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Thousands of biochemical reactions with characterized activities
are “orphan,”meaning they cannot be assigned to a specific enzyme,
leaving gaps in metabolic pathways. Novel reactions predicted by
pathway-generation tools also lack associated sequences, limiting
protein engineering applications. Associating orphan and novel
reactions with known biochemistry and suggesting enzymes to
catalyze them is a daunting problem. We propose the method BridgIT
to identify candidate genes and catalyzing proteins for these re-
actions. This method introduces information about the enzyme
binding pocket into reaction-similarity comparisons. BridgIT assesses
the similarity of two reactions, one orphan and one well-characterized
nonorphan reaction, using their substrate reactive sites, their surround-
ing structures, and the structures of the generated products to suggest
enzymes that catalyze the most-similar nonorphan reactions as candi-
dates for also catalyzing the orphan ones. We performed two large-
scale validation studies to test BridgIT predictions against experimental
biochemical evidence. For the 234 orphan reactions from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) 2011 (a comprehensive
enzymatic-reaction database) that became nonorphan in KEGG
2018, BridgIT predicted the exact or a highly related enzyme for
211 of them. Moreover, for 334 of 379 novel reactions in 2014 that
were later cataloged in KEGG 2018, BridgIT predicted the exact or
highly similar enzymes. BridgIT requires knowledge about only
four connecting bonds around the atoms of the reactive sites to
correctly annotate proteins for 93% of analyzed enzymatic reac-
tions. Increasing to seven connecting bonds allowed for the accurate
identification of a sequence for nearly all known enzymatic reactions.

reaction similarity | reactive site recognition | orphan reactions |
novel (de novo) reactions | sequence similarity

Genome-scale reconstructions of metabolic networks can be
used to correlate the genome with the observed physiology,

though this hinges on the completeness and accuracy of the se-
quenced genome annotations. “Orphan” reactions, which are
enzymatic reactions without protein sequences or genes associated
with their functionality, are common and can be found in the
genome-scale reconstructions of even well-characterized organisms,
such as Escherichia coli (1). Recent publications reported that
40 to 50% of the enzymatic reactions cataloged in the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (2) lack an associ-
ated protein sequence (3, 4).
Problems with orphanlike reactions can also arise in areas

such as bioremediation, synthetic biology, and drug discovery,
where exploring the potential of biological organisms beyond
their natural capabilities has prompted the development of tools
that can generate de novo hypothetical enzymatic reactions and
pathways (5–15). These de novo reactions are behind many
success stories in biotechnology and can be used in the gap filling
of metabolic networks (6, 12, 13, 15–18). While these enzymatic
reactions have well-explained biochemistry that can conceivably
occur in metabolism, they are essentially orphan reactions because
they have no assigned enzyme or corresponding gene sequence.
The lack of protein-encoding genes associated with the function-
ality of these de novo reactions limits their applicability for

metabolic engineering, synthetic biology applications, and the gap
filling of genome-scale models (19). A method for associating de
novo reactions to similarly occurring natural enzymatic reactions
would allow for the direct experimental implementation of the
discovered novel reactions or assist in designing new proteins capable
of catalyzing the proposed biotransformation.
Computational methods for identifying candidate genes of

orphan reactions have mostly been developed on the basis on
protein sequence similarity (3, 20–22). The two predominant
classes of these sequence-based methods revolve around gene/
genome analysis (22–25) and metabolic information (26, 27).
Several bioinformatics methods combine different aspects of these
two classes, such as gene clustering, gene coexpression, phyloge-
netic profiles, protein interaction data, and gene proximity, for
assigning genes and protein sequences to orphan reactions (28–
31). All these methods use the concept of sequence similarity.
Within this concept, homology between two sequences, one or-
phan and one well characterized, is inferred when the two share
more similarity than would be expected by chance (32). Next, the
biochemical function is assigned to the orphan protein sequence,
assuming that homologous sequences have similar functions.
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This can be problematic because many known enzymatic activi-
ties are still missing an associated gene due to annotation errors,
the incompleteness of gene sequences (33), and the fact that
homology-based methods cannot annotate orphan protein se-
quences with no or little sequence similarity to known enzymes
(3, 34). Moreover, sequence-similarity methods can provide in-
accurate results because small changes in key residues could
greatly alter enzyme functionality (35); in addition, it is a com-
mon observation that vastly different protein sequences can ex-
hibit the same fold and, therefore, have similar catalytic activity,
even though they look very different (36, 37).
These shortcomings motivated the development of alternative

computational methods based on the structural similarity of re-
actants and products for identifying candidate protein sequences
for orphan enzymatic reactions (31, 35, 38–42). The idea behind
these approaches was to assess the similarity of two enzymatic
reactions via the similarity of their reaction fingerprints; that is,
the mathematical descriptors of the structural and topological
properties of the participating metabolites (43), which could
eliminate the problems associated with nonmatching or un-
assigned protein sequences. In such methods, the reaction fin-
gerprint of an orphan reaction is compared with a set of nonorphan
reference reaction fingerprints, and the genes of the most-similar
reference reactions are then assigned as promising candidate genes
for the orphan reaction. Reaction fingerprints can be generated
based on different similarity metrics, such as the bond change,
reaction center, or structural similarity (42).
One class of reaction-fingerprint computational methods

compares all of the compounds participating in reactions (42),
which includes both reactants and cofactors. The application of
this group of methods is restricted to specific enzymatic reactions
that do not involve large cofactors (31, 35, 38–42). This is because
the structural information of the large cofactors overwhelmingly
contributes to the corresponding reconstructed reaction finger-
print, and consequently, reactions with similar cofactors will in-
accurately be classified as similar (35–38).
Another class of reaction-fingerprint methods uses the chemical

structures of reactant pairs for comparison (40). While these
methods can be applied to all classes of enzymatic reactions, they
neglect the crucial role of cofactors in the reaction mechanism.
Moreover, neither of these two classes of methods has been
employed for assigning protein sequences to de novo reactions (40).
In this study, we introduce a computational method, BridgIT,

that links orphan reactions and de novo reactions predicted by
pathway design tools such as BNICE.ch (16), Retropath2 (15),
DESHARKY (10), and SimPheny (12) with well-characterized
enzymatic reactions and their associated genes. BridgIT uses
reaction fingerprints to compare enzymatic reactions and is inspired
by the lock-and-key principle that is used in protein docking
methods (44), wherein the enzyme binding pocket is the “lock” and
the ligand is a “key.” If a molecule has the same reactive sites and a
similar surrounding structure as the native substrate of a given
enzyme, it is then rational to expect that the enzyme will catalyze
the same biotransformation on this molecule. Following this rea-
soning, BridgIT uses the structural similarity of the reactive sites of
participating substrates together with their surrounding structure
as a metric for assessing the similarity of enzymatic reactions. It is
substrate-reactive-site centric, and its reaction fingerprints reflect
the specificities of biochemical reaction mechanisms that arise
from the type of enzymes catalyzing those reactions. BridgIT in-
troduces an additional level of specificity into reaction fingerprints
by capturing critical information about the enzyme binding pocket.
More precisely, BridgIT allows us to capture approximately the 2D
structure of the enzyme binding pocket by incorporating the in-
formation about sequences of atoms and bonds around the sub-
strate reactive site.
Through several studies, we demonstrated the effectiveness of

utilizing the BridgIT fingerprints for mapping novel and orphan

reactions to the known biochemistry. These reactions are mapped
according to the enzyme commission (EC) (45) number, which is
an existing numerical classification scheme for enzyme-based re-
actions. The EC number can classify enzymes at up to four levels,
with a one-level classification being the most general and a four-
level classification being the most specific, and these enzyme-based
reactions are then represented by four numbers, one for each level,
separated by periods (e.g., 1.1.1.11). We show that BridgIT is ca-
pable of correctly predicting enzymes with an identical third-level
EC number, indicating a nearly identical type of enzymatic re-
action, for 90% of orphan reactions from KEGG 2011 that became
nonorphan in KEGG 2018. This result validates the consistency
of the sequences predicted by BridgIT with the experimental
observations, and it further suggests that BridgIT can provide
enzyme sequences for catalyzing nearly all orphan reactions. For
the remaining 10% of the orphan reactions, an in-depth sequence
and structure analysis will be required to guide the sequence search
and protein engineering because it is known from the enzyme
analysis and classification that although reactions with common
EC classification up to the third level have a nearly identical catalytic
mechanism, they do not necessarily share the same sequences.
We also studied how the size of the BridgIT fingerprint im-

pacts the BridgIT predictions. We show that BridgIT correctly
identifies protein sequences using fingerprints that describe the
neighborhood up to six bonds away from the atoms of the reactive
site. Strikingly, we also find that it is sufficient to use the infor-
mation of only three bonds around the atoms of the reactive sites
of substrates to accurately identify protein sequences for 93% of
the analyzed reactions.
Lastly, to indicate the utility of this computational technique,

we applied BridgIT to the study of all of the 137,000 novel re-
actions from the ATLAS of Biochemistry, a database of all of the
known and hypothetically possible biochemical reactions that
connect two or more KEGG compounds (in version KEGG
2015) (46). Using our technology, we provide candidate enzymes
that can potentially catalyze the biotransformation of these re-
actions to the research community, which should provide a basis
for the engineering and development of novel enzyme-catalyzed
biotransformations.

Results and Discussion
BridgIT Method. The BridgIT workflow, together with an example
of its application on an orphan reaction, is demonstrated in Fig.
1. BridgIT is organized into four main steps (see Methods for
more details): reactive site identification; reaction fingerprint
construction; reaction similarity evaluation; and scoring, ranking,
and gene assignment. The inputs of the workflow are (i) an or-
phan or a novel reaction and (ii) the collection of BNICE.ch
generalized enzyme reaction rules. These reaction rules assem-
ble biochemical knowledge distilled from the biochemical re-
action databases and are used to discover de novo enzymatic
reactions as well as predict all possible pathways from known
compounds to target molecules (16, 46, 47). Here, we used the
generalized enzyme reaction rules to extract information about
the reactive sites of substrates participating in an orphan or a
novel reaction, and then integrated this information into the
BridgIT reaction fingerprints (Fig. 1, steps 1 and 2). We next
compared the obtained BridgIT reaction fingerprints to the ones
from the reference reaction database on the basis of the Tanimoto
similarity scores (Fig. 1, step 3). A Tanimoto score near 0 desig-
nates reactions with no or low similarity, whereas a score near
1 designates reactions with high similarity. We used these scores to
rank the assigned reactions from the reference reaction database
and then identified the enzymes associated with the highest-ranked
reference reactions as candidates for catalyzing the analyzed or-
phan or novel reaction (Fig. 1, step 4). In the following sections, we
discuss the reconstructions and testing of the various components
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of BridgIT as well as the results of our main analyses. A web tool of
BridgIT can be consulted at lcsb-databases.epfl.ch/pathways/Bridgit.

Reference Reaction Database. The BridgIT reference reaction
database is an essential component of the BridgIT workflow
(Fig. 1). It consists of well-characterized reactions with associ-
ated genes and protein sequences and was built based on the
KEGG 2016 reaction database (see Methods). The KEGG da-
tabase is the most comprehensive database of enzymatic reac-
tions and provides information about biochemical reactions
together with their corresponding enzymes and genes. However,
half of KEGG reactions lack associated genes and protein se-
quences and are thus considered to be orphan reactions. The
BridgIT reference database was built using the KEGG reactions
that (i) can be reconstructed by the existing BNICE.ch gener-
alized reaction rules and are elementally balanced (5,270 reac-
tions) and (ii) are nonorphan (5,049 reactions). This restriction
removes reactions that lack characterized substrate reactive sites,
meaning that they cannot be used in our comparisons. As a re-
sult, the reference reaction database contains information for
5,049 of 9,556 KEGG reactions (Dataset S1, Table S1).

Sensitivity Analysis of the BridgIT Fingerprint Size. The defining
characteristic of the BridgIT reaction fingerprint is that it is
centered around the reactive site of the reaction substrate(s).
The number of description layers in the BridgIT fingerprint—the
fingerprint size—defines how large a chemical structure around
the reactive site we consider when evaluating the similarity (see
Methods). To investigate to what extent the fingerprint size affects
the similarity results, we performed a sensitivity analysis in which
we varied the fingerprint size between 0 and 10.
For this analysis, we considered the 5,049 nonorphan KEGG

reactions that existed in the BridgIT reference reaction database.
We started by forming reaction fingerprints that contained only
the description layer 0 (fingerprint size 0) and evaluated how
many of 5,049 nonorphan reactions BridgIT could correctly
identify. That is, we evaluated whether the BridgIT algorithm
with these reaction fingerprints could map each of these reactions
to itself. We next formed the reaction fingerprints using only the
description layers 0 and 1 (fingerprint size 1), and we performed
the evaluation again. We repeated this procedure until the final
step, in which we formed the reaction fingerprints with 10 de-
scription layers (fingerprint size 10).
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Fig. 1. Main steps of the BridgIT workflow: step 1, reactive site recognition for an input reaction (de novo or orphan); step 2: reaction fingerprint con-
struction; step 3, reaction similarity evaluation; and step 4, sorting, ranking, and gene assignment. Steps 1.a through 1.c illustrate the procedure of the
identification of reactive sites for the orphan reaction R02763. Step 1.a: two candidate reactive sites of 3-carboxy-2-hydroxymuconate semialdehyde (sub-
strate A) that were recognized by the rules 4.1.1. (green) and 1.13.11 (red). Step 1.b: both rules recognized the connectivity of atoms within two candidate
reactive sites. Step 1.c, only reaction rule 4.1.1. can explain the transformation of substrate A to products. Step 2.a shows the fragmentation of reaction
compounds, whereas step 2.b illustrates the mathematical representations of the corresponding BridgIT reaction fingerprints.
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As expected, the increase in the fingerprint size (i.e., specificity)
led to a decrease in the average number of similar reactions
assigned to the studied reactions. Moreover, the more description
layers that were incorporated into the BridgIT fingerprint, the
more accurately BridgIT matched the analyzed reactions (Table 1).
For the fingerprint size 7, BridgIT correctly mapped 100% of the
analyzed reactions; that is, each of the 5,049 nonorphan reactions
was matched to itself in the reference reaction database. This in-
dicated that the information about chains of eight atoms along with
their connecting bonds around the reactive sites was sufficient for
BridgIT to correctly match all nonorphan KEGG reactions, and
we chose the fingerprint size 7 for our further studies.

BridgIT Reaction Fingerprints Offer Improved Predictions. To evalu-
ate BridgIT performances against existing approaches in this
field (40, 42, 48), we performed two comparative studies. In the
first study, we repeated the analysis from the previous section
using the standard reaction difference fingerprint (Methods and
SI Appendix, Fig. S4), which is used and discussed in detail in
structure similarity methods such as RxnSim (38) and RxnFinder
(39), to assess the benefits of introducing the information about
the reactive site of substrates into the reaction fingerprints. A
comparison of the two sets of predictions on 5,049 nonorphan
reactions showed that the predictions obtained with BridgIT-
modified fingerprints were significantly better than those obtained
with the standard ones. BridgIT identified 100% of nonorphan
reactions correctly versus the 71% success rate for the standard
fingerprint method (Dataset S1, Table S4). Furthermore, BridgIT
correctly matched 93% of the analyzed enzymatic reactions using
the information about only four connecting bonds around the
atoms of the reactive sites (fingerprint size 4) (Table 1), which
exceeds the 71% of matched reactions when using the standard
reaction fingerprints (fingerprint size 7).
The inferior performance of the standard reaction fingerprint

method arose from three main sources. First, fragments from the
substrate and product sets were cancelled out upon algebraic
summation inside the fingerprint description layers (see Meth-
ods), in which description layers 0 and 1 define the single atoms
and the connected pairs of atoms of the reactive site, and layers
2 to 7 include information about the chemical structure around
the reactive site that contains up to eight atoms and seven bonds
(Fig. 1). This cancellation occurred in all description layers
(fingerprint size 7) for 246 nonorphan reactions—that is, their
standard fingerprints were empty (Dataset S1, Table S3). As an
example, Fig. 2A shows the standard reaction fingerprint of KEGG
reaction R00722 that was empty for the standard fingerprint
method. The information about reactive sites introduced in the
BridgIT reaction fingerprints prevents such cancellations, since
BridgIT does not include the atoms of the reactive site(s) in the
process of the algebraic summation of the substrate and product

set fragments (see Methods). As a result, BridgIT mapped R00722
to itself and identified R00330 as the most similar reaction to
R00722 (Fig. 2A). Indeed, according to the KEGG database, the
enzyme 2.7.4.6 catalyzes both reactions.
Second, the performance of the standard reaction fingerprint

suffered because the first description layer of the standard fin-
gerprint was empty for an additional 1,129 reactions, which in-
dicated that these fingerprints did not represent the bond
changes during the reaction (Dataset S1, Table S4).
Third, the remaining 89 mismatched nonorphan reactions had

partial cancellations in the fingerprint description layers. For
example, the standard fingerprint method incorrectly identified
R03132 as the most similar to R00691, whereas BridgIT identi-
fied R00691 and R01373 as the most similar to R00691 (Fig. 2B),
which matches the KEGG reports indicating that both R00691
and R01373 can be catalyzed by either EC 4.2.1.51 or EC 4.2.1.91.
In the second study, we compared the performance of BridgIT

method against three state-of-the-art methods—EC-BLAST (42),
Selenzyme (48), and E-zyme2 (40)—on three benchmark prob-
lems. The first two benchmark problems consisted of identifying
the most-similar reactions to two example reactions, each repre-
senting a class of reactions that appear ubiquitously in biochemical
networks. We chose R00722 (Fig. 2) to exemplify the first class of
reactions characterized by a very similar structure of substrates and
products, and chose R07500 to represent the class of multisubstrate
multiproduct reactions (SI Appendix, Tables S1 and S2). The third
benchmark problem represented the intermolecular transferases
(EC 5.4.4) that catalyze the transfer of a hydroxyl group to an-
other part of a molecule. Similar to other isomerases, in this class
of reactions, the substrate and the product have the same chemical
formula but different bond connectivity. We chose R09708 to ex-
emplify this class of reactions (SI Appendix, Table S3).
For the three benchmark reactions, we ranked the similar

reactions proposed by each of the methods according to the
corresponding similarity scores, and the top 100 similar reactions
proposed by each method were used for comparisons.
The most similar reaction proposed by BridgIT correctly matched

the fourth-level EC number (2.7.4.6) of the first benchmark reaction
R00722 (SI Appendix, Table S1). Three of four EC-BLAST variants
(42) proposed a set of the reactions with the maximal similarity
score (SI Appendix, Table S1). This set contained not only reactions
that correctly matched the fourth-level EC number of R00722, but
also reactions with EC numbers not even matching the first-level EC
number of the benchmark reaction (SI Appendix, Table S1). The
three variants of Selenzyme (48) proposed reactions that could
match only the third-level EC number of R00722, whereas E-zyme2
(40) was unable to find a matching reaction due to very similar
structures in the substrate–product pairs (SI Appendix, Table S1).
In the second benchmark, none of the investigated methods

could propose reactions that match the EC number of R07500
(2.5.1.115) up to the fourth level, and all methods could match
the third-level EC number for this reaction (SI Appendix, Table
S2). BridgIT proposed 39 similar reactions matching the third-
level EC numbers of R07500, whereas the EC-BLAST variant
with structural similarity proposed 45 similar reactions, Selen-
zyme proposed 10, E-zyme2 proposed 9, and the three other EC-
BLAST variants proposed 5 to 7 (SI Appendix, Table S2). In
addition, we performed receiver operating characteristic (ROC)
analysis on the sets of proposed similar reactions, and of all the
compared methods, BridgIT had the highest area under the
ROC curve (AUC) index of 0.95, meaning that it had the best
performance among the compared methods for this class of re-
actions (SI Appendix, Table S2).
In the third benchmark, BridgIT was the only method that

could match the third-level EC number of R09708 (5.4.4.4). It
proposed linalool isomerase (5.4.4.8) to catalyze this reaction,
and remarkably, it was reported in the literature that this enzyme
could catalyze stereospecific isomerization of (3S)-linalool to

Table 1. Correctly mapped reactions as a function of the size of
the BridgIT fingerprint

Fingerprint size Correctly mapped reactions, %

0 4.3
1 35.2
2 60.5
3 72.1
4 92.7
5 97.8
6 98.6
7 100
8 100
9 100
10 100
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geraniol (49). Other methods proposed catalyzing enzymes from
EC class 4 (lyases) (SI Appendix, Table S3). Moreover, only
BridgIT and the EC-BLAST variants with structural similarity and
bond change could capture the structural changes in R09708, whereas
E-zyme2, Selenzyme, and the two remaining variants of EC-BLAST
could not map this reaction to itself (SI Appendix, Table S3).
The results of these three studies demonstrate the potential of

BridgIT to outperform the currently available methods for enzyme
annotation.

From Reaction Chemistry to Detailed Enzyme Mechanisms. Approx-
imately 15% of KEGG reactions (1,532 reactions) are assigned
to more than one enzyme and EC number; that is, multiple en-
zymes can catalyze a specific biotransformation through different
enzymatic mechanisms. For example, KEGG reaction R00217 is
assigned to three different EC numbers, 4.1.1.3 (oxaloacetate
carboxy-lyase) and 1.1.1.40 and 1.1.1.38 (both malate dehydro-
genases), and the corresponding reactions involve different
mechanisms (Fig. 3). The reaction mechanism of the 4.1.1.3 en-
zyme is well understood, as it belongs to the carboxy-lyases in
which a carbon–carbon bond is broken and a molecule of CO2 is
released. This enzyme can decarboxylate three different com-
pounds: glutaconyl-CoA, methylmalonyl-CoA, and oxaloacetate
(from this example). The overlapping reactive site of these three
compounds is captured in the 4.1.1B rule of BNICE.ch (Fig. 3C).
In contrast, the 1.1.1.38 enzyme found in bacteria and insects and
the 1.1.1.40 enzyme found in fungi, animals, and plants are
rather specific enzymes that decarboxylate oxaloacetate and
malate with two different mechanisms. The decarboxylation is
performed with (in the case of malate) or without (in the case of
oxaloacetate) the incorporation of NAD+ as a cofactor. The only
difference in the structure of these two molecules is in having ei-

ther a ketone or an alcohol group on the second carbon. Conse-
quently, the structure of the reactive site that these enzymes
recognize has to reflect the difference between malate and oxa-
loacetate, and this is well captured in the 1.1.1A rule of BNICE.ch.
The 4.1.1B rule requires a less specific reactive site compared

with the 1.1.1A rule, and these two rules have two different reaction
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Fig. 2. Comparison of the results obtained with the BridgIT and standard fingerprint on two example KEGG reactions. (A) The input reaction R00722 (Left) and
the most-similar reactions (Right) identified with the BridgIT and standard fingerprints. Note that the standard fingerprinting method failed to find a similar
reaction to R00722 due to cancellations inside all fingerprint description layers. (B) The input reaction R00691 (Left) and the most-similar reactions (Right)
identified with the BridgIT and standard fingerprints.

R00217
CO2 PyruvateOxaloacetate

3 enzymes catalyze R00217

4.1.1.31.1.1.401.1.1.38

A

4.1.1B

EC: 4.1.1.3CEC: 1.1.1.40
EC: 1.1.1.38B

1.1.1A

Fig. 3. A multienzyme reaction such as R00217 can be catalyzed by more
than one enzyme. BridgIT identified two distinct fingerprints for this re-
action that correspond to two reactive sites of oxaloacetate (A). The reactive
site recognized by the 1.1.1. rule (B) is more specific (blue substructure) than
the one recognized by the 4.1.1. rule (C) (green substructure).
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fingerprints for catalyzing the same reaction R00217 because they
describe different mechanisms for the same reaction.
Moreover, for 42% of the KEGG reactions that have a single

enzyme assigned to them, BNICE.ch identified multiple alter-
native reactive sites and created multiple reaction fingerprints
that describe the biotransformation of these reactions. There-
fore, a single reaction from KEGG was translated into more than
one fingerprint in the BridgIT reference database. This way, by
preserving the information about enzyme binding pockets, the
reconstructed BridgIT reference reaction database expands from
5,049 reactions to 17,657 reaction fingerprints corresponding to
17,657 detailed reaction mechanisms.
Currently, BridgIT is the only method that can distinguish

different reaction mechanisms for the reactions catalyzed by
different enzymes. As a consequence, BridgIT can propose dis-
tinct sets of protein sequences corresponding to distinct mech-
anisms and rank them according to the BridgIT score. The
protein sequences can then be prioritized based on the BridgIT
ranking, enzyme specificity, and the host organism.

Comparison of BridgIT and BLAST Predictions. As a means to relate
reaction structural similarity obtained using BridgIT with re-
action sequence similarity obtained using BLAST (50), we ap-
plied these two techniques in parallel on a subset of reactions
and their corresponding protein sequences from the reference
reaction database. We compared the similarity results of BridgIT
with those of BLAST and statistically assessed BridgIT perfor-
mance using ROC curve analysis (SI Appendix, Figs. S1 and S2).
We chose E. coli BW29521 (EBW) as our benchmark organ-

ism for this analysis. There were 531 nonorphan reactions in
EBW associated with 413 protein sequences. In total, there were
731 reaction–gene associations (Dataset S1, Table S2), as there
were reactions with more than one associated gene and genes
associated with more than one reaction. We removed all the
nonorphan reactions of EBW from the BridgIT reference data-
base and removed their associated protein sequences from the
KEGG protein sequence database (Dataset S1, Table S2). We
then used BridgIT to assess the structural similarity of the 531
EBW reactions to the BridgIT reference reactions using the
Tanimoto score, and we applied BLAST to quantify the similarity
of the 413 EBW protein sequences to the protein sequences of
reactions from the BridgIT reference database using e-values. The
concept of the validation procedure is illustrated in SI Appendix,
Fig. S1. We provide a list of BridgIT reaction–reaction compari-
sons together with BLAST sequence–sequence comparisons
(Dataset S1, Table S2).

Comparing Reaction (BridgIT) and Sequence (BLAST) Similarity Scores.
We considered two sequences to be similar if BLAST reported
an e-value of less than 10−10 for their alignment. For a chosen
discrimination threshold (DT) of the global Tanimoto score
(TG), we considered the BridgIT prediction of similarity between
an EBW reaction and a BridgIT reference reaction with a TG score
as (i) true positive (TP) if TG > DT and their associated sequence
(s) were similar (e-value < 10−10); (ii) true negative (TN) if not
similar for both BridgIT (TG<DT) and BLAST+ (e-value > 10−10);
(iii) false positive (FP) if similar for BridgIT (TG > DT) but not
similar for BLAST+ (e-value > 10−10); and (iv) false negative
(FN) if not similar for BridgIT (TG <DT) but similar for BLAST+
(e-value < 10−10).
We then counted the number of TPs, TNs, FPs, and FNs for

all 531 reactions and summed these quantities to obtain the total
number of TPs, TNs, FPs, and FNs per chosen DT. We repeated
this procedure for a set of DT values varying across the interval
between 0 and 1. Lastly, we used the total number of TPs, TNs,
FPs, and FNs to compute the TP and FP rates for the ROC curve
analysis (SI Appendix, Fig. S2A). The ROC curve indicated that
the reaction comparison based on reaction structural similarity

(BridgIT) was comparable to the one based on reaction se-
quence similarity (BLAST). Indeed, the obtained AUC score for
the BridgIT classifier was 0.91, indicating that the similarities
between the two methods were very high (SI Appendix, Fig. S2A).
We next studied whether the type of compared reactions af-
fected the accuracy of BridgIT predictions by categorizing re-
actions according to their first-level EC class, which indicates the
broadest category of enzyme functionality, and then performing
the ROC analysis for each class separately (SI Appendix, Fig.
S2A). The analysis revealed that BridgIT performed well with all
major enzyme classes, as represented by the high AUC scores
ranging from 0.88 (EC 1) to 0.96 (EC 5).
We next analyzed the accuracy of BridgIT classification as a

function of the DT of the Tanimoto score (SI Appendix, Fig.
S2B). The accuracy ranged from 43% for a DT value of 0.01 to
85% for a DT value of 0.30. For DT values >0.30, the accuracy
monotonically decreased toward 62% for a DT value of 1. The
classifier was overly conservative for DT values >0.30 and was
rejecting TPs (SI Appendix, Fig. S2B). More specifically, for a DT
value of 0.30, the TP percentage was 38%, whereas for a DT
value of 1, it was reduced to 3%. In contrast, the TN percentage
increased very slightly for DT values >0.30, whereas for a DT
value of 0.30, it was 46%, and for a DT value of 1, it was 57% (SI
Appendix, Fig. S2B). Based on this analysis, we chose 0.30 as an
optimal DT value for further studies.
A sensitivity analysis of BridgIT results to the variations in the

e-value threshold ranging from 10−10 to 10−50 is provided in SI
Appendix, Fig. S3.

BridgIT Analysis of Known Reactions with Common Enzymes. The
5,049 reactions in the reference database were catalyzed by only
2,983 enzymes; that is, there were promiscuous enzymes that
catalyzed more than one reaction. Of the 2,983 enzymes, 844
were promiscuous, catalyzing 2,432 of the reactions (Dataset S1,
Table S5). Interestingly, BridgIT correctly assigned more than
80% of these 2,432 reactions to their corresponding promiscuous
enzyme. An example of such a group is given in Table 2. This
table shows the same enzymes listed across the top and down the
left side, with the corresponding Tanimoto scores indicating the
accuracy of BridgIT’s classifications. The overall high scores in
this table indicate the accuracy of the enzyme assignments.
We investigated the remaining 20% of reactions in depth, and

we observed that the Tanimoto scores of the first two description
layers (see Methods) indicated a very low similarity between the
reactions catalyzed by the same enzyme. This result suggested
that such enzymes were either multifunctional (i.e., they had
more than one reactive site) (Fig. 4) or were incorrectly classified
in the EC classification system.

BridgIT Validation Against Biochemical Assays. To assess BridgIT’s
performance using biochemically confirmed reactions, we per-
formed two validation studies on sets of orphan (study I) and
novel (study II) reactions. Since the known reactions in KEGG
are all experimentally confirmed using biochemical assays, we

Table 2. A group of five reactions catalyzed by enzyme
1.1.1.219

Catalyzed reactions R03123 R03636 R05038 R07999 R07998

R03123 1 0.96 0.93 0.93 0.98
R03636 0.96 1 0.96 0.94 0.95
R05038 0.93 0.96 1 0.97 0.91
R07999 0.93 0.94 0.97 1 0.91
R07998 0.98 0.95 0.91 0.91 1

Values are Tanimoto scores given for the comparison between the reaction
listed across the top and the reaction listed down the left side of the table.
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could use this pooled experimental data from hundreds of lab-
oratories to demonstrate BridgIT’s ability to identify potential
enzymes for catalyzing the biologically relevant orphan reactions
on a large scale.
Study I. We compared the number of orphan reactions in two
versions of the KEGG reaction database: KEGG 2011 and
KEGG 2018. We found that 234 orphan reactions from KEGG
2011 were later associated with enzymes in KEGG 2018, meaning
that they became nonorphan reactions (Dataset S1, Tables S6–S8).
Since these newly classified reactions have been experimentally
confirmed, we used these 234 reactions as a benchmark to evaluate
BridgIT’s performance.
We formed the reference reaction database using the reactions

from KEGG 2011 (see Methods), and we compared the BridgIT
results with the KEGG 2018 enzyme assignments up to the third
EC level. Remarkably, BridgIT- and KEGG 2018-assigned en-
zymes matched to the third EC level for 211 of 234 (90%) reac-
tions (Dataset S1, Tables S6 and S7). This means that BridgIT
accurately predicted the enzyme mechanism for enzymes that have
been biochemically confirmed to catalyze a large majority of the
orphan reactions in 2011. In addition, the set of protein sequences
proposed by BridgIT comprised highly related protein sequences
to the ones assigned to these enzymes in KEGG 2018.
The 234 reactions are catalyzed by 168 enzymes with specified

fourth-level EC numbers in KEGG 2018. However, only 29 of
these 168 enzymes were cataloged in KEGG 2011, and the
remaining 139 enzymes had new fourth-level EC classes assigned
in KEGG 2018, meaning that BridgIT had access to only the
29 enzymes that were classified in KEGG 2011 from which the
reference reaction database was built. The 29 enzymes catalyzed
35 of the 234 studied reactions. For 29 of these 35 (83%) orphan
reactions, the BridgIT algorithm predicted the same sequences
that KEGG 2018 assigned to these reactions (Dataset S1, Table S9).
A higher matching score when comparing up to the third EC level
rather than the fourth EC level is likely because BridgIT uses
BNICE.ch generalized reaction rules, which describe the biotrans-
formations of reactions with specificities up to the third EC level.
Study II. The ATLAS of Biochemistry (46) provides a compre-
hensive catalog of theoretically possible biotransformations be-
tween KEGG compounds and can be mined for novel biosynthetic
routes for a wide range of applications in metabolic engineering,

synthetic biology, drug target identification, and bioremediation
(40). We studied the 379 reactions from the ATLAS of Bio-
chemistry that were novel in KEGG 2014 and were later experi-
mentally identified and cataloged in KEGG 2018.
We formed the reference reaction database using the reac-

tions from KEGG 2014 and applied BridgIT to these 379 reac-
tions. For 334 of these 379 reactions, BridgIT proposed similar
known reactions with a Tanimoto score higher than 0.30, thus
providing promising protein sequences for enzymes catalyzing
these reactions (Dataset S1, Table S10). For 14 of these novel
reactions, BridgIT assigned the same sequences that were assigned
in KEGG 2018 (Dataset S1, Table S11). An example of such a
reaction is rat132341, which was a novel reaction in 2014 and later
cataloged as R10392 in KEGG 2018 (Fig. 5A). The BridgIT
analysis of this reaction revealed that R03444, which is catalyzed by
enzyme 4.2.1.114, is the structurally closest reaction to this novel
one, suggesting that protein sequences from EC 4.2.1.114 can
catalyze this novel reaction. This was later confirmed by experi-
mental biochemical evidence, as R10392 is associated with the
same EC 4.2.1.114 enzyme in KEGG 2018. There are 243 available
protein sequences for enzyme 4.2.1.114, and one sequence already
has a confirmed protein structure (Fig. 5C). Therefore, BridgIT
results were validated using experimental biochemical evidence on
a large scale.

BridgIT Predictions for KEGG 2018 Orphan Reactions. We applied
BridgIT to the 810 orphan KEGG 2018 reactions that could be
reconstructed using the BNICE.ch generalized reaction rules.
The remaining 1,646 orphan reactions could not be recon-
structed because they are not balanced or they lack the structure
for at least one of their substrates. Remarkably, BridgIT iden-
tified corresponding reference reactions with Tanimoto scores
higher than the optimal threshold value of 0.30 for 97% of the
orphan reactions. The remaining 3% of orphan reactions had a
low similarity with the reference reactions. A large number of
the orphan reactions originate from the pathways toward plant
and microbial natural products that frequently involve complex
and less-investigated classes of enzymes such as polyketide
synthases (PKSs), nonribosomal peptide synthetases (NRPSs), ter-
pene cyclases (TCs), and cytochromes P450 (CYPs). Interestingly,
BridgIT mapped 112 of 810 orphan reactions back to these
families: It predicted that 72 orphan reactions can be catalyzed
by CYPs, 33 by PKSs, 6 by NRPSs, and 1 by TC (Dataset S1,
Tables S12–S15).
This result and the fact that BridgIT correctly mapped 100%

of nonorphan KEGG reactions suggests that as our knowledge of
biochemistry expands, the annotation of novel and orphan re-
actions using tools such as BridgIT will also improve.

BridgIT Predictions for ATLAS Novel Reactions. We further utilized
BridgIT to identify candidate enzymes for all the 137,000 de
novo, orphanlike ATLAS reactions. These candidate enzymes
can be used directly in systems biology designs if the matched
enzymes perform the desired catalysis or if their amino acid se-
quences can be optimized through protein engineering to
achieve the desired results. We found that 7% of novel ATLAS
reactions were matched to known KEGG reactions with a
Tanimoto score of 1 (perfect match), while 88% were similar to
KEGG reactions with a Tanimoto score higher than the optimal
threshold value of 0.30. Therefore, BridgIT could identify prom-
ising enzyme sequences for catalyzing 95% of novel ATLAS re-
actions. The remaining 5% of these reactions were not similar to
any of the well-characterized known enzymatic reactions.
Finding well-characterized reactions that are similar to novel

ones is crucial for evolutionary protein engineering as well as
computational protein design, and methods like BridgIT can be
instrumental in moving from a concept to the experimental
implementation of de novo reactions. Additionally, to facilitate

3-Iodo-L-tyrosine

2

2

DehydroalanineThyroxine

Hydroiodic
acid

L-Tyrosine Iodine

1.11.1B

1.11.1A

B

A

A multi-functional enzyme: EC 1.11.1.8

3,5-Diiodo-L-tyrosine

R03539, 1.11.1.8

R03208, 1.11.1.8
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the experimental implementation of novel ATLAS reactions in
metabolic engineering, in systems and synthetic biology, and in
bioremediation studies, we can use the BridgIT similarity scores
as confidence measures for evaluating the feasibility.
The results of the BridgIT analysis of the KEGG 2018 orphan

and novel ATLAS reactions are available on the website lcsb-
databases.epfl.ch/atlas/.

Methods
In BridgIT, the Tanimoto score is used to quantify the similarity of reaction
fingerprints. BridgIT allows us to do the following: (i) compare a given novel
or orphan reaction to a set of reactions that have associated sequences,
subsequently referred to as the reference reactions; (ii) rank the identified
similar reactions based on the computed Tanimoto scores; and (iii) propose
the sequences of the highest ranked reference reactions as possible candi-
dates for encoding the enzyme of the given de novo or orphan reaction.

Reactive Site Identification.An enzymatic reaction occurs when its substrate(s)
fits into the binding site of an enzyme. Since the structure and geometry of
the binding sites of enzymes are complex and most of the time not fully
characterized, we proposed focusing on the similarity of the reactive sites of
their substrates. Following this, we used the expert-curated, generalized
reaction rules of BNICE.ch to identify the reactive sites of substrates. These
reaction rules have third-level EC identifiers (e.g., EC 1.1.1) and encompass the
following biochemical knowledge of enzymatic reactions: (i) information about
atoms of the substrate’s reactive site; (ii) information about connectivity (atom-
bond-atom); and (iii) exact information of bond breakage and formation during

the reaction. As of July 2017, BNICE.ch contains 381 bidirectional generalized
reaction rules that can reconstruct 6,528 KEGG reactions (46).

Given a novel or orphan reaction, the reactive sites of its substrate(s) are
identified in three steps. In the first step, the BNICE.ch generalized reaction
rules that can be applied to groups of atoms from the analyzed substrates are
identified, and then the information about the identified rules and the
corresponding groups of atoms is stored. Subsequently, these groups of
atoms are referred to as the candidate substrate reactive sites. In the second
step, among the identified rules, only the ones that can recognize the con-
nectivity between the atoms of the candidate substrate reactive sites are kept.
In the third step, whether thebiotransformation of a substrate(s) to a product(s)
can be explained by the rules retained after the second step is tested. The
candidate reactive sites corresponding to the rules that have passed the three-
step test are validated and used for the construction of reaction fingerprints.

We illustrate this procedure on an orphan reaction R02763, which catalyzes
the conversion of 3-carboxy-2-hydroxymuconate semialdehyde (substrate A) to
2-hydroxymuconate semialdehyde and carbon dioxide (Fig. 1). In the first step,
210 rules were identified out of 361 rules that could be applied to groups
of atoms of substrate A (Fig. 1, step 1.a). Of the 210 rules, 168 matched the
connectivity (Fig. 1, step 1.b). Lastly, the 168 reaction rules were applied to
substrate A for bond breaking and formation comparisons, and one rule could
explain the transformation of substrate A to the products (Fig. 1, step 1.c).

Reaction Fingerprint Construction.Molecular fingerprints, which are the linear
representations of the structures of molecules, have been used in many
methods and for different applications, especially for structural comparison
of compounds (51, 52). One of the most commonly used molecular finger-
prints is the Daylight fingerprint (51), which decomposes a molecule into
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their crystal structures.
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eight layers starting from layer zero that accounts only for atoms. Layer
1 expands one bond away from all the atoms and accounts for atom-bond-
atom connections. This procedure is continued until layer 7, which includes
seven connected bonds from each atom. There are two types of Daylight
reaction fingerprints: (i) structural reaction fingerprints, which are simple
combinations of reactant and product fingerprints, and (ii) reaction differ-
ence fingerprints, which are the algebraic summation of reactant and
product fingerprints multiplied by their stoichiometry coefficients in the
reaction. In this study, we propose a modified version of the reaction dif-
ference fingerprint. The procedure for formulating BridgIT reaction finger-
prints is demonstrated through an example reaction (Fig. 1, step 2).

Starting from the atoms of the identified substrate reactive site, eight
description layers of the molecule were formed, where different layers
consisted of fragments with different lengths. Fragments were composed of
atoms connected through unbranched sequences of bonds. Depending on
the number of bonds included in the fragments, different description layers
of a molecule were formed as follows:

Layer 0: Describes the type of each atom of the reactive site together with its
count. For example, the substrate of the example reaction at layer 0 was
described as three oxygens and five carbon atoms (Fig. 1, step 2.a).

Layer 1: Describes the type and count of each bond between pairs of atoms
in the reactive site. In the example, the substrate at layer 1 was described
with six fragments of length 1: one C–O, three C–C, two C=O, and one
C=C bond (Fig. 1, step 2.a). Fragments are shown by their simplified
molecular-input line-entry system (SMILES) molecular representation
(53). To convert SMILES to canonical SMILES, we used Open Babel C++
library (52).

Layer 2: Describes the type and count of fragments with three connected
atoms. While layers 0 and 1 described the atoms of reactive sites, starting
from layer 2, atoms that were outside the reactive site were also described.
In the illustrated example, there were six different fragments of this type
(Fig. 1, step 2.a).

The same procedure was used to describe the molecules up to layer 7.
Interestingly, and consistent with the previously reported result (43), we found
that the seven-layer description was good enough to capture the structure of
most of the metabolites in biochemical reactions, therefore providing a precise
reaction fingerprint. Note that not all description layers are needed to describe
less complex molecules. For example, product C (carbon dioxide) was fully
described using only layer 0 and layer 1 (Fig. 1, step 2.a). For very large mole-
cules, the description layers that contain fragments with more than eight con-
nected atoms can be used.

For each layer, the substrate set was formed by merging all the fragments
and their type and count in the substrate molecules of the reaction, and the
product set was formed by merging all the fragments (type and count) in the
product molecules of the reaction. In both sets, the count of each fragment
was multiplied by the stoichiometric coefficients of the corresponding
compound in the reaction. Lastly, the reaction fingerprints were created by
summing the fragments of the substrate and product sets for each layer (Fig.
1, step 2.b).

Introducing the specificity of reactive sites into the reaction fingerprint
allows BridgIT to capitalize on the information about enzyme binding
pockets (16). To keep this valuable information throughout the generation
of reaction fingerprints, BridgIT does not consider the atoms of the reactive
site(s) when performing the algebraic summation of the substrate and product
set fragments. Consequently, the BridgIT algorithm enables retaining, track-
ing, and emphasizing the information of the reactive site(s) in all the layers of
the reaction fingerprint, which distinguishes it from the existing methods.

Reaction Similarity Evaluation. The similarity of two reactions was quantified
using the similarity score between their fingerprints, subsequently referred to
as reaction fingerprints A and B. In this study, the Tanimoto score, which is an
extended version of the Jaccard coefficient and cosine similarity, was used (54).
Values of the Tanimoto scores near 0 indicate reactions with no or negligible
similarity, whereas values near 1 indicate reactions with high similarity.

The Tanimoto score for each descriptive layer, TLk, together with the
global Tanimoto score, TG, was calculated. The Tanimoto score for the k-th
descriptive layer was defined as

TLk =
ck

ak +bk − ck
,

where ak was the count of the fragments in the k-th layer of reaction fin-
gerprint A; bk was the count of the fragments in the k-th layer of reaction
fingerprint B; and ck was the number of common k-th layer fragments of

reaction fingerprints A and B. Two fragments were equal if their canonical
SMILES and their stoichiometric coefficients were identical. The global
Tanimoto similarity score, TG, was defined as follows:

TG =
P7

k= 0ck
P7

k=0ak +
P7

k= 0bk −
P7

k= 0ck
.

For each reaction fingerprint, its Tanimoto similarity score was calculated
against the reaction fingerprints from the BridgIT reference database, which
contained reaction fingerprints of all known, well-characterized enzymatic
reactions (Fig. 1, step 3).

Sorting, Ranking, and Gene Assignment. For a given input reaction, the ref-
erence reactions were ranked using the computed TG scores. The algorithm
distinguished between the identified reference reactions with the same TG
score based on the TL score of layers 0 and 1 and allowed the user to assign
ranking weights to specified layers. The protein sequences associated with
the highest ranked (i.e., the most similar) reference reactions were then
assigned to the input reaction (Fig. 1, step 4).

Conclusions
We developed the computational tool BridgIT to evaluate and
quantify the structural similarity of biochemical reactions by
exploiting the biochemical knowledge of BNICE.ch generalized
reaction rules. Because the generalized reaction rules can iden-
tify reactive sites of substrates, BridgIT can translate the struc-
tural definition of biochemical reactions into a type of reaction
fingerprint that explicitly describes the atoms of the substrates’
reactive sites and their surrounding structure. Through the
analysis of 5,049 known and well-defined biochemical reactions,
we found that knowledge of the neighborhood up to three bonds
away from the atoms of the reactive site can predict biochemistry
and match catalytic protein sequences. The reaction fingerprints
proposed in this work can be used to compare all novel and
orphan reactions to well-characterized reference reactions and,
consequently, to link them with genes, genomes, and organisms.
We demonstrated through several examples the improvements
that the BridgIT fingerprint brings to the field compared with the
fingerprints currently existing in the literature.
A drawback of traditional sequence-similarity methods is that

they cannot identify protein sequence candidates for de novo
reactions, which we have shown BridgIT can do.
We tested BridgIT predictions against experimental bio-

chemical evidence, within two large-scale validations studies on
sets of 234 orphan and 379 de novo reactions. The reactions
from these two sets were unknown in the previous versions of the
KEGG database but were later experimentally confirmed and
cataloged in KEGG 2018. BridgIT predicted the exact or a highly
related enzyme for 89% of these reactions.
We further applied BridgIT to the entire catalog of de novo

reactions of the ATLAS of Biochemistry database and proposed
several candidate enzymes for each of them. The candidate en-
zymes for these de novo reactions can either be immediately
capable of catalyzing these reactions or serve as initial sequences
for enzyme engineering. The obtained BridgIT similarity scores
can also be used as a confidence score to assess the feasibility of
the implementation of novel ATLAS reactions in metabolic
engineering and systems biology studies.
The applications of BridgIT go beyond merely bridging gaps in

metabolic reconstructions: This method can be used to identify
the potential utility of existing enzymes for bioremediation as
well as for various applications in synthetic biology and meta-
bolic engineering. As the field of metabolic engineering grows
and metabolic engineering applications increasingly turn toward
the production of valuable industrial chemicals such as 1,4-
butanediol (55, 56), we expect that methods for the design of de
novo synthetic pathways, such as BNICE.ch (16), and methods
for identifying candidate enzymes for de novo reactions, such as
BridgIT, will grow in importance.
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