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Abstract

Background: Transcription factors (TFs) play important roles in the regulation of gene expression. They can activate
or block transcription of downstream genes in a manner of binding to specific genomic sequences. Therefore, motif
discovery of these binding preference patterns is of central significance in the understanding of molecular regulation
mechanism. Many algorithms have been proposed for the identification of transcription factor binding sites. However,
it remains a challengeable problem.

Results: Here, we proposed a novel motif discovery algorithm based on support vector machine (MD-SVM) to learn a
discriminative model for TF binding sites. MD-SVM firstly obtains position weight matrix (PWM) from a set of training
datasets. Then it translates the MD problem into a computational framework of multiple instance learning (MIL). It was
applied to several real biological datasets. Results show that our algorithm outperforms MI-SVM in terms of both
accuracy and specificity.

Conclusions: In this paper, we modeled the TF motif discovery problem as a MIL optimization problem. The SVM
algorithm was adapted to discriminate positive and negative bags of instances. Compared to other svm-based
algorithms, MD-SVM show its superiority over its competitors in term of ROC AUC. Hopefully, it could be of benefit to
the research community in the understanding of molecular functions of DNA functional elements and transcription
factors.
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Introduction
Protein-DNA interactions play essential roles in the reg-
ulation of gene transcription, splicing, translation and
degradation. The binding of transcription factors (TFs)
and DNA is a fundamental molecular mechanism in gene
regulation. Gene expression is dynamically regulated by
TFs through sequence-specific interactions with genomic
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DNA. Interactions of TF and DNA binding sites can pre-
vent transcription of downstream genes or activate it. It’s
common to see that some genes are co-expressed in spe-
cific tissues or during specific cell stage. It indicates that
they may be controlled by a common TF regulator. Bind-
ing regions of one transcription factor on different genes
are usually conservative. The identification of transcrip-
tion factor binding sites, also known as motif discovery
(MD) problems, is usually defined as finding similar sub-
sequences from a given set of DNA sequences [1]. Thus,
the accurate characterization of TF-DNA binding affini-
ties is of significance for a quantitative understanding of
cellular regulation mechanism in life processes.
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In early bioinformatics, the recognition of transcription
factor binding sites was mainly concentrated in promoter
regions. Many computational tools were developed to
uncover the biological function of these functional ele-
ment using various models [2–11]. In recent years, with
the development of high-throughput sequencing tech-
nologies, the scope of research has been extended to
whole genomes by specific protein and specific DNA
sequences of immunoprecipitation throughout entire
genomes. In addition, protein binding microarrays (PBM)
can be used to measure in vitro transcription factor bind-
ing through the array of exhaustive short amino acid
sequences on microarrays [12]. Since the common con-
founding factor was eliminated in the ChIP-Seq exper-
iment [13], PBM data conveyed perfect information in
a more direct manner for the modeling of transcription
factor binding sites [14].

Recent advances in biotechnologies, such as ChIP-seq,
in-vitro protein binding microarrays (PBMs), in-vitro
high-througput sequencing and bacterial one-hybrid
assays, have provided opportunities to learn sequence
motifs of transcription factors using data-driven
approaches. The PBM technology enables the rapid, high-
throughput characterization of the sequence specificities
of DNA-protein interactions in vitro [15]. Many computa-
tional approaches have been developed to predict protein
binding affinities from PBM data. Position weight matri-
ces (PWMs) are commonly used to characterize binding
affinity between TFs and DNA sequences [16–18]. In
PWMs, there is a D × L matrix representing the binding
preference of a TF, where D is the number of alphabet (4
for DNA sequences), L is the length of binding sequences.
Given a sequence x := (x1, x2, · · · , xL), a log-odds score
S(x) = ∑L

j=1 log2(pj(xj)/pbg(xj)) was calculated to indict
the binding affinity of x with a specific TF [19]. In the
formula, pj(xj) is the probablity of nucleotide xj at the
position j of the binding site, and pbg(xj) is the background
probability of xj in a representative sequences [20].

Each nucleotide is independent of nucleotides at other
positions in this binding sequence. PWMs of thousands of
transcript factors are publicly available in motif datasets
such as JASPAR [21, 22], TRANSFAC [23, 24].

In contrast to PWMs, nucleotide dependence has been
taken into consideration in some statistical models to
improve the prediction of binding affinities. A discrimi-
native learning method based on hidden markov model
was applied to discover motifs from a variety of high-
throughput technologies, including ChIP-Seq [25, 26],
RIP-Chip [27, 28] and PAR-CLIP [29, 30] of transcript
factors and RNA binding proteins. A Bayesian Markov
model (BaMM) was proposed to discover motif, which
learns the kth-order probability p(k)

j (xj|xj−k:j−1) using
the order-(k-1) probability p(k−1)

j (xj|xj−k+1:j−1) as prior
information [19]. However, the prediction of binding

specificity of most eukaryotic TFs remains a challenging
problem.

To prevent overtraining, we proposed a novel discrim-
inative algorithm for motif discovery based on support
vector machines, which was referred to MD-SVM. It tries
to learn an appropriate nonlinear model from training
datasets. Basically, there are three major steps in the MD-
SVM approach. Firstly, it translates the MD problem into
a computational problem of multiple instance learning
(MIL), which models each input sequence as a labeled bag
with a set of instances [31, 32]. Then, the structure infor-
mation of each instance (a fragment) was mapped to a
feature vector using a nonlinear model. Lastly, a SVM-
based method was applied to find an appropriate classifier
using the gaussian kernel on a set of training datasets.

Methods
Multiple instance learning
The problem of multiple instance learning is to learn
a model, which can distinguish a set of given positive
and negative bags of instances. Each bag contains many
instances. It assumes that a bag is positive only if it has
at least one positive instance, and all instances in a nega-
tive bag are negative. Given m bags B1, B2, ...Bm, there are
ki instances in each bag Bi, 1 ≤ i ≤ m. There is a label
for each bag. Without loss of generality, each bag BI has
a label YI ∈ {−1, 1}. According to the definition of MIL, if
the label of a bag is positive, the bag contains at least one
positive instance. If the label of a bag is negative, the labels
of all instances in the bag are negative. It can be written
into the following formula:

∑

i∈I

yi + 1
2

≥ 1, ∀I s.t. YI = 1 (1)

yi = −1, ∀I s.t. YI = −1 (2)
MIL model has been applied to predict whether a drug

molecule will strongly bind to a target protein, which is
known to be involved in some diseases. Here, we attempt
to solve the MD problem in the framework of MIL. The
major task of a MD problem is to find binding preference
of a target transcription factor.

Instance feature extraction
We have modeled the motif discovery problem as a mul-
tiple instance learning model problem. However, in the
multiple instance learning model, each instance in the bag
needs to be converted to a corresponding feature. Hence,
it is necessary to convert the sequence information into
numerical features to facilitate the use of multiple instance
learning methods. We use a nonlinear model to map the
structural information of each instance to a feature vector.

The binding site of transcription factors is generally
5-15 bp in length and conserves in a certain sequence
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pattern. The probability of a certain base occurring at a
certain position may be very high. In the MIL model, we
have implicitly scattered all sequences that may be tran-
scription factor binding sites in instances of individual
bags. Each probe sequence (l=35bp) is considered as a
bag in the MIL model. A sliding window (c=10bp) was
applied to check the substring of each sequence. The slid-
ing window moves forward step by step (s=1bp). Then,
the instances of each bag would be n = [ (l − c)/s] +1.
Here, l is the length of a probe sequence, c the window
size, s the step size. Each subsequence (an instance) could
be a possible binding site of a transcription factor. An
example in Fig. 1 shows the framework of MIL model
in the prediction of possible binding sites of a transcrip-
tion factor. In this example, each probe sequence contains
n =[ (35 − 10)/1] +1 = 26 instances. The sliding win-
dow moves forward till it reaches the last instance, which
is ATGCTAGATT. We employed one hot encoding fea-
ture to represent the four different nucleotides, which are
shown in Table 1. Given one instance of c nucleotides,
the encoded feature vector is one binary vector with the
length of 4 ∗ c. In our tests, the parameter of c is set to 10.
The structure information of each instance was mapped
to a feature vector. The motif discovery problem became
a computational problem in the multi-instance learning
model.

Motif discovery with MD-SVM
The binary classification method of support vector
machines (SVM) was firstly proposed by Vladimir Vap-
nik et al. in 1992 [33]. It can accurately deal with complex
nonlinear boundary models, but usually costs time for
the calculation of parameters [34]. It was applied to solve

Fig. 1 An example of MIL model for DNA fragments

Table 1 Binary codes for each nucleotide

Nucleotide Code

A (1, 0, 0, 0)

T (0, 1, 0, 0)

C (0, 0, 1, 0)

G (0, 0, 0, 1)

Each nucleotide was encoded in a 4-dimensional vector.

small samples, nonlinear and high dimensional pattern
recognition. Here we proposed a multi-instance learning
algorithm based on the SVM algorithm, MD-SVM, which
is similar to MI-SVM proposed in [35]. Its main subjective
is to find a discriminative function which can calculate the
instance tags according to given constraints.

In the MIL framework, the label of a bag is determined
by the largest instance label in the bag. In the formula 1
and 2, we know that if all the tags in the bag are negative,
then the value of

∑
i∈I(yi+1)/2 = 0 . If

∑
i∈I(yi+1)/2 = 1,

it means that there is just one tag in the bag that is positive.
If

∑
i∈I(yi + 1)/2 > 1 ,it means that the tag in the bag has

more than one instance is positive. At least one of the tags
in the bag is positive when YI = 1.

γI ≡ YI max
i∈I

(
wT xi + b

)
(3)

ŶI = sgn max
i∈I

(
wT xi + b

)
(4)

In the formula (3), the one with the maximum wT xi + b
can be considered as the representative instance of a bag.
In a positive bag, it would be max

i∈I

(
wT xi + b

)
> 0, which

indicates that at least one of the tags in this bag is pos-
itive. On the contrary, it would be max

i∈I

(
wT xi + b

)
< 0

when a bag is negative. Formula (4) represents the
label of this bag. If at least one of the instance in this
bag has a positive label, sgn max

i∈I

(
wT xi+

) = 1.On the

contrary,sgn max
i∈I

(
wT xi + b

) = −1,the label is positive.
To accurately discriminate all positive bags from the

negative ones, it is necessary to make sure that γI is far
greater than 0 for each bag. From the formulas (3) and (4),
we can see that the representative instance of each bag
is the one that matters the parameter of our svm model.
When the representative instance in each bag is deter-
mined, all other instances in all bags become useless for
the training of classification. Inspired by this intuition, we
define a soft interval classifier for multiple sample learning
as belows:

min
w,b,ε

1
2
‖w‖2 + C

∑

I
εI (5)

s.t. ∀I : YI max
i∈I

(
wT xi + b

)
≥ 1 − εI , εI ≥ 0.
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For a negative bag, we can convert the operation with
maximization into multiple inequality operations and use
the same relaxation factor εI . Mathematically, it can be
written as: YI = −1 ,−wT xi −b ≥ 1−εI , ∀i ∈ I. For a pos-
itive bag, we need to introduce a variable s(I) ∈ I, where
s(I) is the subscript of the representative instance in BI .
This allows the constraint to be modified as wT xs(I) + b ≥
1 − εI . Hence, the objective function can be modified into
the following formula:

min
s

min
w,b,ε

1
2
‖w‖2 + C

∑

I
εI (6)

s.t.∀I : YI = −1 ∧ −wT xi − b ≥ 1 − εi, ∀i ∈ I

or YI = 1 ∧ wT xs(I) + b ≥ 1 − εI (7)
In the above formula, each positive bag BI is represented

by a representative instance, where XI ≡ Xs(I). Note that
all of other instances in the bag (xi, i ∈ I ∧ i 
= s(I))
do not contribute to the objective function. For a given
selection variable, a double-ended objective function can
be derived, which is similar to the standard SVM proce-
dure. Compared to SVM, the main difference is that the
constraint parameter α is modified to the following form:

0 ≤ αI ≤ C, if YI = 1, then 0 ≤
∑

i∈I
αi ≤ C (8)

Therefore, each bag is mainly constrained by the parame-
ter C. After the calculation of the model parameters w and
b, we use the formula (4) to predict the label of the bag.

The pseudocode of MI_SVM is as Algorithm 1. In the
MI-SVM algorithm, as long as the last round of labels
(instances of all bags) is identical to the current round of
labels, the classifier stops the training and uses the current
round of parameters as the final results. It can be applied
to the identification of transcription factor binding sites.
However, there are limitations in the PBM data of some
transcription factors. A lot of false negative bags would be
produced in the procedure. In this case, it indicates that
the training is not enough and it needs to continue iter-
ating on the tags. Therefore, we propose MD-SVM as an
improved version of the MI-SVM algorithm and apply it
to identify transcription factor binding sites. In the algo-
rithm of MD-SVM, we use a new criterion to control the
iterative loop, which makes the iterative loop converge to
a stable state. The pseudocode of MD-SVM algorithm is
written in Algorithm 2. The major work is to predict the
positive instance of each bag in the test datasets, which
can help us obtain the position weight matrix. With the
PWM, it is possible to predict the base preference of a
transcription factor at each position.

According to the position statistics, the position weight
matrix of the transcription factor is obtained, and a seq-
logo chart is made, then we observe the base preference of
the transcription factor at each position.

Algorithm 1 MI-SVM algorithm
1: Initialization: For i ∈ I, yi = YI (for all bags, use the

bag’s tag to initialize the tags of all the instances in the
bag)

2: REPEAT:
3: Calculate the parameters w and b according to the

SVM model
4: Calculate fi = wT xi + b for all instances in a positive

bag
5: Use yi = sgn(fi) to recalculate the labels of all the

instances in the positive bag
6: for (Each positive bag BI ) do
7: if

∑
i∈I(yi + 1)/2 == 0 then

8: Calculate i∗ = arg max
i∈I

fi
9: y∗

i = 1
10: end if
11: end for
12: while The label of the instance changes from the

previous round do
13: end while
14: OUTPUT(w, b)

Data and materials
The preprocessing of PBM data
The PBM technology provides a rapid, high-throughput
way to describe the specificity of in vitro binding of
transcription factors to DNA. Using microarrays which
contains all possible 10-mer sequences, we can obtain TF
binding site data for one species. In our experiments, we
performed motif discovery algorithms on the PBM data
of mice, which was commonly used as test datasets in
the DREAM5 challenge (http://dreamchallenges.org). The
dataset contains PBM data of transcription factors for a
total of 86 mice. The data of each transcription factors
were generated from two completely different PBM plat-
forms, HK and ME. Each transcription factor contains
two completely different array designs that hybridize the
array to different PBM platforms (HK and ME) [36, 37].
Both of the two PBM platforms are designed based on
the Agilent 44K array and custom 60bp probes. In each
probe, 25 bases were used as flanking sequences. Our test
datasets contains 40526 probes in the ME array and 40330
probes in the HK array. These arrays include all possible
10-mer sequence data and 32 repeated non-palindrome 8-
mer sequence data, which have no preference for binding
of transcription factors. PBM data of one array was used as
a training dataset, the other as a test dataset. Since the two
datasets are from two different sources, its predictions are
more challenging than cross-validations. We performed
all our computation on a machine with a 3.1G CPU, 8G
memory and a platform of Windows 7 Ultimate 64. A
python package sklearn was used as one library in the

http://dreamchallenges.org
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Algorithm 2 :MD-SVM algorithm
1: Initialization: For i ∈ I, yi = YI , ŷl = yi, 1 ≤ i ≤

mn, 1 ≤ I ≤ m (Use the tag of the bag to initialize the
tags of all the instances in the bag) , lastNegCnt=mn

2: REPEAT:
3: Calculate the parameters w and b using SVM accord-

ing to yi and instances
4: For all sample calculate fi = wT xi + b, 1 ≤ i ≤ mn
5: Calculate yi = sgn(fi), 1 ≤ i ≤ mn

2 , recalculate the
labels of all the instances in the positive bag

6: Calculate the probability that all samples belong to
category 1 in the current model pi, 1 ≤ i ≤ mn

7: for (Each positive bag BI , 1 ≤ I ≤ m/2) do
8: if (

∑
i∈I(yi + 1)/2 == 0, In < i ≤ (I + 1)n) then

9: Calculate i∗ = arg max
i∈I

fi
10: y∗

i = 1
11: end if
12: end for
13: if (ŷl == yi, 1 ≤ i ≤ mn) then

14: Calculate negPosCnt =
∑m

I= m
2 +1

∑n
i=1 ymI+i− mn

2
2

15: if (lastNegCnt ≤ negPosCnt || negPosCnt ≤ α m
2 )

then
16: BREAK
17: else
18: lastNegCnt=negPosCnt
19: end if
20: for (Each positive bag BI , 1 ≤ I ≤ m/2) do
21: Calculate i∗ = argi min pi(In < i ≤ (I +

1)n, s.t.yi == 1)

22: end for
23: yi∗=1
24: else
25: ŷl = yi(1 ≤ i ≤ mn)

26: end if

implication, which is one of commonly used third-party
modules.

Experimental data
Each sequence of the PBM data is in the same length, and
is tagged. The top 200 probes with the highest binding
strength are used as the positive instances of the training
datasets, whereas the last 200 probes used as the negative
instances. It can guarantee the reliability of our training
datasets, since the binding strength reflect the binding
preference of specific sequence.

Results and Discussion
Binding preference in sequence logos
Sequence logos are commonly used to show the bind-
ing preference of a transcription factor [38]. As shown in
Fig. 2, a sequence logo is a graphical display of a multiple

sequence alignment consisting of colour-coded stacks of
letters representing nucleotides or amino acids at succes-
sive positions. The height of a logo position depends on
the degree of conservation in the corresponding multiple
sequence alignment.

The JASPAR database is a free database containing tran-
scription factor binding site databases of multiple species.
To verify the biological quality of the MD-SVM results,
we compared the predicted sequence logos to that of the
JASPAR database. For instance, both of the sequence logos
show that the binding sites of Foxo3 is preferred to be a
DNA fragment containing GTAAACA. These conserved
patterns in JASPAR were also identified by our method
MD-SVM. This shows that our algorithm is advanta-
geous in terms of motif discovery. The motifs identified by
MD-SVM is shown in Fig. 2.

We performed MD-SVM and MI-SVM on the test
datasets for 18 transcription factors. From Fig. 2, we can
see that most of the predicted sequence logos have the
same pattern as that of JASPAR reference databases. For
instance, both of the sequence logos show that the binding
sites of Foxo3 is preferred to be a DNA fragment con-
taining GTAAACA. These conserved patterns in JASPAR
were also identified by our method MD-SVM.

Performance comparison with MI-SVM
The ROC curve is a graphical plot that illustrates the
diagnostic ability of tested algorithms. To evaluate the
performance of MI-SVM and MD-SVM, we used a mea-
sure ROC AUC (area under curve), which is commonly
used in the evaluation of binary classifier systems. Fore
each threshold, the value of AUC reveals two ratios,
TP/(TP+FN) and FP/(FP+TN). In other words, ROC
reveals true predictions/(true predictions+misses) and
false predictions/(false predictions+ correct rejections).
Both of the two algorithms were performed on the test
datasets of 18 transcription factors. From Table 2, we can
see that the AUC of MD-SVM is superior to that of MI-
SVM for most of the 18 transcription factors. For example,
the AUC of MD-SVM is 0.911275 for Egr2, which is obvi-
ously higher than that of MI-SVM. Egr2 (also termed
Krox20) is a important transcription regulatory factor for
molecular mechanism in gene regulation. It contains two
zinc finger DNA-binding sites, and is highly expressed in a
population of migrating neural crest cells. In addition, the
MD-SVM method has better results on the transcription
factor Oct1 than MI-SVM. Previous studies have found
that the study of Oct1 transcription factors has important
implications for bioinformatics. For example, previous
research shows Oct1 is highly polymorphic in ethnically
diverse populations. Although most of the results of the
MD-SVM algorithm are slightly improved the AUC of the
motif discovery, the prediction experiment of transcrip-
tion factor binding sites is not a simple matter, we need to
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Fig. 2 Comparison of motifs discovered by MD-SVM and JASPAR. Here, sequence motifs are graphically displayed in seq-logos. The height of each
logo position reflects the degree of sequence conservation in multiple alignments. We compared our seq-logos of eight transcription factors to that
extracted from the JASPAR database. Results show that MD-SVM can acurately identify most of the eight transcription factors

explore and continuously optimize the results. Although
MD-SVM outperforms MI-SVM for most of transcription
factors, there are some exceptional TFs such as Pit1. Over-
all, the results of our new SVM-based algorithm is more
reliable than that of existing algorithm in the prediction
of transcription factors binding sites.We can observe from
the experimental results that although MD-SVM does
not greatly improve the accuracy of most transcription

factors, our main contribution to the algorithm is the con-
vergence of the algorithm and prevention of over-fitting.
Our main improvement is the iterative bounce condition
of the algorithm, so that the algorithm can easily complete
the iteration in the case of a large amount of data, thereby
improving the results of the algorithm. The method of this
paper is to use the idea of multi-instance learning in the
learning of transcription factor recognition sites, so that
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Table 2 Performance comparison between MI-SVM and MD-SVM

Transcription factor MI-SVM MD-SVM

Zscan10-3 0.802262 0.802638

Sox14 0.918162 0.918175

Irf2 0.966050 0.966175

Nkx2-9 0.937225 0.937575

Foxg1 0.896850 0.897000

Mlx 0.999125 0.999475

Sdccag8 0.996550 0.996575

Mecp2 0.930225 0.930125

Zfp202 0.913325 0.920475

Egr2 0.899875 0.911275

Dmrtc2 0.968725 0.966925

Pou1f1 0.997725 0.998575

Pou3f1 0.993062 0.993063

Foxo1 0.930800 0.930325

Oct1 0.989450 0.994550

Pit1 0.994875 0.994775

Foxp2 0.925825 0.926425

it can better model the relationship between transcription
factors and DNA.

Conclusion
With the development of high-throughput technologies,
a large amount of sequencing data was generated, such
as RNA-seq, PBM and scRNA-seq. It provides an oppor-
tunity to understand the molecular mechanism of life
processes through computational approaches. Motif dis-
covery for transcription factor binding sites is of cen-
tral importance in studying DNA-protein interactions,
which play major roles in the regulation of gene expres-
sions. However, this problem remains a challenge because
of the complexity of binding preference of specific
transcription factors. Here, we propose a novel SVM-
based MD-SVM, which translate the motif discovery
problem into a multiple instance learning model. To eval-
uate the algorithm performance of MD-SVM and MI-
SVM, both of the two algorithms were performed on
test datasets of 18 transcription factors, which were com-
monly used in the DREAM5 challenge. Sequence logos
of predicted binding preferences were also compared to
that in the database of JASPAR. Results show that our
novel MD-SVM algorithm outperforms MI-SVM in terms
of both accuracy and precision. The sequence logos of
our predicted binding preference are in consistent with
these in the JASPAR database. Hopefully, the applica-
tion of our algorithm in real biological data can help us
get a better understanding of molecular regulation and
phylogenesis.
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