other works consider spatial
representation of tumors [10, 11, 12], multiscale effects [13],
and stochastic processes [14]. For a review of different
mathematical modeling approaches ranging from ordinary
differential equations to spatially explicit agent-based
models, see [15–17].

Biological experiments helped to understand and explain
the lytic cycle, which takes place in six stages; the six stages
are as follows: attachment, penetration, transcription, bio-
synthesis, maturation, and lysis. To infect a new cell, a virus
must penetrate inside the cell through the plasma mem-
brane; the virus attacks a receptor on the cell membrane and
then releases its genetic material in the cell. In the third step,
the host cell’s DNA is degraded and the cell’s metabolism is
directed to initiate the fourth step; biosynthesis, here the
virus uses cellular mechanisms to constitute a large amount
of viral components and, in themeantime, destroys the DNA
of the host cell.)en, it enters the last two stages, maturation
and lysis. When many copies of viral are manufactured, they
are assembled into complete formed viruses. About
25minutes after initial infection, approximately 200 new
bacteriophages (virions) are formed. Once enough virions
have matured and accumulated, specialized viral proteins
are used to dissolve the bacterial cell wall, where they can go
on to infect other cells and another lytic cycle begins (for
more details on the lytic cycle, see [5, 18]). In this work, the
dynamics of oncolytic virotherapy are studied by in-
corporating the viral lytic cycle time. )e duration of the
intracellular viral life cycle is an essential factor in viral
therapy. For example, some viruses require only 30minutes,
some viruses take several hours to complete this process, and
some may take days [19]. )erefore, it is necessary and
realistic to consider and taking into account the cycle time in
modeling the oncolytic virotherapy which allows us to better
predict its dynamics. We construct a mathematical model of
virotherapy with multiple delays representing the six time
periods of the lytic cycle; it is assumed that the time of each
stage of the lytic cycle is constant.

Several studies have studied and analyzed systems of
delayed differential equations that model virotherapy. In the
paper entitled “Hopf Bifurcation Analysis in a Delayed System
for Cancer Virotherapy” [20], the authors consider a delayed
differential equation system. In [19], Wang et al. propose a
mathematical model for oncolytic virotherapy where they
consider the time period of the viral lytic cycle as a delay
parameter. )e novelty of our work is modeling the variation
of duration in the intracellular viral life cycle by adding

multiple delays; each one represents the time period of each
stage of the lytic cycle. We compute the basic reproductive
ratio R0, and we show that there exist a disease-free equi-
librium point (DFE) and an endemic equilibrium point (DEE).
By formulating suitable Lyapunov function, we prove that the
DFE is globally asymptotically stable if R0 < 1 and unstable
otherwise. We also demonstrate that under additional con-
ditions, the DEE is stable. Furthermore, a bifurcation analysis
of our dynamical system is used to understand how solutions
and their stability change as the parameters in the system vary.
To illustrate our theoretical results, numerical simulations are
also presented for several scenarios.

)is paper is organized as follows. In Section 2, we
present our mathematical model. In Section 3, we compute
the equilibrium of our model and investigate its stability.
Following that, in Section 4, a bifurcation analysis of the
dynamical system is used to understand how the solutions
and their stability change as the parameters change. Nu-
merical studies are shown, in Section 5, to validate the
analytical results. Finally, we conclude the paper in Section 6.

2. The Basic Mathematical Model

In a previous work [21], we analyzed the stability of a
nonlinear system of differential equations based on the
models proposed by [22, 23]. Our model contains three
variables, which are, uninfected tumor cell population x(t),
infected tumor cell population y(t), and free virus particles
which are outside cell v(t), and it has the following form:

dx(t)

dt
� rx(t) 1 −

x(t) + y(t)

K
􏼠 􏼡 − βx(t)v(t) − ρx(t)y(t),

dy(t)

dt
� βx(t)v(t) − δy(t),

dv(t)

dt
� bδy(t) − cv(t) − βx(t)v(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1)

where x(0) � x0, y(0) � y0, and v(0) � v0 are given.
)e term rx(1 − ((x + y)/K)) describes the logistic

growth rate of an uninfected tumor cell population x(t). )e
constant r> 0 is the growth rate, with K being the carrying
capacity or maximal tumor size so that x + y≤K. )e term
βxv represents the rate of infected cells by free virus v(t),
with β> 0 being the corresponding constant rate. )e term
ρxy models infection from an encounter between an in-
fected cell and an uninfected cell resulting in cell fusion that
produces a syncytium, with ρ> 0 being the constant rate
describing cell to cell fusion with the formation of syncytia.
Infected cells die at a rate of δy, and cv is the rate of
elimination of free virus particles by various causes in-
cluding nonspecific binding and generation of defective
interfering particles. Its burst size models the virus repli-
cation ability, the burst size of a virus, which is an essential
parameter of virus reproduction. So, our model includes also
a parameter b that models the burst size.
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As we mentioned in Introduction, the model (1) did not
take into account the time needed to complete the lytic cycle.
As a reminder, the lytic cycle is the process where a virus
overtakes a cell and uses the cellular machinery of its host to
reproduce. Copies of the virus fill the cell to bursting, killing
the cell and releasing viruses to infect more cells. )e du-
ration of this process varies from virus and more cells. Wang
et al. [19] proposed a model of virotherapy with a single
delay time; the originality of our work is to make a gen-
eralization by introducing 6 delays representing each period
of stages of the lytic cycle in order to describe a more realistic
situation because the virus goes through 6 stages of life and
each one of them may have a different delay. We denote
τi(i � 1, 2, 3, 4, 5, n � 6), the different times period of the
lytic cycle.)e rate of change of infected tumor cells at time t
will be determined by the tumor cell population and free
virus at time t − τi, namely, x(t − τi)v(t − τi); for more
details about the lytic cycle, see Figure 1. )erefore, the
model we propose is given as follows:

dx(t)

dt
� rx(t) 1 −

x(t) + y(t)

K
􏼠 􏼡 − βx(t)v(t) − ρx(t)y(t),

dy(t)

dt
� 􏽘

n

i�1
βix t–τi( 􏼁v t–τi( 􏼁 − δy(t),

dv(t)

dt
� bδy(t) − cv(t) − βx(t)v(t),

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

where τ0 � 0, τ1 < τ2 < · · · < τn, and β � 􏽐
n
i�1βi.

Using the Van Den Driesseche and Watmough next-
generation approach, we calculate the basic reproductive
ratio of system (2), which leads to

R0 �
βKb

βK + c
. (3)

)is parameter plays a major role in our analysis. It
represents the number of new virus particles generated by a
single virus particle that is inserted into a tumor consisting
entirely of uninfected tumor cells [12].

3. Model Analysis

In this section, we show the existence of the equilibrium
points and we study their stabilities. System (2) has three
equilibrium, E0 � (0, 0, 0), E1 � (K, 0, 0), and the positive
equilibrium E∗(x∗, y∗, v∗), where

x
∗

�
c

β(b − 1)
,

y
∗

�
cr(Kbβ − Kβ − c)

β(b − 1)(rc + δKβ(b − 1) + ρKc)
,

v
∗

�
δr(Kbβ − Kβ − c)

β(rc + δKβ(b − 1) + ρKc)
.

(4)

)e Jacobian matrix of system (2) at an arbitrary point is
given by

J �

−
rx∗

K
− ρ +

r

K
􏼒 􏼓x∗ βx∗

􏽘

n

i�1
βiv
∗
e

− λτi( ) − δ 􏽘
n

i�1
βix
∗
e

− λτi( )

− βv∗ bδ − c − βx∗

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5)

)e first equilibrium + represents the total success of
therapy. It is easy to prove that E0 is always unstable. Bi-
ologically, the instability of this equilibrium is because, in the
absence of the virus, the number of infected cells y will
remain at 0, and tumor cell population increases.)e second
equilibrium E1 represents the failure of virotherapy, as the
tumor achieved its maximal size K. )e partial success of
virotherapy is represented by the third equilibrium E∗. )e
approach that we use to prove the stability of the steady
states is divided into two parts: the first one concerns the
necessary condition of stability when there is no delay τi � 0
for (i � 1, . . . , n). In the second step, we prove that the
matrix (5) does not have any imaginary eigenvalue. However,
in our case, it was not easy to apply the classical theorems of
stability because we deal with a system with multiple discrete
delays as a summation 􏽐

n
i�1βix(t − τi)v(t − τi). To solve this

problem, we brought the lemma below which allowed us to
write the characteristic equation of (5) in a suitable form that
allows the application of classical stability results.

Lemma 1. For ai ∈ R, we have

􏽘

n

i�1
ai

⎛⎝ ⎞⎠

2

� 􏽘

n

i�1
a
2
i + 2 􏽘

n− 1

i�0
􏽘

n

j�i+1
aiaj. (6)

Proof. )is result can be proved easily by induction.

Remark 1. We note that our approach has the limit to be
specific to the model (2); it may not be appropriate for
other models. )e extension of our method to other
models could be considered as one of the perspectives of
this work.

3.1. Free Equilibrium. System (2) always has a disease-free
equilibrium in the form E1 � (K, 0, 0).

Proposition 1. If R0 < 1, then E1 is locally asymptotically
stable.

Proof. )e Jacobian matrix evaluated at E1 is

Computational and Mathematical Methods in Medicine 3



JE1
�

− r − ρK − r − βK

0 − δ 􏽘
n

i�1
βiKe

− λτi( )

0 bδ − c − βK

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

)e characteristic polynomial of JE1
is

PE1
(λ) � − (r + λ)􏼒λ2 + λ(c + βK + δ) + δ(βK + c)

− 􏽘
n

i�1
βiKbδe

− λτi( )􏼓.

(8)

If τ1 � τ2 � · · · � τn � 0, then

PE1
(λ) � − (r + λ) λ2 + λ(c + βK + δ) + δ(βK + c) − βKbδ􏼐 􏼑.

(9)

In this case, the eigenvalues of the matrix JE1
are

λ1 � − r,

λ2 �
− (c + βK + δ) −

��
Δ

√

2
,

λ3 �
− (c + βK + δ) +

��
Δ

√

2
,

(10)

where Δ � (c + βK − δ)2 + 4βKbδ.
)e eigenvalues λ1 and λ2 are both negatives for all non-

negative parameter values, while the eigenvalue λ3 can be
negative, positive, and zero. For R0 < 1, we have

R0 < 1⟺
βKb

βK + c
< 1

⟺ 4βKbδ < 4δ(βK + c)

⟺ 4βKbδ +(c + βK – δ)
2 < 4δ(βK + c) +(c + βK – δ)

2

⟺Δ<(c + βK + δ)
2

⟺ λ3 �
–(c + βK + δ) +

��
Δ

√

2
< 0.

(11)

Hence, all three eigenvalues are negatives. So E1 is locally
asymptotically stable when τi � 0 for (i � 1, . . . , n).

Now, if τi(i � 1, . . . , n) are arbitrary and as λ � − r is a
root of equation (8), we only need to consider

λ2 + λ(c + βK + δ) + δ(βK + c) − 􏽘
n

i�1
βiKbδe

− λτi( ) � 0,

(12)

which is equivalent to

λ2 + λ(c + βK + δ) + δ(βK + c) � 􏽘
n

i�1
βiKbδe

− λτi( ). (13)

If λ � ωi is a root of equation (12), after substituting and
separating real and imaginary parts, we have

− ω2 + δ(βK + c) � Kbδ􏽘
n

i�1
βi cos ωτi( 􏼁,

− ω(c + βK + δ) � Kbδ􏽘
n

i�1
βi sin ωτi( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(14)

x uninfected tumor cells v virus-specific response

y infected tumor cells

ρxy γv

δy

βxv

βix(τ – τi)v(τ – τi)
τi time of stage of the lytic cycle

Figure 1: Schematic diagram of the model for virotherapy.
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Adding the squares of both equations from (14), one has

ω4
+ (δ + βK + c)

2
− 2δ(βK + c)􏼐 􏼑ω2

+ δ2(c + βK)
2

� (Kbδ)
2⎡⎣􏼒 􏽘

n

i�1
βi cos ωτi( 􏼁􏼓

2

+ 􏼒 􏽘

n

i�1
βi sin ωτi( 􏼁􏼓

2
⎤⎦.

(15)

Using Lemma 1 and after algebraic manipulations,
equation (15) can also be written in the following form:

ω4
+ a1ω

2
+ a2 + a3 � 0, (16)

where
a1 � (c + βK)

2
+ δ2,

a2 � 2(bKδ)
2

􏽘

n− 1

i�0
􏽘

n

j�i+1
βiβj 1 − cos ω τi − τj􏼐 􏼑􏼐 􏼑􏼐 􏼑,

a3 � δ2(c + βK)
2

− (βbKδ)
2

� δ2(c + βK)
2 1 − R

2
0􏼐 􏼑.

(17)

We have a1 > 0 and a2 > 0, and when R0 < 1, a3 > 0.
)erefore, there is no root λ � ωi, with ω≥ 0 or equation
(12), implying that the roots of equation (12) cannot cross
the purely imaginary axis. )us, all roots of equation (12)
have a negative part.)en, the equilibrium point E1 is locally
asymptotically stable.

By using a Lyapunov function, we will prove that the
equilibrium point E1 is globally asymptotically stable when
R0 < 1. To study the dynamics of system (2) when
τi ≥ 0(i � 1, . . . , n), we need to consider a suitable phase
space. For τn > 0, we denote by C � C([− τn; 0]; R3) the
Banach space of continuous functions mapping the interval
[− τn; 0] into R3 with the norm ||φ(θ)|| � sup− rn ≤ θ≤ 0 |φ(θ)|

for φ ∈ C. )e non-negative cone of C is denoted by
C+ � C([− τn, 0], R3

+).

Theorem 1. If R0 < 1, then E1 is globally asymptotically
stable.

Proof. Let φ � (φ1,φ2,φ3) � (x, y, v) with x(θ) � φ1(θ),

y(θ) � φ2(θ), v(θ) � φ3(θ) for θ ∈ [− τn, 0], consider a
Lyapunov function given by

V(φ) � bφ2(0) + φ3(0) + b 􏽘
n

i�1
βi 􏽚

0

− τi

φ1(s)φ3(s)ds. (18)

)e derivative along a solution is given by

_V(φ) � b 􏽘

n

i�1
βiφ1 − τi( 􏼁φ3 − τi( 􏼁 − δφ2(0)⎛⎝ ⎞⎠

+ bδφ2(0) − βφ1(0)φ3(0) − cφ3(0)

+ b􏼠 􏽘

n

i�1
βi φ1(0)φ3(0) − φ1 − τi( 􏼁φ3 − τi( 􏼁( 􏼁􏼡

� bβφ1(0)φ3(0) − βφ1(0)φ3(0) − cφ3(0)

≤ ((bβ – β)K– c)φ3(0)

≤ bβK 1 –
1
R0

􏼠 􏼡φ3(0),

(19)

when R0 < 1, we have _V(φ) ≤ 0. If _V(φ) � 0, then
φ ∈ R3/ _V(φ) � 0􏽮 􏽯 � E1. )e classical LaSalle’s invariance
Principle implies that E1 is globally attractive. )is confirms
the globally asymptotical stability of E1.

3.2. Endemic Equilibrium. Here, we study the stability of the
endemic equilibrium point E∗.

Theorem 2. Equilibrium point E∗ is locally asymptotically
stable for τi ≥ 0(i � 1, . . . , n) if the following assumptions are
satisfied:

(A1) R0 > 1,

(A2) f(b) < rc + Kρc – βKδ,

(A3) Ki > 0, for i � 1, . . . , 3,

(20)

where
f(b) � (rc + δK(βb − β) + ρKc)

cKβ(b − 1)

Kβδ(b − 1) + Kβc + rc
−

δ(b – 1) + cb
δ(b – 1)(Kβb – δ – βK– c)

􏼠 􏼡,

K1 � A
2

− 2 􏽥B + β0D( 􏼁,

K2 � 􏽥B + β0D( 􏼁
2

− 2A C + β0E( 􏼁 − 􏽘
n

i�1
βiD

⎛⎝ ⎞⎠

2

+ 2 􏽘
n− 1

i�1
􏽘

n

j�i+1
βiβjD

2 1 − cosω τi − τj􏼐 􏼑􏼐 􏼑,

K3 � C + β0E( 􏼁
2

− 􏽘
n

i�1
βiE

⎛⎝ ⎞⎠

2

+ 2 􏽘
n− 1

i�1
􏽘

n

j�i+1
βiβjE

2 1– cosω τi − τj􏼐 􏼑􏼐 􏼑,

(21)
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and

A � βx
∗

+ c + δ +
r

K
x
∗
,

􏽥B �
r

K
x
∗ βx
∗

+ c + δ( 􏼁 + δ βx
∗

+ c( 􏼁 − δβ2x∗v∗,

C �
r

K
x
∗δ βx

∗
+ c( 􏼁 − δβ2x∗v∗,

D �
r

K
+ ρ􏼒 􏼓x

∗
v
∗

− bδx
∗
,

E �
r

K
+ ρ􏼒 􏼓c + βδb􏼒 􏼓x

∗
v
∗

−
r

K
bδ x
∗

( 􏼁
2
.

(22)

Proof. )e Jacobian matrix at E∗ is given by

JE∗ �

−
r

K
x
∗

− ρ +
r

K
􏼒 􏼓x∗ − βx∗

􏽘

n

i�1
βiv
∗
e

− λτi( ) − δ 􏽘
n

i�1
βiv
∗
e

− λτi( )

− βv∗ bδ − βx∗ − c

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(23)

)e characteristic equation associated with JE∗ is given
by

λ3 + Aλ2 + 􏽥Bλ + C + 􏽘
n

i�1
βie

− λτi( )(Dλ + E) � 0, (24)

where A, 􏽥B, C, D, and E are defined as in )eorem 2.
Considering τ1 � τ2 � · · · � τn � 0, equation (23)

becomes

JE1
�

−
r

K

c

β(bc − 1)
􏼠 􏼡 − ρ +

r

K
􏼒 􏼓

c

β(bc − 1)
􏼠 􏼡 −

c

b − 1

βv∗ − δ
c

b − 1

− βv∗ bδ −
cb

b − 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(25)

and equation (24) becomes

λ3 + b1λ
2

+ b2λ + b3 � 0, (26)

with

b1 �
(δ + c)βK(b − 1) + βcK + rc

Kβ(b – 1)
,

b2 �
rc(δb − δ + cb)2 + cb

βK(b – 1)2
+

δr(Kβb – βK – c)

rcβ + βδK(βb – β) + pKc
􏼢 􏼣

×
rc + Kρc − βcK

K(b − 1)
,

b3 �
δrc(Kβb – βK – c)

Kβ(b – 1)
.

(27)

By the Routh–Hurwitz Criterion, all roots of the poly-
nomial (26) have negative real parts if and only if
H1 � b1 > 0, H2 � b1b2 − b3 > 0, and H3 � b2H2 > 0. When
R0 > 1, we have H1 � b1 > 0 and b2 > 0. Since H3 � b3H2, we
only need to consider H2 � b1b2 − b3.

After some algebraic manipulations ([21]) we can prove
that

H2 > 0⟺f(b)< rc + Kρc − βKδ. (28)

So we conclude that when R0 > 1 and f(b)< rc +

Kρc − βKδ, the endemic equilibrium is locally asymptoti-
cally stable for τ1 � · · · � τn � 0.

Consider now the case when τ1, . . . , τn are arbitrary.
Finding roots of the equation (24) is impossible explicitly.
Instead, we look for the condition under which it has no
purely imaginary roots.

Let λ � ωi(ω> 0) be a purely imaginary roots of (24),
then

− ω3
i − Aω2

+ 􏽥Bωi + C + 􏽘
n

i�1
βi(Dω i + E)e

− iωτi( ) � 0,

(29)

which is equivalent to

− ω3
i − Aω2

+ 􏽥Bωi + C + 􏽘
n

i�1
βi(Dωi + E)

cos ωτi( 􏼁 − i sin ωτi( 􏼁( 􏼁 � 0.

(30)

Separating real and imaginary parts leads to

Aω2 − C − β0E � 􏽘
n

i�1
βi E cos ωτi( 􏼁 + Dω sin ωτi( 􏼁( 􏼁,

ω3 − 􏽥Bω − β0Dω � 􏽘
n

i�1
βi Dω cos ωτi( 􏼁 − E sin ωτi( 􏼁( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(31)
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Table 1: Model parameters.

Height parameters Descriptions Values
r Growth rate constant 0.206
K Maximal tumor size 2139
βi Infection rate Variables
ρ Cell to cell fusion rate constant 0.2145
δ Infected cells death rate 0.5115
b Burst size of a virus Variables
c Elimination rate of free virus particles 0.001
τi Time to complete lytic cycle variables Variables

Stage 1

Stage 6

Stage 5 Stage 4

Stage 2

Stage 3

Lytic cycle

Figure 2: )e lytic cycle of oncolytic viruses.
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Figure 3: Dynamics of virotherapy when R0 � 0.7, β0 � 10− 3, β1 � 10− 5, β2 � 2 × 10− 5, β3 � 3 × 10− 5, β4 � 4 × 10− 5, τ1 � 0.2, τ2 � 1, τ3 � 2,
and τ4 � 3. )e initial conditions are x(0) � 127, y(0) � 0, and v(0) � 30.
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Adding the squares of both equations together gives

ω6
+ A

2 – 2 􏽥B + β0D( 􏼁􏼐 􏼑ω4

+ 􏽥B + β0D( 􏼁
2– 2A C + β0E( 􏼁􏼐 􏼑ω2

+ C + β0E( 􏼁
2

� –􏽘
n

i�1
βi E cos ωτi( 􏼁 + Dω sin ωτi( 􏼁( 􏼁⎡⎣ ⎤⎦

2

+ –􏽘
n

i�1
βi Dω cos ωτi( 􏼁 − E sin ωτi( 􏼁( 􏼁⎡⎣ ⎤⎦

2

.

(32)

Using Lemma 1 and after some algebraic manipulations,
equation (32) can also be written in the following form:

ω6
+ K1ω

4
+ K2ω

2
+ K3 � 0, (33)

where Ki(i � 1, 2, 3) are as in )eorem 2. If Ki > 0, then all
roots of (24) have negative real parts. Hence, the proof is
complete.

4. Hopf Bifurcation

In this section, we will study the Hopf bifurcation of system
(2) but only in the case of one positive term of delay. In fact,
it is too difficult to study the general case with n> 1, which
can be considered as a perspective of this work. Consider
n � 1, then (24) becomes

λ3 + Aλ2 + 􏽥Bλ + C + β0(Dλ + E) � − β1(Dλ + E)e
–λτ1 ,

(34)
if λ � ωi is a root of (34). After substituting and separating
real and imaginary parts, we have

− Aω2 + C + β0E � − β1 E cos ωτ1( 􏼁 + Dω sin ωτ1( 􏼁( 􏼁,

− ω3 + 􏽥Bω + β0Dω � − β1 Dω cos ωτ1( 􏼁 − E sin ωτ1( 􏼁( 􏼁.

⎧⎪⎨

⎪⎩

(35)

Adding the squares of both equations together gives
ω6

+ K1ω
4

+ K2ω
2

+ K3 � 0, (36)

where K1, K2, and K3 are as follows:
K1 � A

2
− 2 􏽥B + β0D( 􏼁,

K2 � 􏽥B + β0D( 􏼁
2

− 2A C + β0E( 􏼁 − β1D( 􏼁
2
,

K3 � C + β0E( 􏼁
2

− β1E( 􏼁
2
.

(37)

Denote ω0 the biggest positive root of (37); then from
(35), we have

cos ω0τ1( 􏼁 �
Dω4

0 + AE –D 􏽥B + β0D( 􏼁( 􏼁ω2
0 – C + β0E( 􏼁E

β1 Dω0( 􏼁
2

+ E2􏼐 􏼑
.

(38)
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Figure 4: Dynamics of virotherapy when R0 � 1, 5, β0 � 10− 3, β1 � 10− 5, β2 � 2 × 10− 5, β3 � 3 × 10− 5, β4 � 4 × 10− 5, τ1 � 0.2, τ2 � 1, τ3 � 2,
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Let

τj
1,0 �

1
ω0

􏼨arcos
Dω4

0 + AE –D 􏽥B + β0D( 􏼁( 􏼁ω2
0 – C + β0E( 􏼁E

β1 Dω0( 􏼁
2

+ E2􏼐 􏼑
⎛⎝ ⎞⎠

+ 2jπ􏼩, j � 1, 2, . . . .

(39)
)en, we can define τ∗ � min

j≥1
τj
1,0 as the first value of τ1

when characteristic roots cross the imaginary axis.
Further, differentiating equation (34) with respect to τ1,

we get

( 3λ2 + 2Aλ + 􏽥B + β0D + β1De
− λτ1( )

− β1(Dλ + E)e
− λτ1( )􏼁

dλ
dτ1

� β1(Dλ + E)e
− λτ1( ).

(40)

)is gives

dλ
dτ1

􏼠 􏼡

− 1

�
3λ2 + 2Aλ + 􏽥B + β0D
β1(Dλ + E)e − λτ1( )

+
D

λ(Dλ + E)
−
τ1
λ

,

(41)

and after some algebraic manipulations, we get

dλ
dτ1

􏼠 􏼡

− 1

�
2λ3 + Aλ2 − C − β0E

− λ2 λ3 + Aλ2 + 􏽥Bλ + C + β0(Dλ + E)􏼐 􏼑

+
E

λ2(Dλ + E)
−
τ1
λ

.

(42)

)us,

dλ
dτ1

􏼠 􏼡

− 1
⎡⎣ ⎤⎦

λ�ω0i

�
− i2ω3

0 − Aω2
0 − C − β0E

ω2
0 − iω3

0 − Aω2
0 + 􏽥Bω0i + C + β0 Dω0i + E( 􏼁( 􏼁

+
− E

ω2
0 Dω0i + E( 􏼁

−
τ1
ω0i

�
− Aω2

0 + C + β0E( 􏼁 − i2ω3
0

ω2
0 − Aω2

0 + C + β0E + i − ω3
0 +(􏽥B + βD)ω0( 􏼁( 􏼁

+
− E

ω2
0 E + Dω0i( 􏼁

−
τ1
ω0i

,

(43)

and
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Figure 5: Dynamics of virotherapy when R0 � 1, 5, β0 � 10− 5, β1 � 10− 4, and τ � 7< τ∗ � 8.8368. )e initial conditions are x(0) � 127,
y(0) � 0, and v(0) � 30.

Computational and Mathematical Methods in Medicine 9



Re
dλ
dτ1

􏼠 􏼡

− 1
⎡⎣ ⎤⎦

λ�ω0i

⎛⎝ ⎞⎠ �
2ω6

0 − A2 − 2 􏽥B + β0D( 􏼁( 􏼁ω4
0 − β21E

2 − C + β0E( 􏼁
2

ω2
0 − Aω2

0 + C + β0E( 􏼁
2

+ − ω3
0 + 􏽥B + β0D( 􏼁ω0( 􏼁

2
􏼐 􏼑

. (44)

So, if n � 1 and K3 < 0, there exists a Hopf bifurcation as
Re([(dλ/dτ1)

− 1]λ�ω0i)> 0.
In conclusion, we have the following Hopf bifurcation

result.

Theorem 3. In the case where system (2) has only one no
zero delays and if K3 < 0, then system (2) undergoes a Hopf
bifurcation at the endemic equilibrium.

5. Numerical Results

In this section, we present numerical simulations to il-
lustrate the various theoretical results previously obtained.
)us, we draw first the curves of system (2) for parameters
verifying R0 less than 1, and we shall do the same for
parameters verifying R0 upper to 1. All simulations are
performed using the parameter values in Table 1 are taken
from [22].

Since our model considers population of cells, we
convert tumor volume to cell population by assuming
1mm3 corresponds to 106 cells [22]. For our numerical

simulation, we consider cell populations x and y, virus
population v is expressed in units of 106, and using the
same manner as in [22], we assume that the tumor is
completely eliminated, which indicates the total success of
the virotherapy, when the total population of tumor cells is
reduced to one cell, which means that in the adopted units
u(t) � x(t) + y(t) � 106.

Figure 2 presents the curves of system (2), using various
initial conditions when n � 4 and R0 � 0.7. In Section 3,
using a suitable Lyapunov function, we have proved that, in
this case, R0 < 1, the disease-free equilibrium E1 is globally
asymptotically stable. From this figure, we see that the curves
converge to the free equilibrium E1, that is the virotherapy
fails as the population of tumor cells increase and the
population of infected tumor decrease.

Figure 3 provides the curves of system (2) using various
initial conditions when n � 4, R0 � 1.5, and the other
conditions of )eorem 2 are satisfied. We have theoretically
proved in Section 3 by using the technique of stability in a
delayed system that the endemic equilibrium E∗ is locally
asymptotically stable. From this figure, we see that the curves
converge to positive and finite limit, which is the endemic
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equilibrium. )e stability of the equilibrium E∗ implies that
a permanent reduction of the tumor load can be reached,
even if the virotherapy does not succeed completely.

Figures 4–6 show that for τ < τ∗, the equilibrium point
E∗ is asymptotically stable and, for τ > τ∗, the equilibrium
point E∗ is unstable, and when τ � τ∗, a Hopf bifurcation of
periodic solutions of system (2) occurs at E∗ (Figure 7).

6. Conclusion

)ework in this paper contributes to a growing literature on
modeling oncolytic virotherapy; we present a mathematical
model for the dynamic of oncolytic virotherapy that in-
corporates multiple time delays representing the multiple
time periods to complete the lytic cycle. We give the basic
reproductive ratio R0, and we use it to investigate the sta-
bility of the equilibrium states. We prove by formulating
suitable Lyapunov function that the disease-free equilibrium
is globally asymptotically stable if the basic infection re-
production number R0 < 1, and when R0 > 1, the local sta-
bility of the endemic equilibrium point depends on function
f(b), representing the replication of the virus in virotherapy
and other conditions. Furthermore, we show that there exists
a bifurcation value for the lytic cycle period τ∗. For this, if
τ < τ∗, the positive equilibrium endemic is locally asymp-
totically stable. )e system undergoes a Hopf bifurcation
around τ � τ∗ and when τ > τ∗, the system is unstable. )e
numerical simulation provides that if R0 < 1, the virotherapy
fails as the population of tumors cells increases and the
population of infected tumor decreases, and if R0 > 1, the
virotherapy success and treatment will reach the equilibrium
point endemic. )e approach that we have introduced with

multiple delays is specific to our model or to similar models
in other fields.)e incorporation of delay from a system that
describes virotherapy is an interesting and realistic strategy,
and several studies have adopted this method, for example,
Wang’s work [24].
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