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Cardiometabolic diseases, including type 2 diabetes, obesity and non-alcoholic fatty liver
disease, have enormous impact on modern societies worldwide. Excess nutritional
burden and nutri-stress together with sedentary lifestyles lead to these diseases.
Deranged glucose, fat, and energy metabolism is at the center of nutri-stress, and
glycolysis-derived glycerol-3-phosphate (Gro3P) is at the crossroads of these metabolic
pathways. Cellular levels of Gro3P can be controlled by its synthesis, utilization or
hydrolysis. The belief that mammalian cells do not possess an enzyme that hydrolyzes
Gro3P, as in lower organisms and plants, is challenged by our recent work showing the
presence of a Gro3P phosphatase (G3PP) in mammalian cells. A previously described
phosphoglycolate phosphatase (PGP) in mammalian cells, with no established
physiological function, has been shown to actually function as G3PP, under
physiological conditions, particularly at elevated glucose levels. In the present review,
we summarize evidence that supports the view that G3PP plays an important role in the
regulation of gluconeogenesis and fat storage in hepatocytes, glucose stimulated insulin
secretion and nutri-stress in b-cells, and lipogenesis in adipocytes. We provide a balanced
perspective on the pathophysiological significance of G3PP in mammals with specific
reference to cardiometabolic diseases.

Keywords: glycerol-3-phosphate phosphatase, phosphoglycolate phosphatase, glycerolipid/free fatty acid cycle,
insulin secretion, nutri-stress, cardiometabolic diseases, type 2 diabetes, obesity
INTRODUCTION

Metabolism of macronutrients including carbohydrates, amino acids and fats converges on the
generation of a three-carbon moiety, glycerol, either in the free form or as glycerol-3-phosphate
(Gro3P), which forms the backbone of glycerolipids in almost all the species. Glycerolipids,
including triglycerides and phospholipids make up a large part of the fat in our body, either as
depot fat or as membrane components (1). The glycerol moiety of these glycerolipids is derived
from glucose metabolism, dietary fat and via glyceroneogenesis, particularly under fasting and high
sucrose diet conditions (2–5). It is generally believed that free glycerol is produced and released from
cells mainly during the hydrolysis of glycerolipids (6) in higher animals, including humans (4, 5).
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Although some early studies indicated the likely presence of a
specific enzyme in animal cells that can generate glycerol directly
from the hydrolysis of Gro3P, such enzyme was known to be
present only in plants and lower organisms (7–9).

The present review focuses on the identification of a specific
Gro3P phosphatase (G3PP) in mammalian cells and its most
plausible physiological function, specifically addressing its role in
controlling glucose, lipid and energy metabolism. We also present
a balanced view on the physiological relevance of the various
suggested substrates of this enzyme, with a discussion on the
importance of G3PP in preventing glucotoxicity/nutri-stress and
the control of glucose stimulated insulin secretion (GSIS) in b-
cells, in the regulation of lipogenesis in liver and adipose tissue, and
in slowing down hepatic glucose production. Finally, we address
the regulation of G3PP and its role in cardiometabolic diseases.
EARLY EVIDENCE FOR THE PRESENCE
OF Gro3P PHOSPHATASE IN
ANIMAL CELLS

Even though lipolysis is considered to be the main source of
free glycerol in mammalian cells, few earlier studies suggested
that glycerol may be formed via non-lipolytic pathways during
glycolysis. Thus, as much as 15 to 20% of plasma glycerol was
thought to be derived from non-adipose tissue sources including
perirenal fat or skeletal muscle lipolysis or possibly by the
hydrolysis of Gro3P in long-term fasting human subjects, on
the basis of stable isotope labeling (10) and in rats and monkeys
(11), but no specific enzyme was described for this process.
Similarly, it was noticed that significant levels of glycerol are
derived directly from glucose in ischemic rat brain (12) and
ischemic cardiac tissue (13). In addition, in the fish Osmerus
mordax (Rainbow smelt) high concentrations of glycerol are
generated as a cryoprotective mechanism directly from glucose,
glycogen and amino acids and not from lipolysis, probably
involving a glycerol-3-phosphatase, even though no specific
enzyme was identified (14, 15).

Lipolysis, measured as glycerol release, was implicated in the
regulation of GSIS by pancreatic b-cells (16, 17), and it was
assumed that glycerolipid hydrolysis is the only source of free
glycerol in mammalian cells (4, 5). However, despite the loss of
adipose triglyceride lipase (ATGL), which catalyzes the first step
of triglyceride hydrolysis (18, 19), glycerol is still produced in
significant quantities in the pancreatic islets from whole-body
ATGL-KO (20) and b-cell specifc ATGL-KO (21) mice, at high
concentrations of glucose, suggesting a non-lipolytic origin of
glycerol. We reported that orlistat, a powerful pan-lipase
inhibitor, totally inhibits GSIS as well as lipolysis, measured as
free fatty acid (FFA) release, in pancreatic b-cells (22), but not
glycerol release at elevated glucose concentrations (>10 mM),
suggesting that pancreatic b-cells can produce glycerol from
glucose, via non-lipolytic pathways (22). This observation led us
to conduct a thorough search using BLAST analysis for
mammalian proteins that are homologous to the known
microbial (yeast and bacteria) glycerol-3-phosphate phosphatase
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enzymes (8, 23), and to the identification of previously described
phosphoglycolate phosphatase (PGP), as the potential mammalian
G3PP (22).

PGP is an evolutionarily conserved enzyme that can
hydrolyze various phospho-metabolites, under normal
physiological as well as stress conditions (24, 25). In lower
organisms and plants, PGP and G3PP are products of separate
genes and hydrolyze 2-phosphoglycolate and Gro3P,
respectively. However, in mammalian cells, a single gene (PGP)
product, i.e., G3PP, appears to catalyze the hydrolysis of Gro3P
under normal physiological conditions, and also 2-
phosphoglycolate and other phospho-substrates produced in
stress conditions, as reviewed here.
MAMMALIAN PGP: NAMES, SUBSTRATE
SPECIFICITY AND ENZYME KINETICS

In mammals, PGP gene product has been described with
different names and ascribed different functions. This protein
was first described in human red blood cells (RBC) as
phosphoglycolate phosphatase, based on the sequence
similarity to the plant and bacterial PGP enzymes, with
similar substrate specificity, i.e., high activity towards 2-
phosphoglycolate (26, 27). Later, this protein was called as
aspartate-based, ubiquitous, Mg2+-dependent phosphatase
(AUM), showing hydrolytic activity with phosphotyrosine
containing peptides, with implications in the modulation of
epidermal growth factor receptor (EGFR) signaling (25, 28–
30). However, considering the extremely low cellular levels of
2-phosphoglycolate under physiological conditions and as the
catalytic efficiency of purified PGP towards the phosphotyrosine
peptides was ∼1,000-fold less than that of classical tyrosine
phosphatases like PTP1B, TCPTP, or SHP1, the proposed
physiological role of mammalian PGP in the hydrolysis of
either 2-phosphoglycolate or phosphotyrosine residues
is questionable.

The more likely function of RBC PGP was suggested to
be the hydrolysis of 2-phospholactate, formed as a by-
product of pyruvate kinase (31). More recently, PGP was
shown to dephosphorylate 4-phosphoerythronate and 2-
phospholactate, toxic by-products of glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) and pyruvate kinase,
respectively. The kinetic parameters and the available
intracellular substrate concentrations likely provide a clue
about the more appropriate physiological substrate of G3PP in
mammalian cells. The reported Km of the purified mouse PGP/
G3PP enzyme for 2-phosphoglycolate is 766µM; for 4-
phosphoerythronate it is 247µM and for 2-phospholactate it is
174 µM (32). However, it was reported by Collard et al. (32), that
in wildtype HCT116 cells 4-phosphoerythronate and also 2-
phosphoglycolate are at below detection limits (<2-3 µM). Even
if one assumes that normally expressed PGP/G3PP is maintaining
the concentration of these metabolites at low level, the enzyme
should be able to act on them. This is kinetically not favourable
for PGP/G3PP expressed at normal level as these metabolites are
July 2021 | Volume 12 | Article 706607
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present at nearly 100-300 fold lower concentration in wildtype
cells than their respective Km values for PGP/G3PP. In addition,
the catalytic rate of GAPDH to produce 4-phosphoerythronate is
~3500 fold lower than its normal function and similarly the
formation of 2-phospholactate by pyruvate kinase is several
orders of magnitude lower (32). Therefore, the possibility that
2-phosphoglycolate, 4-phosphoerythronate and 2-phospholactate
serve as ‘physiological’ substrates for PGP/G3PP is remote,
unlike glycerol-3-phosphate, which is present at above its Km
concentration in cells normally, and is readily available as
substrate for G3PP. However, as 4-phosphoerythronate and 2-
phospholactate accumulate when PGP expression is suppressed
(32–34), the possibility that PGP/G3PP may act on these
substrates with very low efficiency due to their extremely
low intracellular concentrations, cannot be discounted. Even
though purified recombinant mouse PGP was found to show
high catalytic efficiency with 2-phosphoglycolate, 4-
phosphoerythronate, and 2-phospholactate, and relatively lower
activity with Gro3P (22, 32), it also shows very high activity
with the non-physiological substrate p-nitrophenol phosphate
(30). Studies from our laboratory demonstrated that PGP
actually functions as a G3PPin many cell types, hydrolysing
Gro3P, normally produced in all the cells and available in
sufficient concentrations (1 to 5 mM; Km, ~1 mM) to serve as
a substrate for this enzyme (22, 24). Hence, the name G3PP is
more appropriate for the PGP gene product, and is now accepted
by most protein databases (Uniprot, NCBI Protein, PDB, etc.).
Thus, the observed catalytic efficiencies of purified G3PP/PGP
in vitro may not have much relevance physiologically, as it is
the availability of substrate that dictates the activity of a given
enzyme. Therefore, on the basis of available evidence, we
suggest that the protein encoded by PGP in mammalian cells
is poised to act on Gro3P, as its normal physiological function,
but may assume a detoxification role to hydrolyze toxic phospho-
metabolites, such as 2-phosphoglycolate, 4-phosphoerythronate
or 2-phospholactate, which may buildup in the cells under stress
conditions (22, 24, 25, 32). Additional studies, particularly in vivo,
are needed to ascertain this possibility.
CONTROL OF GLUCOSE, LIPID AND
ENERGY METABOLISM BY G3PP/PGP

Glycolytically derived Gro3P is at the crossroads of glucose, lipid
and energy metabolism in all cells, as it is the starting substrate
for glycerolipid synthesis and also participates in the electron
shuttle to transfer cytosolic reducing equivalents to
mitochondrial electron transport chain for ATP synthesis (22,
24). Hydrolytic control of Gro3P in the cells by G3PP adds
another level of metabolic regulation in animal cells that was not
recognized previously, as the existence of G3PP is only recently
established in mammalian cells. Significant evidence
accumulated in the last five years suggests an important role
for G3PP/PGP in the regulation of glucose and lipid metabolism
in pancreatic islets, hepatocytes and adipocytes (Figure 1), which
is summarized below.
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Pancreatic Islets
Cellular levels of Gro3P in INS-1(832/13) b-cells (35, 36) under
physiological but elevated glucose concentrations (~10-16 mM)
are sufficient to serve as the substrate for G3PP catalysis. In most
cells, dihydroxyacetone-3-phosphate (DHAP) formed during
glycolysis is partly converted to Gro3P. Pancreatic b-cells are
not equipped to phosphorylate glycerol to Gro3P, as these cells
express low levels of glycerol kinase (18, 37, 38). Modulation of
cellular Gro3P levels by altering G3PP expression can impact the
associated metabolic pathways. Thus, suppression of G3PP
expression in rat pancreatic islets and INS-1(832/13) b-cells
was found to lower glycerol production from glucose, in
association with marked elevation of Gro3P, glycerolipid
synthesis, glycolysis and glucose driven respiration, whereas
overexpression of human G3PP in these cells produced
opposite changes (22). In agreement with its anticipated role in
the Gro3P shuttle to transfer electrons from the cytosol to
mitochondria, the expression level of G3PP/PGP in rat
pancreatic islets is inversely related to glucose-driven ATP
synthesis. Interestingly, all the listed effects were apparent at
elevated glucose (10-16 mM) with minimal changes at low (2-4
mM glucose). Thus, under elevated glucose concentration
conditions, G3PP is able to control both glucose and lipid
metabolism in b-cells (22).

Hepatocytes
As in the case of pancreatic b-cells, Gro3P level in isolated rat
hepatocytes (22) incubated at 5 or 25 mM glucose concentration
was found to be sufficient to serve as substrate for G3PP. In
hepatocytes, Gro3P can be formed from DHAP during glycolysis
or by the phosphorylation of glycerol by glycerol kinase
expressed in these cells (4). Similar to what was noticed in b-
cells, suppression of G3PP expression in rat hepatocytes
decreased glycerol production from glucose, increased
intracellular Gro3P, glycerolipids, glycolysis, glucose driven
respiration, and gluconeogenesis, whereas opposite changes
were seen with overexpression of human G3PP in these cells
(22). Interestingly, increased G3PP activity in hepatocytes also
led to elevated fatty acid b-oxidation even at high glucose
concentrations, which normally lower fatty acid oxidation (22).
Importantly and as noted in ß-cells, these effects following
changes in the expression levels of G3PP were prominent at
high (25 mM) but less marked at low (5 mM) physiological
basal glucose.

Adipocytes
Adipocytes, from both white and brown adipose depots,
synthesize and store large amounts of triglycerides and
hydrolyze the same to release glycerol and FFA in response to
hormonal and other cues. It is generally accepted that most of the
glycerol released from adipocytes is of lipolytic origin. White
adipocytes are known to conduct anaerobic glycolysis and
produce lactate in large amounts from glucose (39, 40). It has
recently been shown that in the presence of either glucose or
fructose, mature differentiated 3T3-L1 adipocytes release copious
amounts of lactate and glycerol, that cannot be accounted for
July 2021 | Volume 12 | Article 706607
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their triglyceride stores and lipolysis, suggesting the presence of a
mechanism for glycerol production from Gro3P, even though an
enzyme for such reaction was not identified in adipocytes (41). In
the later studies, these authors showed that G3PP/PGP is
expressed in the primary rat adipocytes and contributes to
glycerol production and that its expression is much higher
than that of glycerol kinase, thereby ensuring removal of
glycerol produced from Gro3P via aquaporin-7 in these cells
(42). The same group studied glycerol metabolism at various
glucose concentrations (3, 5, 7, or 14 mM) with and without
insulin. When medium glucose was at basal level, most glycerol
came from lipolysis, but when glucose was high, the release of
glycerol via breakup of Gro3P was predominant (43). Under
conditions of excess glucose supply, adipocytes take-up glucose
and metabolize via glycolysis to Gro3P. But if not enough FFA is
simultaneously available, the produced Gro3P is hydrolyzed to
export glycerol via aquaporin-7. Adipocytes do not have a
significant level of de novo lipogenesis machinery (44) unlike
hepatocytes, so they cannot generate acyl-CoA (de novo) to
esterify Gro3P to triglyceride. It is necessary to hydrolyze
Frontiers in Endocrinology | www.frontiersin.org 4
Gro3P, as it can be toxic when present in excess and generate
toxic reactive oxygen species or even inhibit glycolysis, unless
removed as glycerol. Thus, G3PP appears to play an important
role in regulating glycolysis and glycerolipid metabolism in
adipocytes at elevated glucose levels primarily (42, 45).

Evidence From Embryonic Cells With
Inactive Mutant G3PP
Regulation of glycerolipid metabolism by G3PP/PGP has recently
been shown to be essential during development. Thus, in E8.5
mouse embryos expressing catalytically inactive G3PP/PGP
(PGPD34N/D34N) elevated diacylglycerols and triglycerides were
noticed, indicating increased lipogenesis from accumulating
Gro3P in these knock-in embryos (46). As the PGPD34N/D34N

knock-in mouse embryos do not survive beyond E11.5, it
appears that G3PP/PGP is essential during development,
possibly due to its role in glucose and glycerolipid
metabolism (46).

Overall the data indicate that G3PP is a glucose
concentration-dependent enzyme at the nexus of glucose and
FIGURE 1 | Role of G3PP in intermediary metabolism. Glycerol-3-phosphate (Gro3P) is a central metabolite at the intersection of four important pathways in most
cells: 1) glycolysis; 2) glycerolipid synthesis and the glycerolipid/free fatty acid (GL/FFA) cycle; 3) gluconeogenesis (liver and kidney) and 4) energy metabolism via
electron transfer shuttle to mitochondria. Gro3P can be produced from glucose via glycolysis or from lipolysis-derived glycerol by glycerol kinase. The cellular levels
and availability of Gro3P are regulated by Gro3P phosphatase (G3PP), which dephosphorylates Gro3P to form glycerol. Under conditions of excess glucose supply,
a buildup of Gro3P in the cell may cause an overflow of glucose carbons into glycolysis, lipid synthesis and electron transfer, leading to accumulation of fat and also
elevated production of reactive oxygen species (ROS) in mitochondria. G3PP may act as a detoxification enzyme to protect the cells from glucotoxicity, excess fat
synthesis and storage and oxidative damage by hydrolyzing Gro3P to glycerol, a less harmful molecule, that exits the cell through aquaglyceroporins. a-KG, a-
ketoglutarate; AQP, aquaglyceroporin; DHAP, dihydroxyacetone phosphate; ETC, electron transport chain; FFA, free fatty acid; G-6-P, glucose-6-phosphate; G3PP,
glycerol-3-phosphate phosphatase; GA3P, glyceraldehyde-3-phosphate; GK, glycerol kinase; GL/FFA cycle, glycerolipid/free fatty acid cycle; Gro3P, glycerol-3-
phosphate; OAA, oxaloacetate; ROS, reactive oxygen species; Succ-CoA, succinyl-CoA; TCA cycle, tricarboxylic acid cycle; TG, triglycerides.
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lipid metabolism that plays a role in glucose, energy and lipid
metabolism primarily at elevated concentrations of glucose and
cellular Gro3P.
PHYSIOLOGICAL ROLES OF G3PP/PGP

As G3PP/PGP plays a role in glucose, lipid, and energy
metabolism (Figure 1), this enzyme is likely implicated in
various physiological and pathological processes related to
nutrient excess. It was earlier suggested that G3PP/PGP plays a
role in the removal of 2-phosphoglycolate generated during
DNA repair processes (46), but this is questionable as in
mammalian cells, 2-phosphoglycolate levels are either very low
under normal conditions (22) or below detectable levels, even
under stress conditions (46, 47). Similarly, the 2-phosphoglycolate
hydrolytic ability of G3PP/PGP has been implicated (48) in the
control of the bifunctional glycolytic enzyme 1,3-diphosphoglycerate
mutase/2,3-diphosphoglycerate (DPG) phosphatase, which regulates
hemoglobin binding to oxygen in the RBC. DPG phosphatase
hydrolyzes 2,3-diphosphoglycerate, which is known to lower the
affinity of hemoglobin for oxygen and thus promote the release of
oxygen from oxyhemoglobin (49). The proposed role for PGP in
RBC in this process is to control the levels of 2-phosphoglycolate,
which potently activates the DPG phosphatase (48). However, the
concentration of 2-phosphoglycolate in RBC (~4 µM) is nearly 200
fold less than its Km for G3PP/PGP (26), and at such low
concentration, 2-phosphoglycolate may not be available as a
substrate for G3PP/PGP in RBC (50), questioning this role of
G3PP/PGP in RBC.

Detoxification of Metabolic By-Products
of Enzymatic Reactions
Toxic metabolic side products are generated in cells due to
mutations in enzymes, changes in metabolic flux or due to the
enzyme reaction with alternative substrates at low rates as the
specificity of many enzymes is not absolute. Thus, it was shown
that GAPDH can also catalyze the conversion of the pentose
phosphate pathway metabolite erythrose-4-phosphate to 4-
phosphoerythronate (51), though at a much lower rate (32).
Similarly, pyruvate kinase was shown to phosphorylate lactate to
2-phospholactate (52). 4-Phosphoerythronate and 2-
phospholactate were shown to inhibit 6-phosphogluconate
dehydrogenase and phosphofructokinase-2, respectively (32).
As 4-phosphoerythronate and 2-phospholactate accumulate
only in PGP deleted HCT116 cells (32) and malarial parasite
Plasmodium (33, 53), it was suggested that G3PP/PGP can act
like a ‘metabolic repair enzyme’ and hydrolyze these two toxic
metabolites. However, as the concentrations of these metabolites
in wild type cells with normal expression of G3PP/PGP are much
lower than their corresponding Km for purified mouse G3PP/
PGP, it is plausible that only under stress conditions when these
metabolites accumulate significantly, G3PP/PGP may hydrolyze
them and act as a detoxification enzyme of various phospho-
metabolites, besides its action on Gro3P.
Frontiers in Endocrinology | www.frontiersin.org 5
Adipose Tissue and Liver Metabolism
Increased adiposity leads to obesity and is an important risk
factor for type 2 diabetes (T2D) and other cardiometabolic
diseases. Synthesis and storage of triglycerides is critical in the
expansion of adipose tissue, and recent studies demonstrated a
role for G3PP/PGP in the control of lipogenesis by the hydrolysis
of Gro3P in primary white adipocytes (42). We reported that the
expression level of G3PP in mouse visceral, subcutaneous and
brown fat is nutritionally regulated (fed vs. fasting state and low
vs. high-fat diet (20). The precise role of G3PP in various adipose
depots and whole-body energy homeostasis remains to
be defined.

Liver plays key role in the synthesis and secretion of
lipoproteins and gluconeogenesis and these processes are
dependent on the availability of Gro3P in hepatocytes. We
reported that in isolated rat primary hepatocytes incubated at
elevated glucose (25 mM), the levels of Gro3P and glycolysis as
measured by lactate release and glycerolipid synthesis as
indicated by diacylglycerol and triglyceride levels, were all
higher when G3PP/PGP expression was suppressed using
RNAi. Opposite effects were noted in hepatocytes with human
G3PP overexpression (22). All these effects due to variations in
the expression level of G3PP were glucose concentration
dependent as they were much less at low 5 mM glucose.
Interestingly, the toxic metabolite 2-phosphoglycolate was
found at very low levels in hepatocytes but was measurable in
these cells at 5 and 25 mM glucose, but its concentration did not
change upon RNAi-suppression of G3PP, indicating that G3PP
has little or no role in modulating 2-phosphoglycolate levels
under normal conditions. In addition, we noticed that adenoviral
vector mediated overexpression of G3PP in rat liver, led to
decreased gluconeogenesis from glycerol and also enhanced
secretion of high density lipoprotein, in vivo (22). Thus, G3PP/
PGP in adipocytes and hepatocytes likely has a significant role in
the regulation of their physiological functions.

Influence of Nutrients, Hormones
and Dietary State
Considering that G3PP/PGP is an important metabolic enzyme
that regulates glucose and lipid metabolism and nutri-stress,
expression of this enzyme is likely regulated by multiple factors
including nutritional status. Thus, we observed that overnight
fasting in mice lowered G3PP expression at mRNA and protein
levels in brown adipose tissue while its expression increased in
visceral white adipose tissue (22). It was suggested that such
depot specific inverse change in G3PP expression ensures supply
of lipolysis-derived glycerol upon fasting, from white adipose to
liver and kidney for gluconeogenesis, rather than being used for
re-esterification. However, feeding of 60% high fat diet to mice
led to elevated G3PP expression in brown adipose but decreased
in white adipose depots, so that Gro3P is made available for the
esterification of excess FFA for storage as triglycerides. High fat
diet increased G3PP mRNA expression in heart and also testis
also, probably as a defense mechanism to prevent build-up of fat
in these organs, which otherwise may have pathological
consequences (22). Expression of G3PP was found to be
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unaltered by increasing glucose concentration (7 to 14 mM) in
differentiated 3T3-L1 adipocytes (42) and also in primary
visceral white adipocytes from rats (45) and exogenous insulin
was also without any effect on G3PP expression at various
glucose concentrations (43). Conversely, the expression of
three G3PP/PGP homologues (K09H11.7; C53A3.2; F44E7.2)
in C. elegans was found to be upregulated upon exposure to high
glucose concentration, accompanied by elevated glycerol
production (54). Interestingly, it was described that G3PP
mRNA expression in female rat perigonadal white adipose
tissue is much higher than in males, but if this corresponds
with elevated G3PP activity in female adipose tissue is not known
(45). It is yet to be determined if sex hormones influence the
expression of G3PP in any tissue, even though testis as a whole
organ is found to have the most expression of G3PP among
various body tissues (22). Thus, the expression of G3PP appears
to be controlled by nutritional status in a tissue and organism
dependent manner, which adds another level of regulation of
energy metabolism, and further work is needed to fully
understand the hormonal regulation of this enzyme’s expression.

Insulin Secretion
Insulin secretion in pancreatic b-cells is driven by the
intracellular metabolism of glucose and other fuels, in
particular by the so-called metabolic coupling factors derived
from glycolysis, mitochondrial and lipid metabolism, such as the
ATP/ADP ratio and monoacylglycerol (38). Our earlier studies
showed that changes in the expression level of G3PP/PGP in b-
cells alters glucose and lipid metabolism and the glycerolipid/FFA
cycle in ß-cells, which are known to produce coupling factors for
glucose induced insulin secretion. Thus, downregulation of G3PP
in INS1(832/13) b-cells and rat islets was found to enhance GSIS
in association with elevated production of ATP and glycerolipids,
such as diacylglycerols, which are known to act as signals to
promote insulin secretion, while G3PP over-expression led to
slowed down GSIS response accompanied by reduced ATP and
glycerolipid production (22). Thus, G3PP/PGP is a new player in
ß-cell metabolic signaling and insulin secretion.
G3PP IN HUMAN DISEASES

Considering that Gro3P occupies a central position in glucose,
lipid and energy metabolism, enzymes that generate and use this
metabolite are likely to have important regulatory roles and any
defects in these enzymes can have pathological consequences.
Thus, glycerol kinase deficiency in humans is an X-chromosome
linked disease and is reported to be associated with abnormalities
in lipid metabolism, susceptibility to diabetes, metabolic acidosis,
etc. (55). Glycerol kinase knockout mice were found to have
severely disturbed fat metabolism, hyperglycerolemia and
postnatal growth retardation and death by 3-4 days of age
(56). Mitochondrial glycerol-3-phosphate dehydrogenase
deletion in livers was found to lead to hepatic steatosis due to
enhanced lipogenesis in mice (57) and a rare case of genetic
deficiency of this enzyme was found to be associated with mental
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retardation (58). In addition, cytosolic glycerol-3-phosphate
dehydrogenase KO mice were found to have elevated body
weight, increased compensatory gluconeogenesis from alanine,
increased fatty acid oxidation in skeletal muscle, but reduced
gluconeogenesis from glycerol (59). Mutations in cytosolic
glycerol-3-phosphate dehydrogenase were shown to be
associated with transient hypertriglyceridemia in children (60).
Similarly, Gro3P acyltransferases, which esterify Gro3P to
lysophosphatidic acid, were implicated in obesity and hepatic
steatosis and insulin resistance (61). Collectively, it appears that
all the enzymes that are directly involved in the synthesis and
utilization of Gro3P play critical roles in the whole body
metabolism and their compromised activity can have
pathological consequences.

Despite the fact that PGP gene is essential for mammalian
embryogenesis and development (46), there are no studies
showing a direct “cause and effect” relationship between G3PP/
PGP and the pathogenesis of human diseases. However,
considering the role of G3PP/PGP in the regulation of glucose,
lipid and energy metabolism, it may have a protective function
against cardiometabolic diseases due to excess nutrient fuel supply.

Nutri-Stress and Glucolipotoxicity
Excess supply of nutrient fuels is the primary cause of cellular
dysfunction in various organs, including pancreatic islets, heart
muscle and liver, that eventually causes cardiometabolic diseases
(62, 63), and we have recently termed this as ‘nutri-stress’ (64).
Indeed, toxicity manifested as apoptosis in tissues due to the
combined presence of excess glucose and fatty acids is called
glucolipotoxicity (65–67). We have proposed that the diversion
of glucose carbons to glycerol is deployed as a defense
mechanism by pancreatic b-cells to evade toxic effects of excess
glucose, as b-cells cannot re-use glycerol, which leaves the cell
(35). Thus, the expression level of G3PP, which is responsible for
the direct conversion of glucose carbons to glycerol, was found to
be inversely related to glucotoxicity and glucolipotoxicity in b-
cells (22). Elevated G3PP/PGP expression in b-cells has also been
shown to slow-down the b-cell response to secrete increased
levels of insulin in the presence of high concentrations of glucose
(22), an effect that is anticipated to prevent hyperinsulinemia as
well as b-cell exhaustion and dysfunction. Thus, the emerging
view is that G3PP/PGP plays an important role in the b-cells not
only to regulate glucose and lipid metabolism but also as a
glucose excess security valve to alleviate metabolic stress in these
cells and to prevent hyperinsulinemia, which leads to insulin
resistance, obesity and T2D in the face of excess nutrient supply.
In addition to b-cells, G3PP/PGP expression level is also relevant
in preventing excess synthesis and storage of fat in the liver and
thus hepatic steatosis, and also in slowing down hepatic glucose
production, a significant problem in T2D (22).

Cardiometabolic Disorders
Chronic nutri-stress is the root cause of cardiometabolic
disorders such as metabolic syndrome, T2D, obesity,
atherosclerosis, and non-alcoholic fatty liver disease (64, 68).
Nutri-stress promotes lipogenesis with associated accumulation
of fat in adipose tissue and other tissues (18, 35, 37), oxidative
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damage due to excessive ROS production via mitochondrial
metabolism and leads to aggravated local and systemic
inflammation (69). The increased cellular level of Gro3P
derived from glucose metabolism is likely at the center of
many of these pathogenic pathways. Therefore, curtailing the
excess buildup of Gro3P by G3PP likely alleviates the metabolic
stress and fuel surfeit toxicity to the cells. Thus, in vitro and
in vivo studies in rats with G3PP overexpression suggested
several beneficial effects of elevated G3PP activity in the liver
and pancreatic islets against metabolic complications due to
excess nutrients (22).
CONCLUSIONS AND PERSPECTIVE

Despite the earlier belief that mammals do not possess a G3PP
like enzyme, there is an overwhelming evidence now, as
summarized in this review, that indeed such an enzyme exists
in mammalian cells and plays a major role in the regulation of
metabolic and physiological processes, disturbances of which
could lead to cardiometabolic diseases. Activity of G3PP in
pancreatic b-cells appears to be an important player in the
regulation of GSIS and also in preventing nutri-stress. In other
cell types, including hepatocytes and adipocytes, G3PP seems to
control glucose and lipid metabolism and excessive fat buildup.
There are still several knowledge gaps concerning the role of
G3PP in other organs, including muscle and heart, whose
functions are affected in cardiometabolic diseases. In addition,
the proposed role of this enzyme as a metabolic repair enzyme
needs to be further studied for its relevance in mammalian cells
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under normal physiological conditions. Several of these
knowledge gaps can be addressed using appropriate animal
models, including tissue-specific knockout and graded
overexpression models. More detailed genetic studies are also
needed focusing on the association of the PGP gene and its
variations with cardiometabolic diseases. Considering that
elevated activity of G3PP protects against nutri-stress, excess
fat buildup, hyperinsulinemia, hepatic glucose production and
fatty liver disease, this enzyme can be a potential therapeutic
target for cardiometabolic diseases.
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