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Empowering statistical methods for cellular and 
molecular biologists

ABSTRACT We provide guidelines for using statistical methods to analyze the types of 
experiments reported in cellular and molecular biology journals such as Molecular Biology of 
the Cell. Our aim is to help experimentalists use these methods skillfully, avoid mistakes, and 
extract the maximum amount of information from their laboratory work. We focus on com-
paring the average values of control and experimental samples. A Supplemental Tutorial 
provides examples of how to analyze experimental data using R software.

PERSPECTIVE
Our purpose is to help experimental biologists use statistical 
methods to extract useful information from their data, draw valid 
conclusions, and avoid common errors. Unfortunately, statistical 
analysis often comes last in the lab, leading to the observation by 
the famous 20th century statistician R. A. Fisher (Fisher, 1938):

“To consult [statistics] after an experiment is finished is often 
merely to […] conduct a post mortem examination. [You] can 
perhaps say what the experiment died of.”

To promote a more proactive approach to statistical analysis, we 
consider seven steps in the process. We offer advice on experimen-
tal design, assumptions for certain types of data, and decisions 
about when statistical tests are required. The article concludes with 
suggestions about how to present data, including the use of 
confidence intervals. We focus on comparisons of control and ex-
perimental samples, the most common application of statistics in 
cellular and molecular biology. The concepts are applicable to a 
wide variety of data, including measurements by any type of micro-
scopic or biochemical assay. Following our guidelines will avoid the 
types of data handling mistakes that are troubling the research 
community (Vaux, 2012). Readers interested in more detail might 
consult a biostatistics book such as The Analysis of Biological Data,  
Second Edition (Whitlock and Schluter, 2014).

SEVEN STEPS
1. Decide what you aim to estimate from your 
experimental data
Experimentalists typically make measurements to estimate a prop-
erty or “parameter” of a population from which the data were drawn, 
such as a mean, rate, proportion, or correlation. One should be 
aware that the actual parameter has a fixed, unknown value in the 
population. Take the example of a population of cells, each dividing 
at their own rate. At a given point in time, the population has a true 
mean and variance of the cell division rate. Neither of these param-
eters is knowable. When one measures the rate in a sample of cells 
from this population, the sample mean and variance are estimates of 
the true population mean and variance (Box 1). Such estimates differ 
from the true parameter values for two reasons. First, systematic bi-
ases in the measurement methods can lead to inaccurate estimates. 
Such measurements may be precise but not accurate. Making mea-
surements by independent methods can verify accurate methods 
and help identify biased methods. Second, the sample may not be 
representative of the population, either by chance or due to system-
atic bias in the sampling procedure. Estimates tend to be closer to 
the true values if more cells are measured, and they vary as the ex-
periment is repeated. By accounting for this variability in the sample 
mean and variance, one can test a hypothesis about the true mean in 
the population or estimate its confidence interval.

2. Frame your biological and statistical hypotheses
A critical step in designing a successful experiment is translating a 
biological hypothesis into null and alternative statistical hypotheses. 
Hypotheses in cellular and molecular biology are often framed as 
qualitative statements about the effect of a treatment (i.e., geno-
type or condition) relative to a control or prediction. For example, 
a biological hypothesis might be that the rate of contractile ring 
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BOX 1: Statistics describing normal distributions

The sample mean (x ) is the average value of the measurements: ∑=
=

x x N/ii

N

1
, where xi is a measurement and N is the number of measure-

ments. The sample mean is an estimate of the true population mean (µ). The median is the middle number in a ranked list of measurements, and 
the mode is the peak value. The peak of a normal distribution is equal to the mean, median, and mode. This is generally not true for asymmetrical 
distributions.

The sample standard deviation (SD) is the square root of the variance of the measurements in a sample and describes the distribution of values 
around the mean:

∑
=

−
−

=
x x

N
SD

( )

1
i

N
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2

where xi is a measurement, x  is the sample mean, and N is the number of measurements. SD is an estimate of the true population SD(σ). Note 
(Figure 1A) that for a normal distribution ±1σ around the mean includes 68% of the values and ±2σ around the mean includes ∼95% of the values. 
Use the SD in the figures to show the variability of the measurements.

The standard error of the mean, SEM, is the SD divided by the square root of the number of measurements: = NSEM SD / . Therefore, 
N must always be reported along with SEM. SEM is an estimate of how closely the sample mean matches the actual population mean. The agree-
ment increases with the number of measurements. SEM is used in the t test. SD shows transparently the variability of the data, whereas SEM will 
approach zero for large numbers of measurements. Mistaking SEM for SD gives a false impression of low variability. Using SEM reduces the size 
of error bars on graphs but obscures the variability. Using confidence intervals (see Box 2) is preferred to using SEM.

FIGURE 1: Examples of distributions of measurements. (A) Normal distribution with vertical lines showing the mean = 
median = mode (dotted) and ±1, 2, and 3 standard deviations (SD or σ). The fractions of the distribution are ∼0.67 within 
±1 SD and ∼0.95 within ±2 SD. (B) Histogram of approximately normally distributed data. (C) Histogram of a skewed 
distribution of data. (D) Histogram of the natural log transformation of the skewed data in C. (D) Histogram of 
exponentially distributed data. (F) Histogram of a bimodal distribution of data.

constriction depends on the concentration of myosin-II. Statistical 
hypothesis testing requires the articulation of a null hypothesis, 
which is typically framed as a concrete statement about no effect of 
a treatment or no deviation from a prediction. For example, a null 
hypothesis could be that the mean rate of contractile ring constric-
tion is the same for cells depleted of myosin-II by RNA interference 
(RNAi) and for cells treated with a control RNAi molecule. Likewise, 
the alternative hypothesis is all outcomes other than the null hy-
pothesis. For example, the mean rates of constriction are different 

under the two conditions. Most hypothesis testing allows for the 
effect of each treatment to be in either direction relative to a 
control or other treatments. These are referred to as two-sided 
hypotheses. Occasionally, the biological circumstances are such 
that the effect of a treatment could never be in one of the two 
possible directions, and therefore a one-sided hypothesis is 
used. The null hypothesis then is that the treatment either has no 
effect or an effect in the direction that is never expected. The 
section on hypothesis testing illustrates how this framework 
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enables scientists to assess quantitatively whether their data sup-
port or refute the biological hypothesis.

3. Design your experiment
As indicated by Fisher’s admonition, one should build statistical 
analysis into the design of an experiment including the number of 
measurements, nature and number of variables measured, methods 
of data acquisition, biological and technical replication, and selec-
tion of an appropriate statistical test.

Nature and number of variables. All variables that could influence 
responses and are measurable should be recorded and considered 
in statistical analyses. In addition to intentional treatments such as 
genotype or drug concentration, so-called nuisance variables (e.g., 
date of data collection, lot number of a reagent) can influence re-
sponses and if not included can obscure the effects of the treat-
ments of interest.

Treatments and measured responses can either be numerical or 
categorical. Different statistical tools are required to evaluate nu-
merical and categorical treatments and responses (Table 1 and 
Figure 2). Failing to make these distinctions may be the most com-
mon error in the analysis of data from experiments in cellular and 
molecular biology.

A range of inhibitor concentrations or time after adding a drug 
are examples of numerical treatments. Examples of categorical 
treatments are comparing wild-type versus mutant cells or control 
cells versus cells depleted of a mRNA.

Continuous numerical responses are measured as precisely as 
possible, so every data point may have a unique value. Examples 
include concentrations, rates, lengths, and fluorescence intensities. 
Categorical responses are typically recorded as counts of observa-
tions for each category such as stages of the cell cycle (e.g., 42 
interphase cells and eight mitotic cells). Proportions (e.g., 0.84 inter-
phase cells and 0.16 mitotic cells) and percentages (e.g., 84% 
interphase cells and 16% mitotic cells) are also categorical responses 
but are often inappropriately treated as numerical responses in sta-
tistical tests. For example, many authors make the mistake of using 
a t test to compare proportions. They may think that proportions are 
numerical responses, because they are numbers, but they are not 
numerical responses. The decision tree in Figure 2 guides the ex-
perimentalist to the appropriate statistical test and Table 1 lists the 
assumptions for widely used statistical tests.

Often researchers must make choices with regard to the number 
and nature of the variables in their experiment to address their bio-
logical question. For example, color can be measured as a categorical 
variable or as a continuous numerical variable of wavelengths. Re-
cording variables as continuous numerical variables is best, because 
they contain more information and subsequently can be converted 
into categorical variables, if the data appear to be strongly categori-
cal. Furthermore, the choice of variable may be less clear with compli-
cated experiments. For example, in the time-course experiments de-
scribed in Figure 3, one study measured rates as a response variable 
(Figure 3A) and two others used time until an event (Figure 3, B and 
C). All could have treated the event as a categorical variable and used 
time as a treatment variable. It is often best to record the most direct 
observations (e.g., counts of cells with and without the event) and 
then subsequently to consider using response variables that involve 
calculations (e.g., rate of event or time until event).

Methods of data acquisition. Common statistical tests (Table 1) as-
sume randomization and exchangeability, meaning that all experi-
mental units (e.g., cells) are equally likely to get each treatment and 

the data for one experimental unit is the same as that of any other 
receiving the same treatment. The challenge is to understand your 
experiment well enough to randomize treatments effectively across 
potential confounding variables. For example, it is unwise to image all 
mutant cells one week and all control cells the next week, because 
differences in the conditions during the experiment could have con-
founding effects difficult to separate from any differences between 
mutant and control cells. Randomly assigning mutants and controls to 
specific dates allows for date effects to be separated from the geno-
type effects that are of interest if both genotype and date are included 
in the statistical test as treatments. Many possible experimental de-
signs effectively control for the effects of confounding variables such 
as randomized block designs and factorial designs. Planning ahead 
allows one to avoid the common mistake of failing to randomize 
batches of data acquisition across experimental conditions.

Many statistical tests further assume that observations are inde-
pendent. When this is not the case, as with paired or repeated 
measurements on the same specimen, one should use methods that 
account for correlated observations, such as paired t tests or mixed 
model regression analysis with random effects (Whitlock and Schluter, 
2014). Time-course studies are a common example of repeated 
measurements in molecular cell biology that require special handling 
of nonindependence with approaches such as mixed models.

Statistical test. Having decided on the experimental variables and 
the method to collect the data, the next step is to select the appro-
priate statistical test. Statistical tests are available to evaluate the 
effect of treatments on responses for every type and combination of 
treatment and response variables (Figure 2 and Table 1). All statisti-
cal tests are based on certain assumptions (Table 1) that must be 
met to maintain their accuracy. Start by selecting a test appropriate 
for the experimental design under ideal circumstances. If the actual 
data collected do not meet these assumptions, one option is to 
change to an appropriate statistical test as discussed in Step 4 and 
illustrated in Example 1 of the Supplemental Tutorial. In addition to 
matching variables with types of tests, it is also important to make 
sure that the null and alternative hypotheses for a test will address 
your biological hypothesis.

Most common statistical tests require predetermining an accept-
able rate of false positives. For an individual test this is referred to 
as the type I error rate (α) and is typically set at α = 0.05, which 
means that a true null hypothesis will be mistakenly rejected at most 
five times out of 100 repetitions of the experiment. The type I error 
rate is adjusted to a lower value when multiple tests are being 
performed to address a common biological question (Dudoit and 
van der Laan, 2008). Otherwise, lowering the type I error rate is not 
recommended, because it decreases the power of the test to detect 
small effects of treatments (see below).

Biological and technical replication. Biological replicates (mea-
surements on separate samples) are used for parameter estimates 
and statistical tests, because they allow one to describe variation in 
the population. Technical replicates (multiple measurements on the 
same sample) are used to improve estimation of the measurement 
for each biological replicate. Treating technical replicates as biologi-
cal replicates is called pseudoreplication and often produces low 
estimates of variance and erroneous test results. The difference be-
tween technical and biological replicates depends on how one de-
fines the population of interest. For example, measurements on cells 
within one culture flask are considered to be technical replicates, 
and each culture flask to be a biological replicate, if the population 
is all cells of this type and variability between flasks is biologically 
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important. But in another study, cell to cell variability might be of 
primary interest, and measurements on separate cells within a flask 
could be considered biological replicates as long as one is cautious 
about making inferences beyond the population in that flask. 

Typically, one considers biological replicates to be the most inde-
pendent samples.

The design should be balanced in the sense of collecting equal 
numbers of replicates for each treatment. Balanced designs are 

FIGURE 3: Comparison of data presentation for three experiments on the constriction of cytokinetic contractile rings 
with several perturbations. (A) Rate of ring constriction in Caenorhabditis elegans embryos from Zhuravlev et al. (2017). 
Error bars represent SD; p values were obtained by an unpaired, two-tailed Student’s t test; n.s., p ≥ 0.05; *, p < 0.05; 
**, p < 0.01; ****, p < 0.0001. Sample sizes 10–12. (B) Time to complete ring constriction in Schizosaccharomyces pombe 
from Li et al. (2016). Error bars, SD; n ≥ 10 cells. *, p < 0.05 obtained with one-tailed t tests for two samples with unequal 
variance. (C) Kaplan-Meier outcomes plots comparing the times (relative to spindle pole body separation) of the onset of 
contractile ring constriction in populations of (○) wild-type and (⬤) blt1∆ fission yeast cells from Goss et al. (2014). A 
log-rank test determined that the curves differed with p < 0.0001.

FIGURE 2: Decision tree to select an appropriate statistical test for association between a response and one or more 
treatments. Multiple treatments or a treatment and potential confounders can be tested using linear models (also 
known as ANCOVA) or generalized linear models (e.g., logistic regression for binary responses). Multiple treatments 
with repeated measurements on the same specimens, such as time courses, can be tested using mixed model 
regression. Questions in squares; answers on solid arrows; actions in ovals; tests in diamonds.



1364 | D. A. Pollard et al. Molecular Biology of the Cell

more robust to deviations from hypothesis test assumptions, such as 
equal variances in responses between treatments (Table 1).

Number of measurements. Extensive replication of experiments 
(large numbers of observations) has bountiful virtues, including 
higher precision of parameter estimates, more power of statistical 
tests to detect small effects, and ability to verify the assumptions of 
statistical tests. However, time and reagents can be expensive in 
cellular and molecular biology experiments, so the numbers of mea-
surements tend to be relatively small (<20). Fortunately, statistical 
analysis in experimental biology has two major advantages over ob-
servational biology. First, experimental conditions are often well 
controlled, for example using genetically identical organisms under 
laboratory conditions or administering a precise amount of a drug. 
This reduces the variation between samples and compensates to 
some extent for small sample sizes. Second, experimentalists can 
randomize the assignment of treatments to their specimens and 
therefore minimize the influence of confounding variables. None-
theless, small numbers of observations make it difficult to verify im-
portant assumptions and can compromise the interpretation of an 
experiment.

Statistical power. One can estimate the appropriate number of 
measurements required by calculating statistical power when de-
signing each experiment. Statistical power is the probability of reject-
ing a truly false null hypothesis. A common target is 0.80 power 
(Cohen, 1992). Three variables contribute to statistical power: num-
ber of measurements, variability of those measurements (SD), and 
effect size (mean difference in response between the control and the 
treated populations). A simple rule of thumb is that power decreases 
with the variability and increases with sample size and effect size as 
shown in Figure 4. One can increase the power of an experiment by 
reducing measurement error (variance) or increasing the sample size. 
For the statistical tests in Table 1, simple formulas are available in 
most statistical software packages (e.g., R [www.r-project.org], 
Stata [www.stata.com], SAS [www.sas.com], SPSS [www.ibm.com/
SPSS/Software]) to compute power as a function of these three 
variables.

Of course, one does not know the outcome of an experiment 
before it is done, but one may know the expected variability in the 
measurements from previous experiments, or one can run a pilot 
experiment on the control sample to estimate the variability in the 
measurements in a new system. Then one can design the experi-
ment knowing roughly how many measurements will be required to 

detect a certain difference between the control and experimental 
samples. Alternatively, if the sample size is fixed, one can rearrange 
the power formula to compute the effect size one could detect at a 
given power and variability. If this effect size is not meaningful, pro-
ceeding is not advised. This strategy avoids performing a statistical 
“autopsy” after the experiment has failed to detect a significant 
difference.

4. Examine your data and finalize your analysis plan
Experimental data should not deviate strongly from the assumptions 
of the chosen statistical test (Table 1), and the sample sizes should be 
large enough to evaluate if this is the case. Strong deviations from 
expectations will result in inaccurate test results. Even a very well-
designed experiment may require adjustments to the data analysis 
plan, if the data do not conform to expectations and assumptions. 
See Examples 1, 2, and 4 in the Supplemental Tutorial.

For example, a t test calls for continuous numerical data and 
assumes that the responses have a normal distribution (Figure 1, A 
and B) with equal variances for both treatments. Samples from a 
population are never precisely normally distributed and rarely have 
identical variances. How can one tell whether the data are meeting 
or failing to meet the assumptions?

Find out whether the measurements are distributed normally by 
visualizing the unprocessed data. For numerical data this is best 
done by making a histogram with the range of values on the hori-
zontal axis and frequency (count) of the value on the vertical-axis 
(Figure 1B). Most statistical tests are robust to small deviations from 
a perfect bell-shaped curve, so a visual inspection of the histogram 
is sufficient, and formal tests of normality are usually unnecessary. 
The main problem encountered at this point in experimental biol-
ogy is that the number of measurements is too small to determine 
whether they are distributed normally.

Not all data are distributed normally. A common deviation is a 
skewed distribution where the distribution of values around the 
peak value is asymmetrical (Figure 1C). In many cases asymmetric 
distributions can be made symmetric by a transformation such as 
taking the log, square root, or reciprocal of the measurements for 
right-skewed data, and the exponential or square of the measure-
ments for left-skewed data. For example, an experiment measur-
ing cell division rates might result in many values symmetrically 
distributed around the mean rate but a long tail of much lower 
rates from cells that rarely or never divide. A log transformation 
(Figure 1D) would bring the histogram of this data closer to a 
normal distribution and allow for more statistical tests. See 

FIGURE 4: Three graphs show factors affecting the statistical power, the probability of rejecting a truly false null 
hypothesis in a two-sample t test. The statistical power depends on three factors: (A) increases with the number of 
measurements (n); (B) decreases with the size of the SD (sd); and (C) increases with effect size (∆), the difference 
between the control and the test samples on both sides of minimum at zero effect size. Two variables are held constant 
in each example.
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FIGURE 5: Comparison of two t distributions with degrees of 
freedom of 3 (sample size 4) and 10 (sample size 11) with a normal 
distribution with a mean value of 0 and SD = 1. The vertical dashed 
lines are 2.5th and 97.5th quantiles of the corresponding (same color) 
t distribution. The area below the left dashed line and above the right 
dashed line totals 5% of the total area under the curve. The 
t distribution is the theoretical probability of obtaining a given 
t statistic with many random samples from a population where the null 
hypothesis is true. The shape of the distribution depends on the 
sample size. The distribution is symmetric, centered on 0. The tails are 
thicker than a standard normal distribution, reflecting the higher 
chance of values away from the mean when both the mean and the 
variance are being estimated from a sample. The t distribution is a 
probability density function so the total area under the curve is equal 
to 1. The area under the curve between two x-axis (t statistic) values 
can be calculated using integration. With large sample sizes the 
accuracy of estimates of the true variance in an experiment increase 
and the t distribution converges on a standard normal distribution. 
To determine the probability of the observed statistic if the null 
hypothesis were true, one compares the t statistic from an experiment 
with the theoretical t distribution. For a one-sided test in the 
greater-than direction, the area above the observed t statistic is the 
p value. The 97.5th quantile has p = 0.025. For a one-sided test in the 
less-than direction, the area below the observed t statistic is the 
p value. The 2.5th quantile has p = 0.025 in this case. For a two-sided 
test, the p value is the sum of the area beyond the observed statistic 
and the area beyond the negative of the observed statistic. If this 
probability value (p value) is low, the data are not likely under the null 
hypothesis.

Example 2 in the Supplemental Tutorial for an example of a log 
transformation. Exponential (Figure 1E) and bimodal (Figure 1F) 
distributions are also common.

One can evaluate whether variances differ between treatments 
by visual inspection of histograms of the data or calculating the 
variance and SD for each treatment. If the sample sizes are equal 
between treatments (i.e., balanced design), tests like the t test and 
analysis of variance (ANOVA) are robust to variances severalfold 
different from each other.

To determine whether the assumption of linearity in regression 
has been met, one can look at a plot of residuals (i.e., the differences 
between observed responses and responses predicted from the lin-
ear model) versus fitted values. Residuals should be roughly uniform 
across fitted values, and deviations from uniform fitted values sug-
gest nonlinearity. When nonlinearity is observed, one can consider 
more complicated parametric models of the relationship of re-
sponses and treatments.

If the data do not meet the assumptions or sample sizes are too 
small to verify that assumptions have been met, alternative tests are 
available. If the responses are not normally distributed (such as a 
bimodal distribution, Figure 1F), the Mann-Whitney U test can re-
place the t test, and the Kruskal-Wallis test can replace ANOVA with 
the assumption of consistently distributed responses across treat-
ments. However, relaxing the assumptions in such nonparametric 
tests reduces the power to detect the effects of treatments. If the 
data are not normally distributed but sample sizes are large (N > 20), 
a permutation test is an alternative that can have better power than 
nonparametric tests. If the variances are not equal, one can use 
Welch’s unequal variance t test. See Supplemental Tutorial Example 
1 for an example.

Categorical tests typically only assume sample sizes are large 
enough to avoid low expected numbers of observations in each 
category. It is important to confirm that these assumptions have 
been met, so larger samples can be collected, if they have not 
been met.

5. Perform a hypothesis test
A hypothesis test is done to determine the probability of observing 
the experimental data, if the null hypothesis is true. Such tests com-
pare the properties of the experimental data with a theoretical dis-
tribution of outcomes expected when the null hypothesis is true. 
Note that different tests are required depending on whether the 
treatments and responses are categorical or numerical (Table 1).

One example is the t test used for continuous numerical re-
sponses. In this case the properties of the data are summarized by a 
t statistic and compared with a t distribution (Figure 5). The t distri-
bution gives the probability of obtaining a given t statistic upon tak-
ing many random samples from a population where the null 
hypothesis is true. The shape of the distribution depends on the 
sample sizes.

If the null hypothesis for a t test is true (i.e., the means of the 
control and treated populations are the same), the most likely out-
come is no difference (t = 0). However, depending on the sample 
sizes and variances, other outcomes occur by chance. Comparing 
the t statistic from an experiment with the theoretical t distribution 
gives the probability that the experimental outcome occurred by 
chance. If the probability value (p value) is low, the null hypothesis is 
unlikely to be true.

One-sample t test. To start with a simple example, one tests the 
null hypothesis that the true mean x is equal to a null value µ0 with 
the one-sample t statistic:

=
−

t
x

SEM
0µ

A useful way to think about this equation is that the numerator is 
the signal (the difference between the sample mean and µ0) and the 
denominator is the noise (SEM or the variability of the samples). If 
the sample mean and µ0 are the same, then t = 0. If the SEM is large 
relative to the difference in the numerator, t is also small. Small t 
statistic values are consistent with the null hypothesis of no difference 
between the true mean and the null value, while large t statistic 
values are less consistent with the null hypothesis. To see the signal 
over the noise, the variability must be small relative to the deviation 
of the sample mean from the null value.
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BOX 2: Confidence intervals

A confidence interval is a range of values for a population parameter 
that has a high probability of containing the true value based on a 
sample of measurements. For example, the 95% confidence interval 
for a normally distributed cell division rate is the range of 
values − +x t x t( [SEM][ ], [SEM][ ])97.5 97.5 , where t97.5 is the 97.5th 
percentile of the t distribution with N − 1 degrees of freedom and N 
is the sample size (i.e., t statistics are greater than t or less than −t 5% 
of the time). This interval is expected to contain the true rate in 
approximately 95 out of 100 repetitions of the experiment. If a 95% 
confidence interval does not contain a hypothesized value µ0, this is 
equivalent to rejecting the null hypothesis that the true rate is equal 
to µ0 using p value <0.05. Just as hypothesis tests can be conducted 
with error rates α other than 0.05, the value can be replaced with a 
different percentile of the t distribution to give a confidence other 
than 95%. See the Supplemental Tutorial for examples of calculating 
confidence intervals and including confidence intervals in figures.

Two-sample t test. If an experiment comparing two categorial 
treatments (wild-type vs. mutant cells) produces continuous numeri-
cal data and the responses are normal distributions with equal vari-
ances (Figure 2, top series of decisions), then the appropriate test is 
a two-sample t test, also known as Student’s t test. This test com-
pares the difference in means of the samples (x1 and x2) divided by 
an estimate of the variability of this difference, which is conceptually 
similar to SEM but with a more complex formula:

=
−

+






t
x x

s
N N

1 1

1 2

2

1 2

where N1 and N2 are the numbers of measurements in each sample, 
and the pooled sample variance is
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Again, if the data are noisy, the large denominator weighs down 
any difference in the means and the t statistic is small.

Conversion of a t statistic to a p value. One converts the test 
statistic (such as t from a two-sample t test) into the corresponding 
p value with conversion tables or the software noted in Table 1. The 
p value is the probability of observing a test statistic at least as ex-
treme as the measured t statistic if the null hypothesis is true. One 
assumes the null hypothesis is true and calculates the p value from 
the expected distribution of test statistic values.

In the case of a two-sample t test, under the null hypothesis, the 
t distribution is completely determined by the number of replicates 
for the two treatments (i.e., degrees of freedom). For two-sided null 
hypotheses, values near 0 are very likely under the null hypothesis 
while values far out in the positive and negative tails are unlikely. If 
one chooses a p value cutoff (α) of 0.05 (a false-positive outcome in 
five out of 100 random trials), the area under the curve in the ex-
treme tails (i.e., where t statistic values result in rejecting the null 
hypothesis) is 0.025 in the left tail and 0.025 in the right tail. An 
observed test statistic that falls in one tail at exactly the threshold 
between failing to reject and rejecting the null hypothesis has a 
p value of 0.05 and any test statistics farther out in the tails has 
smaller p values. The p value is calculated by integrating between 
the measured t statistic and the infinite value in the nearest tail of 
the distribution and then multiplying that probability by 2 to ac-
count for both tails (Minitab Blog, 2019).

If the p value is less than or equal to α, the null hypothesis is re-
jected because the data are improbable under the null hypothesis. 
Else the null hypothesis is not rejected. The following section 
discusses the interpretation of p values.

Note that t tests come with assumptions about the nature of 
the data, so one must choose an appropriate test (Table 1). Beware 
that statistical software will default to certain t tests that may or 
may not be appropriate. For example, when “t.test” is selected, 
the R package defaults to Welch’s t test, but the user can also 
specify Student’s or Mann-Whitney t tests where they are more ap-
propriate for the data (Table 1). Furthermore, the software may not 
alert the user with an error message if categorical response data 
are incorrectly entered for a test that assumes continuous numeri-
cal response data.

Confidence intervals (Box 2) are a second, equivalent way to 
summarize evidence for the null versus alternative hypothesis.

Comparing the outcomes of multiple treatments. A common 
misconception is that a series of pairwise tests (e.g., t tests) com-
paring each of several treatments and a control is equivalent to 
a single integrated statistical analysis (e.g., ANOVA followed by a 
Tukey-Kramer post-hoc test). The key distinction between these ap-
proaches is that the series of pairwise tests is much more vulnerable 
to false positives, because the type I error rate is added across tests, 
while the integrated statistical analysis keeps the type I error rate at 
α = 0.05. For example, in an experiment with three treatments and 
a control the total type I error across the tests rises up to 0.3 with six 
pairwise t tests each with α = 0.05. On the other hand, an ANOVA 
analysis on the three treatments and control tests the null hypothe-
sis that all treatments and control have the same response with α = 
0.05. If the test rejects that null, then one can run a Tukey-Kramer 
post-hoc analysis to determine which pairs differed significantly, all 
while keeping the overall type I error rate for the analysis at or below 
α = 0.05. A series of pairwise tests and a single integrated analysis 
typically gives the same kind of information, but the integrated ap-
proach does so without exposure to high levels of false positives. 
See Figure 3A for an example where an integrated statistical analy-
sis would have been helpful and Example 5 in the Supplemental 
Tutorial for how to perform the analysis.

6. Frame appropriate conclusions based on your 
statistical test
Assuming that one has chosen an appropriate statistical test and the 
data conform to the assumptions of that test, the statistical test will 
reject the null hypothesis that the control and treatments have the 
same responses, if the p value is less than α.

Still, one must use judgment before concluding that two treat-
ments are different or that any detected difference is meaningful in 
the biological context. One should be skeptical about small but sta-
tistically significant differences that are unlikely to impact function. 
Some statisticians believe that the widespread use of α = 0.05 has 
resulted in an excess of false positives in biology and the social 
sciences and recommend smaller cutoffs (Benjamin et al., 2018). 
Others have advocated for abandoning tests of statistical signifi-
cance altogether (McShane et al., 2018; Amrhein et al., 2019) in fa-
vor of a more nuanced approach that takes into account the collec-
tive knowledge about the system including statistical tests.

Likewise, a biologically interesting trend that is not statistically 
significant may warrant collecting more samples and further inves-
tigation, particularly when the statistical test is not well powered. 
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BOX 4: Molecular Biology of the Cell statistical checklist

Where appropriate, the following information is included in the 
Materials and Methods section:

1. How the sample size was chosen to ensure adequate power to 
detect a prespecified effect size.

2. Inclusion/exclusion criteria if samples or animals were excluded 
from the analysis.

3. Description of a method of randomization to determine how 
samples/animals were allocated to experimental groups and 
processed.

4. The extent of blinding if the investigator was blinded to the 
group allocation during the experiment and/or when assessing 
the outcome.

5. Justification for statistical tests that address the following 
questions (as appropriate):
a. Do the data meet the assumptions of the tests (e.g., normal 

distribution)?
b. Is there an estimate of variation within each group of data?
c. Is the variance similar between the groups that are being 

statistically compared?

Source: www.ascb.org/files/mboc-checklist.pdf

BOX 3: Common mistakes to avoid

Not publishing raw data so analyses can be replicated.

Using proportions or percentages of categorical variables as 
continuous numerical variables in a t test or ANOVA.

Combining biological and technical replicates (pseudoreplication).

Ignoring nuisance treatment variables such as date of 
experiment.

Performing a hypothesis test without providing evidence that 
the data meet the assumptions of the test.

Performing multiple pairwise tests (e.g., t tests) instead of a 
single integrated test (e.g., ANOVA to Tukey-Kramer).

Not reporting the details of the hypothesis test (name of test, 
test statistic, parameters, and p value).

Figures lacking interpretable information about the spread of 
the responses for each treatment.

Figures lacking interpretable information about the outcomes of 
the hypothesis tests.

Fortunately, rigorous methods exist to determine whether low sta-
tistical power (see Step 3) is the issue. Then a decision can be made 
about whether to repeat the experiment or accept the result and 
avoid wasting effort and reagents.

7. Choose the best way to illustrate your results for 
publication or presentation
The nature of the experiment and statistical test should guide the 
selection of an appropriate presentation. Some types of data are 
well displayed in a table rather than a figure, such as counts for a 
categorical treatment and categorical response (see Example 4 in 
the Supplemental Tutorial). Other types of data may require more 
sophisticated figures, such as the Kaplan-Meier plot of the cumula-
tive probability of an event through time in Figure 3C.

The type of statistical test, and any transformations applied, 
must be specified when reporting results. Unfortunately, researchers 
often fail to provide sufficient detail (e.g., software options, test as-
sumptions) for others to repeat the analysis. Many papers report 
p values that appear improbable based on simple inspection of the 
data and without specifying the statistical test used. Some report 
SEM without the number of measurements, so the actual variability 
is not revealed.

It is helpful to show raw data along with the results of a statistical 
test. Some formats used to present data provide much more infor-
mation than others (Figure 3). These figures display both the mean 
and the SD for each treatment as well as the p value from comparing 
treatments. Figure 3A includes the individual measurements so that 
the number and distribution of data points are available to show 
whether the assumptions of a test are met and to help with the inter-
pretation of the experiment. Bar graphs (Figure 3B) do not include 
such raw data, but strip plots (see Figure 3A and Examples 1, 2, and 
5 in the Supplemental Tutorial), histograms, and scatter plots do.

An alternative to indicating p values on a figure is to display 
95% confidence intervals as error bars about the mean for each 
treatment (see Supplemental Tutorial Examples 1, 2, 3, and 5 for 
examples). When the 95% confidence intervals of two treatments 
do not overlap, we know that a t test would produce a significant 
result, and when the confidence interval for one treatment over-
laps the mean of another treatment we know that a t test would 
produce a nonsignificant result. We do not recommend using SEM 
as error bars, because SEM fails to convey either true variation or 
statistical significance. Unfortunately, authors commonly use SEM 
for error bars without appreciating that it is not a measure of true 
variation and, at best, is difficult to interpret as a description of the 
significance of the differences of group means. Many (Figure 3, A 
and C) but not all (Figure 3B) papers explain their statistical 
methods clearly. Unfortunately, a substantial number of papers in 
Molecular Biology of the Cell and other journals include error bars 
without explaining what was measured.

CONCLUSION
Cellular and molecular biologists can use statistics effectively when 
analyzing and presenting their data, if they follow the seven steps 
described here. This will avoid making common mistakes (Box 3). 
The Molecular Biology of the Cell website has advice about experi-
mental design and statistical tests aligned with this perspective 
(Box 4). Many institutions also have consultants available to offer 
advice about these basic matters or more advanced topics.

STATISTICS TUTORIAL
The Supplemental Materials online provide a tutorial as both a pdf 
file and a Jupyter.ipynb file to practice analyzing data. The Supple-

mental Tutorial uses free R statistical software (www.r-project.org/) to 
analyze five data sets (provided as Excel files). Each example uses a 
different statistical test: Welch’s t test for unequal variances; Stu-
dent’s t test on log transformed responses; logistic regression for 
categorical response and two treatment variables; chi-square con-
tingency test on combined response and combined treatment 
groups; and ANOVA with Tukey-Kramer post-hoc analysis.
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