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Abstract

In applied statistics, tools from machine learning are popular for analyzing complex and high-dimensional data. However,
few theoretical results are available that could guide to the appropriate machine learning tool in a new application. Initial
development of an overall strategy thus often implies that multiple methods are tested and compared on the same set of
data. This is particularly difficult in situations that are prone to over-fitting where the number of subjects is low compared to
the number of potential predictors. The article presents a game which provides some grounds for conducting a fair model
comparison. Each player selects a modeling strategy for predicting individual response from potential predictors. A strictly
proper scoring rule, bootstrap cross-validation, and a set of rules are used to make the results obtained with different
strategies comparable. To illustrate the ideas, the game is applied to data from the Nugenob Study where the aim is to
predict the fat oxidation capacity based on conventional factors and high-dimensional metabolomics data. Three players
have chosen to use support vector machines, LASSO, and random forests, respectively.
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Introduction

A researcher faced with complex data often needs a strategy to

investigate the relationship between predictor variables and

response. Classical methods like maximum likelihood cannot be

applied if the data is high-dimensional in the sense that the

number of predictor variables by far exceeds the number of

subjects in the study. Machine learning tools are more generally

available and have proven successful in a variety of studies [1], but

they are typically not tailored to the specific problem at hand. This

complicates the choice between different machine learning tools,

and had the problem and the data been given to another

researcher, most likely the strategy and potentially also the results

would have been different. For conclusion making it is thus crucial

to be able to assess differences between the results obtained with

different strategies for the same research question.

Machine learning tools are automated approaches which

combine variable selection and regression analysis [2]. Most

machine learning tools are designed for prediction and usually

they do not quantify the associations of the involved variables with

p-values and confidence intervals. A strength, which is common to

many machine learning tools, is their applicability when the

number of subjects is considerably lower than the number of

predictor variables. The practical value of the resulting models,

however, is often unclear, in particular when the tool is applied by

someone who is untutored in its niceties [3]. Most methods have

tuning parameters to optimize the results. For example, classical

stepwise elimination uses a threshold for the p-value of variables to

be included in the next step of the algorithm. A second example is

the random forest approach [4] where the model builder can vary

the number of decision trees and the fraction of variables tried at

each split of the single trees. Given the large variety of available

tools, model and tuning steps, it is clear that the results of a given

application depend on the model builder’s preferences, dedication,

and experience.

In many areas of applied statistics it still is common practice to

develop the model building strategy during the data analysis, and

then to treat the finally selected model as if it was known in

advance. This has been criticized for example in [5]. More

generally, any data dependent optimization of the model selection

procedure can have a considerable impact on the final model, and

may also lead to useless models and wrong conclusions [6]. This

has to be considered carefully when a model is evaluated. Ideally

all models should be compared by means of their performance on

a large independent validation sample. However, independent

data from the same population are not generally available, and

even if they are, then one could merge them with the existing data

to enhance the sample size. Internal model validation is therefore

an essential part of model building [7].

In this article we present the VAML (Validation and Assessment

of Machine Learning) game. The game aims at building a model for

individual predictions based on complex data. The game starts by

electing a referee who samples a reasonable number of bootstrap

subsets or subsamples from the available data. Each player chooses

a strategy for building a prediction model. The referee shares out

the bootstrap samples and the players apply their strategies and
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build a prediction model separately in each bootstrap sample. The

referee then uses the data not sampled in the respective bootstrap

steps and a strictly proper scoring rule [8–10] to evaluate the

predictive performance of the different models. This procedure is

called bootstrap-cross-validation [11–15]. For the interpretation of

the results it is most important that all modeling steps are repeated

in each bootstrap sample and that the same set of bootstrap samples

is used for all strategies. These insights are formulated as fixed rules

of the game.

For the purpose of illustrating the VAML game, we applied it

to metabolomics data collected on subjects from the multi-

center Nugenob study (www.nugenob.org). For 99 subjects we

considered 8525 potential predictor variables consisting of

anthropometric measures and high-dimensional metabolomic

profiles from blood plasma obtained by nuclear magnetic

resonance (1H-NMR) and liquid chromatography mass spec-

trometry (LC-MS) techniques. The aim of the game was to

predict the fat oxidation capacity measured by the respiratory

quotient. Active players were the first two and the last author of

this work, who chose the following strategies for building

prediction models: random forests regression [4], support

vector machines (SVMs) [16], and LASSO [17]. Each players

strategy was then adapted to build models for predicting the

subject specific probability distribution of the respiratory

quotient. The criterion for winning the game was the prediction

error defined by the expected value of the continuous rank

probability score [10] for continuous outcomes. The estimation

of the prediction performance was based on bootstrap-cross-

validation, where 100 bootstrap samples of size 80 were drawn

without replacement for building the models and the remaining

19 subjects were used for internal validation.

The VAML game

Material
A VAML game requires measurements of a n-dimensional

response vector Y and a n|J predictor matrix X containing the

values for i~1, . . . ,n subjects and j~1, . . . J variables. We use the

notation Xi~ X 1
i , . . . ,X J

i

� �
. For the standard form of the game,

the response is either a single continuous variable, a binary

variable, or a right censored event time. The predictor matrix

consists of subject specific information of any kind, and may

include a mixture of behavioral factors, genotype, conventional

factors, like gender and age, and environmental variables.

Aim
The aim is to build a prediction model for the conditional

probability distribution of the response variable given the predictor

matrix. The finally selected prediction model should assign to each

(new) subject a probabilistic prediction for the potential values of

the response variable based on the subjects predictor values. For

example, if the response is a survival time, then the model predicts

a survival probability for each time point in the range of the

survival distribution.

Choosing a method
The players derive strategies for selecting a prediction model.

Often it will be advisable to rely on an approved method for data

analysis. Generally methods are called unsupervised if the

prediction model depends only on the predictor matrix of the

sample and is independent of the corresponding response values

Yi, i~1, . . . ,n. Principal component analysis is an example of an

unsupervised method. Supervised methods on the other hand

select a model by using the predictor variables and the response

values of the sample; they learn from what has happened to

subjects in the sample in order to predict new subjects. Here is a

selected list of supervised methods that can be used in the process

of building a prediction model:

Stepwise Elimination [18]

Support Vector Machines [16]

Bump Hunting [19]

Xi,Yi|fflffl{zfflffl}
Data

. LASSO and Lars [17] ? F̂F y Xijð Þ|fflfflfflffl{zfflfflfflffl}
Prediction model

Random Forests [20]

Bayesian Model Averaging|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Method

[21]

Note that the ‘‘methods’’ listed in the previous display are

general strategies that do not directly yield a prediction model. In

practice it is often necessary to adapt and extend a particular

method and to combine it with a dimension reduction step, such as

a principal component analysis, or a missing value imputation

step. The choice of available methods also depends on the type of

the response variable, i.e. whether it is a continuous, binary, or

right censored event time variable.

Playing
From the full data set D~ Y ,Xð Þ a referee, who may be one of

the players, generates B bootstrap samples Db, b~1, . . . ,B either

by sampling of individuals without replacement (subsampling), or

with replacement (resampling).

Each player applies the chosen strategy to each of the bootstrap

samples and builds prediction models rb, where b~1, . . . ,B, for

predicting the conditional probability distribution function of the

response variables given the predictor matrices of the bootstrap

samples:

rb y Xijð Þ&P Yiƒy Xijð Þ: ð1Þ

Here y runs through the range of the response variable and the

model can be applied to the predictor values of any new subject

from the same population. For example, if the response is binary,

with classes y0 and y1, then rb y1 Xijð Þ is the predicted risk for a

subject with predictor values Xi to be in class y1. Each player also

applies the chosen strategy to the full data set and the resulting

prediction model is called the full model and denoted r0 in what

follows.

Rules

1. Each player reveals the chosen strategy by referring to original

publications of the method and by accurately documenting all

modeling steps.

2. Each player repeats all data dependent modeling steps in each

bootstrap sample. The steps may not depend on the full data in

any way. A corresponding computer program has to be made

available to the other players.

3. The model performance is evaluated by the referee with a

strictly proper scoring rule (see the next section).

Apart from these requirements, it is explicitly wanted that the

strategies are optimized, tuned, boosted, etc., with respect to the

predictive performance of the resulting model.

Validation of Machine Learning
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Evaluation
A strictly proper scoring rule is chosen to assess the predictive

performance. A scoring rule S assigns a real valued score

S r y Xnewjð Þ,Ynewð Þ to a new subject with response Ynew for which

the model r predicts the probability distribution r y Xnewjð Þ. We

may assume without loss of generality that a lower score indicates

better predictive performance of the model. A scoring rule is called

strictly proper if the true conditional probability distribution

P Yƒy Xijð Þ is the unique optimizer [22]. Standard choices are the

logarithmic score and the Brier score for binary response variables

[9] and the continuous rank probability score for continuous

response variables [10]. A time-dependent version of the Brier

score and the continuous rank probability score can be used for

right censored event time responses [23].

The continuous rank probability score corresponds to the

integral of the Brier scores for the associated binary probabilistic

predictions at all real-valued thresholds [24]; it is given by

CRPS r y Xnewjð Þ,Ynewð Þ~
ð?

{?
Ynewƒyð Þ{r y Xnewjð Þf g2

dy, ð2Þ

where Að Þ is the indicator function for the event A. The

continuous rank probability score penalizes predictions less

severely when their probabilities are close to the true outcome,

and more severely when their probabilities are farther from the

actual outcome. In practice the integral in the last display can be

approximated by a sum over a grid y0vy1v � � �vyG where

P Yƒy0ð Þ~P YwyGð Þ~0:

gCRPSCRPS r y Xnewjð Þ,Ynewð Þ~
XG

g~1

Ynewƒyg

� �
{r yg Xnewj
� �� �2

yg{yg{1

� �
: ð3Þ

For all players the scoring rule is applied to evaluate the models

fitted in the bootstrap samples. The subjects not in the bth

bootstrap sample are called out-of-bag. They are ‘‘new’’ subjects

for the prediction models build with the data of the bth bootstrap

sample, and this is utilized in the bootstrap cross-validation

estimate of the generalization performance (GP):

dGP rð ÞGP rð Þ~ 1

B

XB

b{1

1

Wb

X
i=[Db

S rb y Xijð Þ,Yið Þ: ð4Þ

Here Wb is the number of the subjects not in the bth bootstrap

sample. The player whose strategy optimizes the generalization

performance wins the game and the corresponding full model is

the winning model.

Benchmarks
Proper benchmarks are important for the interpretation of

model performance [15]. Here we use the apparent performance

of each strategy which is the performance of the full model when it

is evaluated in the full data:

cAPAP rð Þ~ 1

n

X
i[D

S r0 y Xijð Þ,Yið Þ: ð5Þ

This yields an upper bound for the generalization performance

of the prediction model r, since it is easier to predict the subjects

that have been used to build the model. A lower bound is the

performance of a strategy that ignores all predictors (null model). If

the response variable is binary then the null model predicts the

estimated prevalence to every subject. If the response is continuous

then the empirical distribution function yields a null model and for

a right censored event time the Kaplan-Meier estimate plays this

role.

Application

VAML: Material
The Nugenob study is a European multi-center study, whose

main objective is to explore the role of interactions between

macro-nutrient composition of the diet and specific genetic

variants [25]. From the original Nugenob cohort comprising 750

European Caucasians, available for our study were the metabo-

lomic profiles from 99 individuals. The fat oxidation capacity was

measured for these individuals as the respiratory quotient, i.e. the

ratio between the carbon dioxide production and oxygen

consumption. Metabolomic profiling was based on plasma samples

using 1H-NMR and LC-MS techniques. See [26] for information

on subject selection, subject characteristics and details on the

metabolomic profiling.

In order to predict the respiratory quotient, the players of the

VAML game were given 7599 spectral variables from the 1H-

NMR, 922 variables from LC-MS metabolic profiles, and the

conventional factors age, body weight, body height, and waist

circumference. The data used in the game corresponds to n~99
subjects, p~8525 predictor variables and the respiratory quotient

response.

VAML: Aim
The aim was to predict the conditional probability distribution

of the respiratory quotient given the predictor variables.

VAML: Playing
TAG was elected as the referee. He sampled 100 bootstrap

subsamples of size 80 (without replacement) from the 99 subjects

(Figure 1). Each player received the bth bootstrap subsample and

the predictor matrix of the 19 subjects not sampled in the bth

bootstrap subsample. The observed respiratory quotient values of

the 99 subjects ranged between 0.71 and 0.91.

VAML: Strategies
Author THP: Random forest. A random forest model [4] is

a classifier which predicts the response based on a majority vote of

an ensemble of decision trees [27]. Possible tuning parameters of a

random forest model are the number of decision trees and the

number of variables used in the split at each internal node of the

tree. THP selected these parameters, separately for each of the 100

bootstrap samples, which minimized the 10-fold cross-validated

continuous rank probability score: the optimal number of decision

trees was searched in the set 100,200, . . . ,1000f g; the optimal

number of variables tried at each split was searched in the set

t8525ms : m[ :4,:45,:5,:55,:6f gf g. The predicted probability

distribution of the respiratory quotient at threshold y for an out-

of-bag subject was computed as the fraction of trees which

predicted the respiratory quotient of this subject below y (Figure 2).

Author AA: Support vector machines. Originally support

vector machines [16] were developed for classifying binary

outcome. Nowadays, support vector machines have become a

popular choice in a wide range of biological applications.

Classification is achieved by an affine set that in a given space

maximizes a distance between this set and the predictors of both

outcome classes. For regression problems and continuous outcome

Validation of Machine Learning
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variables one defines a transformation of the predictors into the

space using a kernel that takes the predictors and a set of

parameters as arguments. The method minimizes the Euclidean

norm of the parameters subject to the prediction error being less

than e plus some function of a cost parameter. Both the cost

parameter and the constant e are tuning parameters of the

method. AA used the radial kernel and used the values e~0:1 and

cost~1 in all bootstrap samples. The probability distribution of

the respiratory quotient of the out-of-bag subjects was predicted by

a normal distribution with mean equal to the respective point

prediction of the respiratory quotients from the support vector

machine model. The variance of the predicted distribution was

estimated with 10-fold cross-validation for each of the bootstrap

samples (Figure 3).

Author TAG: LASSO. Least angle regression selects

predictors and simultaneously shrinks the regression coefficients

by penalization of the likelihood [17]. TAG applied a version of

the algorithm with ‘‘LASSO option’’ which provides the entire

LASSO path solution of regression coefficients [28]. To select a

prediction model from the solution path, TAG repeated 10-fold

cross-validation 100 times in each bootstrap sample and used the

mean shrinkage of the 100 cross-validation results. The probability

distribution of the respiratory quotient of the out-of-bag subjects

was predicted by a normal distribution with mean equal to the

Figure 2. Random forest model. Extracts from the R script that THP used for building the random forest model. The number of trees (NT) and the
number of variables tried at each split (MT) are obtained as described in the text.
doi:10.1371/journal.pone.0006287.g002

Figure 1. Game setup in R. Extracts from the R script used for setting up the VAML Nugenob game.
doi:10.1371/journal.pone.0006287.g001

Validation of Machine Learning
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respective point prediction of the respiratory quotients from the

LASSO model. The standard deviation of the respiratory quotient

in the bth bootstrap sample was used to estimate the variance of

the predicted distribution of the out-of-bag subjects in the bth step

(Figure 4).

VAML: Evaluation
To approximate the continuous rank probability score via

formula (3) we used an equidistant grid of 22 values between

y0~0:70 and yG~:91 of width 0:01. To illustrate graphically the

results of the 100 bootstrap-cross-validation steps we computed

empirical prediction error curves (PEC) using the formula

PEC r,yð Þ~ 1

Wb

X
i=[Db

Yiƒyð Þ{rb y Xijð Þf g2: ð6Þ

The estimated continuous rank probability score is the area

under the curve y.PEC r,yð Þ, see Figure 5.

The pointwise mean of the 100 prediction error curves obtained

from the 100 bootstrap-cross-validation steps yields the bootstrap

cross-validation estimate of the prediction error curve. The area

under this curve is the bootstrap cross-validation estimate of the

generalization performance (Table 1). It is well-known that due to

the potential of over-fitting, the apparent performance (5) should

not be used to compare models. Interestingly, the three modeling

strategies yielded quite different apparent error rates: The random

forest model showed almost zero apparent error, for the SVM

model the apparent error was slightly higher but still very different

from the bootstrap cross-validation error, and for the LASSO

model exhibited almost no difference between the apparent error

and the bootstrap cross-validation error (Figure 6 and Table 1).

All three models resulted in only slightly lower prediction

performance than the benchmark model which ignored the 8525

predictors (Table 1). The random forest model resulted in a lower

bootstrap cross-validation error than both the LASSO and SVM

method. The LASSO method performed slightly worse than the

random forests method, but better than the SVM method. In

summary, tuning of the random forest method led to the best

prediction model for the respiratory quotient, and hence THP

won the game.

Implementation
All programming was done in R [29]. The random forest,

support vector machine, and LASSO models were fitted with the

R-libraries randomForest [30], and e1071 [31] and lars [32],

respectively.

Discussion

This article presents a game for comparing statistical strategies

for building prediction models. It can for example be applied in a

situation where many different strategies are available but neither

common knowledge nor theoretical results can immediately advice

a solution. Our application of the game to the data of the Nugenob

study yields a fair comparison of three quite different approaches,

where all of them have previously been successfully applied to

address similar problems with relatively many predictor variables

and relatively few subjects [33–35].

Hand [3] notes: ‘‘It may be possible for an expert to tune

method A to achieve results superior to method B, but what we

really want to know is whether someone untutored in the niceties

of method A can do this. Or does method B, presented as a black

box and requiring no tuning, generally outperform an untuned

method A?’’. A VAML game can be used to compare strategies

that depend not only on the chosen method but also on the skills of

the player.

The game can also be used to test and compare a newly

developed algorithm against alternative strategies, where otherwise

often the alternative strategies are applied without proper tuning

in order to not spoil the importance of the new method. Besides

answering the given scientific question, a VAML game leads to

enhanced transparency of the method selection step and better

didactic reasoning. For example, the game could be used to

convince a less experienced researcher, who may or may not have

Figure 3. Support vector machine model. Extracts from the R script that AA used for building the support vector machine (SVM) model.
doi:10.1371/journal.pone.0006287.g003

Validation of Machine Learning

PLoS ONE | www.plosone.org 5 August 2009 | Volume 4 | Issue 8 | e6287



Figure 4. LASSO model. Extracts from the R script that TAG used for building the LASSO model. The shrinkage parameter s is obtained as
described in the text.
doi:10.1371/journal.pone.0006287.g004

Figure 5. Model evaluation. Extracts from the R script used for evaluating the random forest model in the VAML Nugenob game. The elements of
the list RfPredOob are obtained as described in Figure 2. The other two strategies are evaluated similarly.
doi:10.1371/journal.pone.0006287.g005
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training and experience with statistical analyzes, to choose method

B in favor of method A. If the game is played with researchers that

have their background and experience in different areas of data

analysis, then, as a side effect, the game provides an good

opportunity to learn the strategies from each other.

The game is specifically designed for high-dimensional settings

were for example many new biomarkers have been measured

which potentially could improve individual predictions. Such high-

dimensional subject specific information is for example obtained in

metabolomics, transcriptomics and with imaging technology,

where typically the measurements for a single subject are time

and cost expensive. A sensitive strategy is thus crucial for building

a prediction model which avoids over-fitting and leads to

reproducible results. Without proper validation it may happen

that the predictors included in the model are only important for

predicting the subjects in the data used for building the model and

predicts the outcome of new subjects worse than a null model

which ignores all the subject specific measurements [36]. The

result of a VAML game is a validated prediction model which

outperformed other models and for which the overall benefit of

using the predictor information has been quantified using cross-

validation and by comparison to a benchmark model which

ignores the predictor variables.

To compare different prediction models their performance has

to be estimated based on the same data that is available for

building the models. The bootstrap-cross-validation approach

used here seems appropriate for comparing models, but it has a

negative bias and yields pessimistic results regarding the

performances of the full models. This happens because a bootstrap

sample contains less information than the full data. More

advanced resampling approaches like the .632+ estimator

[14,36,37], which is a smart linear combination of the apparent

performance and the bootstrap-cross-validation performance,

could potentially reduce this bias. However, for our application

Table 1. Results of the VAML Nugenob game.

CRPS Null model
Random
forest SVM LASSO

Bootstrap cross-validation
error

10.989 10.098 10.173 10.099

Apparent error 10.742 2.776 6.362 8.978

Continuous rank probability scores for the three strategies and the null model
that ignores all predictors. The bootstrap cross-validation error is based on 100
bootstrap subsamples of size 80 drawn without replacement from the 99
subjects.
doi:10.1371/journal.pone.0006287.t001

Figure 6. Prediction error curves. Performance of the three strategies and the null model. The gray lines represent the performances of the
respective prediction model estimated in the 100 bootstrap cross-validation steps. The solid lines represent the mean bootstrap cross-validation
performance and the dashed lines represent the apparent performance.
doi:10.1371/journal.pone.0006287.g006
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we decided not to rely on the .632+ method in view of lacking

theoretical arguments regarding its consistency, and since we

observed large differences of the apparent performances in our

example (Random forest = 2.776, SVM = 6.362, LASSO = 8.978).

We have used bootstrap subsampling where subjects are drawn

without replacement from the pool of all patients. This is in

agreement with work by Binder and Schumacher [38] who

investigated a complexity bias in high-dimensional settings, and

also with theoretical results [39] which show that subsampling is

more generally applicable than resampling. We have used

subsamples of 80 subjects, but it is unclear if this is an appropriate

size. Further research is needed to guide the appropriate size of the

subsamples for estimating the generalization performance of

prediction models. Similarly, the only reason for the number of

bootstrap samples used in our application (B = 100) was the

computational burden. Further research is needed to get advice

and practical rules for finding the appropriate number of cross-

validation steps.
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