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Objective: While prior reports have characterized visible changes in

neuroimaging findings in individuals su�ering from sudden sensorineural

hearing loss (SSNHL), the utility of regional homogeneity (ReHo) as a

means of diagnosing SSNHL has yet to be established. The present study

was thus conducted to assess ReHo abnormalities in SSNHL patients

and to establish whether these abnormalities o�er value as a diagnostic

neuroimaging biomarker of SSNHL through a support vector machine (SVM)

analysis approach.

Methods: Resting-state functional magnetic resonance imaging (rs-fMRI)

analyses of 27 SSNHL patients and 27 normal controls were conducted, with

the resultant imaging data then being analyzed based on a combination of

ReHo and SVM approaches.

Results: Relative to normal control individuals, patients diagnosed with

SSNHL exhibited significant reductions in ReHo values in the left cerebellum,

bilateral inferior temporal gyrus (ITG), left superior temporal pole (STP), right

parahippocampal gyrus (PHG), left posterior cingulum cortex (PCC), and right

superior frontal gyrus (SFG). SVM analyses suggested that reduced ReHo values

in the left cerebellum were associated with high levels of diagnostic accuracy

(96.30%, 52/54), sensitivity (92.59%, 25/27), and specificity (100.00%, 27/27)

when distinguishing between SSNHL patients and control individuals.

Conclusion: These data suggest that SSNHL patients exhibit abnormal

resting-state neurological activity, with changes in the ReHo of the left

cerebellum o�ering value as a diagnostic neuroimaging biomarker associated

with this condition.

KEYWORDS

sudden sensorineural hearing loss, regional homogeneity, resting-state fMRI, support

vector machine, neuroimaging biomarker
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Introduction

Sudden sensorineural hearing loss (SSNHL) is a medical

emergency wherein affected individuals present with

sensorineural hearing loss (≥30 dB over ≥3 consecutive

frequencies) of unknown origin within 3 days. SSNHL is often

accompanied by symptoms including tinnitus, vertigo, and

aural fullness (1). SSNHL is estimated to affect 5–27 per 100,000

persons, and its annual incidence continues to rise (2, 3). Just

5% of SSNHL cases are bilateral, with most patients exhibiting

a unilateral loss of hearing without any side preference (1, 4).

Although the most common suspected etiologies of SSNHL in

adult patients include viral infection, vascular or hematologic

disease, immune-mediated disease, tumors, trauma, and other

causes, the precise etiology of SSNHL remains unclear (5).

SSNHL can contribute to social difficulties and psychiatric

disorders in certain cases (6), with SSNHL patients exhibiting

a higher risk of depression, and depression patients similarly

exhibiting increased odds of developing SSNHL (7). As such,

a failure to rapidly diagnose and treat SSNHL can lead to

permanent hearing loss and associated adverse effects on quality

of life (8). A combination of medical history information and

pure tone audiometry (PTA) is generally used to diagnose

SSNHL. However, imageological approaches capable of

diagnosing SSNHL are lacking.

Rapid advances in neuroimaging technologies in recent

years have enabled the diagnostic evaluation of a range of

neurological systems. For example, increases in the fractional

amplitude of low-frequency fluctuation in the right precuneus

and left superior frontal gyrus may offer value as a biomarker

associated with first-episode major depressive disorder (MDD)

incidence (9). Abnormal network homogeneity values of the

right posterior cingulate cortex/precuneus have also been

successfully used to differentiate between individuals diagnosed

with obsessive-compulsive disorder and control individuals with

respective sensitivity and specificity values of 67.50% and 76.32%

(10). Notably, several imaging studies have reported functional

and structural changes in certain brain functional networks in

SSNHL patients during the acute phase (≤30 days) (6, 11–13).

However, neuroimaging biomarkers that can be used to guide

SSNHL patients diagnosis have not been reported to date.

Resting-state functional magnetic resonance imaging

(rs-fMRI) is a sensitive, non-invasive imaging approach that

can offer detailed insight regarding altered brain function and

neuronal activity. Accordingly, rs-fMRI imaging is commonly

used for the evaluation of tinnitus patients and individuals

suffering from bilateral or unilateral sensorineural hearing loss

(14–17). Regional homogeneity (ReHo) is a robust algorithmic

approach that enables the quantification of the resting-state local

synchronization of adjacent voxels (18, 19), thereby providing

insight regarding the consistency of whole-brain neural activity

patterns. Abnormal ReHo detected via rs-fMRI in particular

brain regions may be indicative of aberrant spontaneous neural

activity among and within these areas of the brain. Specifically,

increased ReHo values correspond to improved neuronal

synchrony, whereas reduced ReHo values indicate impaired

local neuronal activity.

While the use of rs-fMRI approaches to study SSNHL

is becoming increasingly common, no studies to date have

utilized a combination of ReHo and support vector machine

(SVM) approaches to analyze these rs-fMRI-derived data. SVM

approaches rely on the use of a robust machine learning

algorithm capable of analyzing data, recognizing patterns,

and using the resultant insights to gauge diagnostic accuracy.

By identifying the maximal margin separating a hyperplane,

this SVM algorithm maintains enhanced generalizability and

resists overfitting, providing optimal predictive accuracy for

test data that have not yet been analyzed. By overlaying SVM-

derived weight values onto the original brain space utilized

for fMRI analyses, the areas of the brain that can most

effectively differentiate between different groups of individuals

can be identified (20). As SVM algorithms can effectively

locate and differentiate patterns within a particular dataset,

the interpretability of the associated model is improved (20).

SVM analyses are ideally suited to high-dimensional datasets

in which there are more features than there are samples,

with multiple prior reports having achieved success in the

use of SVM to identify brain states (20, 21), enabling the

discrimination between individuals diagnosed with particular

neurological disorders and healthy controls (9, 22–25). Whether

ReHo abnormalities can be effectively employed to differentiate

between individuals with and without SSNHL through an SVM

analysis, however, remains to be assessed. As such, the present

study was designed to explore ReHo in patients with SSNHL, to

establish which brain regions exhibit abnormal SSNHL-related

ReHo, and to employ an SVM approach to gauge the value of

abnormal ReHo as a neuroimaging biomarker of SSNHL.

Methods

Subjects

Between August 2020 and December 2021, a total of 27

patients diagnosed with SSNHL and 27 normal controls from

the Otolaryngology Head and Neck Surgery Department of

Tianyou Hospital affiliated with Wuhan University of Science

and Technology were enrolled in this study. Participants were

eligible for enrollment if they exhibited: (a) ≥30 dB in ≥3

contiguous frequencies with an air-bone gap < 10 dB, as

measured via PTA; (b) a new-onset case of SSNHL with no prior

history of this condition; (c) hearing loss of unknown origin;

(d) no known neurological disease; (e) MRI and CT imaging

results that excluded the presence of any space-occupying lesions

within the intracranial space or internal auditory canal. SSNHL

patients were excluded from this study if they (a) had any history
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of noise exposure, ototoxic drug use, or ear surgery; (b) were

experiencing fluctuating hearing loss; (c) had a family history

of neurological disease; or (d) exhibited any inflammation of

the external or middle ear. All enrolled normal control subjects

exhibited normal otoscopic tympanic membrane findings and

their pure-tone air conduction thresholds <25 dB HL at 0.25,

0.5, 1, 2, 4, and 8 kHz. Control participants were also free

of any history of neurological or otologic disease. Pure-tone

thresholds at 0.25, 0.5, 1, 2, 4, and 8 kHz were recorded at the

start and the end of treatment. The Institutional Review Board

of Tianyou Hospital Ethics Committee approved this study, and

all participants provided informed consent.

Image acquisition

An Ingenia 3.0 T MRI scanner (Philips, Amsterdam,

Netherlands) was used to analyze all study subjects in the

Department of Medical Imaging. Participants were positioned

with their heads being placed within a foam-filled prototype

quadrature birdcage head coil designed to limit motion. During

fMRI scanning, participants were directed to remain still

and awake with their eyes close. Scanning parameters were:

TR= 2000ms, TE= 30ms, flip angle = 90◦, FOV= 220× 220

mm2, matrix size= 64× 64, slice gap= 0.7mm, slice thickness

=3.5mm, slice number= 33, and pitch= 1 mm.

Data preprocessing

MATLAB was used for the pre-processing of rs-fMRI data

with the DPARSF software (26). Initially, the first five time

points for each participant were excluded from analysis to

reduce initial signal instability and to ensure that participants

had sufficient time to adapt to the imaging. Samples were

then corrected for head motion and slice time. Participants

were not included in subsequent analyses if they exhibited

over 2mm of maximal displacement in any of the x, y, or z

directions or over 2◦ of maximal rotation. Corrected imaging

data were then subjected to spatial normalization based upon

the standard Montreal Neurological Institute space, followed

by resampling at 3× 3× 3 mm3. Images were then subjected

to bandpass filtering (0.01–0.08Hz) and linear detrending.

Spurious covariates were then removed, including six head

motion parameters derived from rigid body correction, signal

from a region centered in the white matter, and signal derived

from a ventricular seed-based region of interest.

ReHo analysis

ReHo analyses were conducted using the DPABI software

(http://rfmri.org/dpabi). Kendall coefficients of the time series

TABLE 1 Demographic and clinical characteristics.

SSNHL NC P value

Number (n) 27 27 –

Sex (n)

Male 19 14 0.163

Female 8 13

Age (year) 47.96± 9.37 44.04± 8.28 0.109

Hearing loss duration (day) 4.89± 5.86 – –

PTA of affected ear (dB HL)

Pre-treatment 72.50± 16.73 – –

Post-treatment 60.15± 25.08 – <0.001

PTA of unaffected ear (dB HL)

Pre-treatment 24.54± 9.36 – –

Post-treatment 23.83± 8.98 – 0.024

Data presented as mean ± SD. n means number; SSNHL, sudden sensorineural hearing

loss; NC, normal controls; PTA, pure tone audiometry. The p-value for the gender

distribution was obtained by the Chi-square test. Age was compared using the two-

sample t test; PTA was compared with the paired-sample Wilcoxon test. p < 0.05 was

considered significant.

consistency between individual voxels and neighboring voxels

were used to construct ReHo brain maps, with smoothing

then being performed using a Gaussian kernel with a full

width and half height of 4mm to minimize the impact of

noise and deformation on the standardization process, thereby

improving image effects, signal-to-noise ratio values, and

statistical efficiency.

Classification analysis

The MATLAB LIBSVM package was used to conduct SVM

classification analyses in an effort to establish the ability of

ReHo values extracted from abnormal regions of the brain

to differentiate between SSNHL patients and normal control

individuals. This analytical approach was performed using a

leave-one-out technique.

Statistical analyses

Demographic and clinical data

Statistical analyses were performed using SPSS 22.0, with

demographic data being compared between groups using chi-

square tests (sex) and two-sample t-tests (age). Hearing levels

were compared via theWilcoxon test. P< 0.05 was the threshold

of significance.

ReHo values

The DPABI software was used to perform two-sample t-

test analyses of ReHo graphs for the patient and normal
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FIGURE 1

Di�erences in regional homogeneity (ReHo) values between SSNHL patients and normal controls. Decreased ReHo values (left cerebellum, left

STP, right PHG, left PCC, right SFG, and bilateral ITG) were presented on the blue color, and the color bar indicates the T values of the group

analysis. L, left; R, right; STP, superior temporal pole; PHG, parahippocampal gyrus; PCC, posterior cingulum cortex; SFG, superior frontal gyrus;

ITG, inferior temporal gyrus.

control groups, with age and sex being treated as covariates.

Brain templates were selected for overlay, and analyses were

subjected to Gaussian Random Field (GRF) correction with a

correction threshold of P < 0.01. Those brain regions exhibiting

significant differences between these two groups were extracted

as a template mask, with ReHo values for individual subjects

then being extracted based on this template.

Results

Patient characteristics

In total, this study incorporated 27 patients diagnosed with

unilateral SSNHL and 27 normal controls. There were no

significant differences between these groups with respect to

the age or sex of participants (P > 0.05), while there were

significant differences between pre- and post-treatment hearing

levels among SSNHL patients (P < 0.05). For further details

regarding participant characteristics, see Table 1.

SSNHL-related ReHo abnormalities

SSNHL patients exhibited significant reductions in ReHo

in the left cerebellum, bilateral inferior temporal gyrus (ITG),

left superior temporal pole (STP), right parahippocampal gyrus

TABLE 2 Clusters with abnormal regional homogeneity in the patients

with SSNHL.

Cluster location Peak (MNI) Number of voxels T-value

X Y Z

Left cerebellum −6 −51 −54 121 −22.4941

Right ITG 45 −9 −27 142 −22.6682

Left ITG −45 3 −42 145 −23.2774

Left STP −33 15 −24 36 −20.5900

Right PHG 30 −18 −21 36 −17.1846

Left PCC −6 −39 15 128 −21.3446

Right SFG 15 57 6 410 −21.1893

SSNHL, sudden sensorineural hearing loss; MNI, Montreal Neurological Institute; ITG,

inferior temporal gyrus; STP, superior temporal pole; PHG, parahippocampal gyrus; PCC,

posterior cingulum cortex; SFG, superior frontal gyrus.

(PHG), left posterior cingulum cortex (PCC), and right superior

frontal gyrus (SFG) relative to normal controls (Figure 1,

Table 2).

SVM analysis results

An SVM approach was used to separately analyze abnormal

ReHo values in seven regions of the brain (left cerebellum,
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FIGURE 2

Visualization of classifications through support vector machine (SVM) using the decreased regional homogeneity (ReHo) values in the left

cerebellum to discriminate SSNHL patients from normal controls. Left: SVM parameters result of 3D view. g means gamma, c means penalty

coe�cient. Right: Classified map of the ReHo values in the left cerebellum. Blue circle means true value and the red asterisk means predict value.

bilateral ITG, left STP, right PHG, left PCC, and right SFG),

revealing decreased ReHo in the left cerebellum to exhibit the

highest diagnostic accuracy (96.30%, 52/54) when differentiating

between SSNHL patients and normal controls, with a sensitivity

of 92.59% (25/27) and a specificity of 100.00% (27/27) (Figure 2).

Discussion

Here, whole-brain ReHo was assessed at rest in both

SSNHL patients and normal control individuals. Significant

reductions in ReHo values were observed in the left cerebellum,

bilateral ITG, left STP, right PHG, left PCC, and right SFG

of SSNHL patients during the acute hearing loss period

relative to control individuals. These data suggest that these

seven regions of the brain exhibit abnormal spontaneous

neural activity in individuals affected by acute-phase SSNHL.

SVM analyses further indicated that reductions in ReHo

in the left cerebellum may offer value as a neuroimaging

biomarker that can distinguish between patients with SSNHL

and unaffected controls.

The reduced ReHo of seven brain regions in SSNHL

may present the baseline abnormality of sensory cortices in

SSNHL at rest. Recent work suggests that the cerebellum

plays a central role in the coordination of emotional, sensory,

and cognitive processes (27, 28). Moreover, the cerebellum

mediates the processing of acoustic information derived from

auditory-associated brain regions (29). Xu et al. (15) determined

that patients suffering from long-term moderately severe

bilateral sensorineural hearing loss exhibit atypical patterns

of spontaneous neural activity within the cerebellum, in line

with the results of this present study. Here, decreased ReHo

of the left cerebellum may reflect abnormal brain function

in sensory and cognitive information processing in SSNHL

patients, and an adaptation to engage other sensory systems as

a compensatory mechanism for the acute hearing impairment.

Thus, we speculated that the lack of sufficient acoustic input

may have impaired the function of the cerebellum as reflected

by reduced ReHo values in this brain region. The SVM analysis

results for this region further yielded an accuracy of 96.30%

(52/54), suggesting that reductions in left cerebellar ReHo values

may offer utility as a putative neuroimaging biomarker that can

aid in diagnosing SSNHL.

The ITG has been found to play a role in multiple

functional brain networks associated with emotional regulation,

language comprehension, memory, and visual processing (30–

32). Much like the ITG, the temporal pole is a component

of the association complex associated with emotion, language

processing, and the multimodal integration of sensory inputs

(33–37), and both the STP and ITG are components of the

temporal lobe. Therefore, abnormal activity of the two brain

regions could influence the function of the temporal lobe. The

temporal lobe is the location of the auditory center, and it is

also involved in functions relating to emotion, speech, balance,

memory, and visual perception. Thus, SSNHL could lead to

structural and functional impairment of the temporal lobe.
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The PHG is a center that is reportedly associated with higher-

order cognitive functions such as visual-spatial processing and

the encoding/retrieval of memories (38, 39). Lin et al. (38)

conducted a tractography analysis that confirmed the existence

of extensive cortico-cortical correlations between the PHG and

other regions of the brain including the occipital, parietal,

temporal, and frontal cortices. The temporal pole has also been

regarded as a component of the parahippocampal region in

humans as well as in non-human primates (39, 40). As such,

the ITG, STP, and PHG are closely related to one another both

functionally and structurally. Multiple reports have identified

abnormal changes in the PHG and ITG in individuals suffering

from hearing loss. Yang et al. (41) determined that individuals

affected by long-term right-sided unilateral hearing loss exhibit

significantly lower gray matter volumes in the right PHG, left

superior/middle/inferior temporal gyrus, bilateral PCC, and

precuneus. Chen et al. (42) also observed lower ReHo values

in the precuneus, PHG, superior temporal gyrus, and inferior

parietal lobe in presbycusis patients. In the present analysis,

SSNHL patients exhibited resting-state ReHo abnormalities in

the STP, ITG, and PHG, thus suggesting a role for these regions

in the pathophysiology of this condition.

The PCC is a component of the posteromedial cortex

located in the medial portion of the inferior parietal lobe

(43). As a key default mode network (DMN) component, the

function of the PCC has been linked to cognition, emotional

regulation, and the retrieval of episodic memories. The DMN

consists of the medial prefrontal cortex, precuneus, inferior

parietal lobe, and PCC (44), and plays roles in negative

ruminations, memory retrieval, cognitive functioning, and self-

related thoughts (44–46). Reductions in ReHo values in the PCC

in the present analysis are likely reflective of altered spontaneous

neural activity in this region and between the PCC and

connected regions. The SFG, located in the superior prefrontal

cortex, has previously been separated based on diffusion tensor

tractography into the anteromedial, dorsolateral, and posterior

SFG subregions by Li et al. (47), revealing both the anteromedial

and dorsolateral SFG to be primarily connected with the

DMN when conducting resting-state analyses of functional

connectivity. The SFG is also an integral component of

emotional processing, cognitive control, and working memory

(48–51), and several reports have documented altered ReHo

values in the SFG. Patients with MDD, for example, reportedly

exhibit elevated ReHo values in the left SFG, medial superior

frontal gyrus, and left middle temporal gyrus (52). Relative

to healthy individuals, diabetic optic neuropathy patients also

exhibit significant reductions in ReHo values in the SFG,

left anterior cingulate, and right middle frontal gyrus (53).

Diabetic vitreous hemorrhage patients also reportedly present

with significant increases in bilateral SFG, bilateral cerebellar

posterior lobes, and right superior/middle occipital gyrus ReHo

values (54). However, few studies to date have explored SSNHL-

related changes in ReHo values in the SFG. Here, SSNHL

patients were found to exhibit significantly reduced ReHo values

in the right SFG as compared to normal controls, consistent with

the weakening of the consistency of spontaneous neural activity

in this region. The observed ReHo abnormalities in the PCC and

SFG may thus be suggestive of abnormal structures in the DMN

in patients affected by SSNHL.

Prior research has revealed SSNHL incidence to be

correlated with higher rates of affective disorders including

depression and anxiety (55, 56). The results of this analysis

suggest that acute auditory deprivation may alter spontaneous

neuronal activity following SSNHL incidence, contributing

to changes in higher-order brain functions. Together, these

results may offer new insight regarding the underlying

neuropathological mechanisms of SSNHL and associated

alterations in higher-order brain functions.

The advent of novel imaging technologies has spurred a

growing interest in the use of neuroimaging biomarkers as

tools for the diagnosis and monitoring of a range of diseases

and disorders. Gao et al. (25) reported that the increased

degree centrality of the right inferior parietal lobule and the

left dorsolateral superior frontal gyrus could be used as a

combined imaging biomarker of right temporal lobe epilepsy

(rTLE) with respective sensitivity and specificity values of 100%

and 98.55%. Abnormal ReHo values in particular brain regions

have also shown promise as a tool for differentiating between

schizophrenia patients and healthy controls (57). This study,

however, is the first to have employed an SVM approach to

examine the utility of ReHo abnormalities as SSNHL-related

neuroimaging biomarkers. ReHo is an indicator of local brain

regions activity. SVM is a mature and effective algorithm

in machine learning and it has successfully been used in

prior reports to guide the diagnosis of first-episode MDD

(9), schizophrenia (58), obsessive-compulsive disorder (10),

and rTLE (25). Here, an SVM approach was used to analyze

the diagnostic utility of abnormal ReHo values in the left

cerebellum, bilateral ITG, left STP, right PHG, left PCC, and

right SFG, revealing that the left cerebellum exhibited respective

accuracy, sensitivity, and specificity values of 96.30%, 92.59%,

and 100.00% when differentiating between SSNHL patients and

normal controls.

There are certain limitations to this analysis. For one,

the sample size was relatively limited. Additionally, scanner-

derived noise could not be fully eliminated even though

participants were provided with earplugs. Lastly, no analyses

of the correlations between ReHo and clinical findings

were performed.

Conclusion

In conclusion, these results suggest that reduced ReHo in the

left cerebellum, bilateral ITG, left STP, right PHG, left PCC, and

right SFG correspond to abnormal spontaneous brain activity in
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patients diagnosed with SSNHL. Moreover, decreases in ReHo

within the left cerebellum may offer value as a neuroimaging

biomarker that can aid in the diagnosis of SSNHL.
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