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Editorial on the Research Topic

Current Views of Hypothalamic Contributions to the Control of Motivated Behaviors

WHAT ARE MOTIVATED BEHAVIORS?

The goal of this Research Topic was to assemble a diverse collection of current views of the
hypothalamus relating to its role in the control of motivated behaviors. This editorial highlights the
included articles directly and also indirectly via two perspectives (from George Fink and Menno
Kruk) that frame the topic in a historical context. However, before these, it is apt to reconsider
briefly what is meant by the term “motivated behaviors.”

According to the Oxford English Dictionary, the noun “motivation” (from adjective “motive”)
stems from the Latin movēre, meaning “to move1,” and the noun “behavior” (from the verb
“behave”) stems from a combination of “be-” (as a prefix) and “have,” conveying “to have or
bear oneself (in a specified way),” that is to conduct oneself intentionally2. Motivated behaviors
may then be thought of literally as the expression of intentional (or purposeful) movements. This
understanding is reflected in their common description of being oriented, directed, or driven by
a goal.

From a neuroscientific standpoint, the terms goal-oriented, goal-directed, and goal-driven, all
convey essentially the same basic idea that orientation, direction, or drive toward a goal (that which
motivates) occurs when a change in the internal (body) or external environment that is detected by
the sensory division of the nervous system achieves a level of input stimulation that is sufficient to
activate a behavioral output response from the body via the motor division of the nervous system.
A goal is attained when the behavioral response counteracts the originating stimulus to a level at
which it no longer stimulates the behavioral response (Figure 1). Examples include the drive to
regulate body temperature, fluid balance, and energy status in response to sensed changes in these,
in order to maintain homeostasis (Watts and Swanson, 2002).

Through a process of natural selection, animals have evolved motivated behaviors that support
the life goals of survival and reproduction, and the motivated behaviors that fundamentally
support these goals include those for which the hypothalamus plays a central role: ingestive (eating

1The Oxford English Dictionary Dictionary (OED). “motive, adj.”. Oxford University Press.
2The Oxford English Dictionary Dictionary (OED). “behave, v.”. Oxford University Press.
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FIGURE 1 | Basic flow diagram for the control of behavior. A stimulus is

detected and transmitted (sensory input). If the stimulus is sufficient to cause a

behavioral response, then a motor output will ensue. If the response

sufficiently counteracts the originating stimulus then the behavioral response

ends. Two stages of processing are looped: The first is a sensing (or receptive)

loop that confers vigilance, and the second is a response (or goal-seeking)

loop that enables error correction. Fundamentally, the setting, seeking, and

attaining of a goal is a determined by interaction between the sensory and

motor divisions of the nervous system. Note that “selection” of a behavioral

response occurs when a stimulus reaches the response threshold, and that

temporally, multiple sensing loops, responsive to different sensory stimuli,

operate in parallel and concurrently with behavioral output.

and drinking), agonistic (defensive and aggressive), sexual, and
allied to these the control of behavioral state (the level of intrinsic
behavioral arousal) (Swanson, 1987; Simerly, 2015).

In seeking to understandmotivated behaviors, it is noteworthy
that the distinction between movement per se and purposeful
movement that is considered motivated behavior, is neither
obvious nor absolute. For example, reflexes such as the patellar
stretch reflex (knee-jerk) are not typically thought of as motivated
behaviors, but they do involve movement that is ostensibly
purposeful (postural retention in the case of the patellar reflex).
Nevertheless, behaviors can to some extent be classified according
to the parts of the nervous system that are necessary and sufficient
for their expression.

Voluntary (cognitive) control of behavior requires the cerebral
cortex; whereas control of innate (instinctive) behaviors is
classically associated with the hypothalamus. At the lowest
hierarchical level are reflex behaviors, such as the patellar reflex
that involves a monosynaptic reflex arc between sensory and
motor neurons in the spinal cord. Classic lesion experiments
have shown that innate behaviors can be performed to some

extent without the cerebral cortex, and spinal reflexes without
the forebrain and much of the brainstem. However, it is also
clear that hypothalamic (and lower) level behavioral control is
to varying degrees subject to cerebral cortical control, and that all
behavior occurs in concert with the activity of the body as a whole
(Mogenson et al., 1980; Swanson and Mogenson, 1981; Swanson,
2000; Canteras, 2018).

RESEARCH TOPIC CONTRIBUTIONS

Four of the included articles focus specifically on the spatially-
extensive lateral hypothalamic area (LHA) that has received
renewed attention in recent years, as successive inroads into its
structural organization (Goto et al., 2005; Hahn, 2010; Hahn
and Swanson, 2010, 2012, 2015; Canteras et al., 2011) have
encouraged further forays into its functional roles (Leinninger,
2011; Li et al., 2011; Petrovich et al., 2012; Betley et al.,
2013; Hsu et al., 2015). The first article, by Rangel et al.,
elucidates a novel role for an LHA region juxtaposed to the
dorsomedial hypothalamic nucleus (the LHAjd), in relation
to socially-relevant defensive behaviors; the second article,
by Tyree and de Lecea, focuses on the relevance of LHA and
ventral tegmental area (VTA) connections to the motor-
output that is necessary for behavioral goal-seeking; the third
article, by Petrovich, reviews recent evidence on the control
of feeding behavior to support a view of the LHA as an
interface between cognitive and sub-cognitive control; the
fourth article, by Haller, delves into LHA involvement in
aggression, and relates physiology to behavior, arguing the
case that the LHA has a central role in deviant forms of
aggressive behavior that are promoted by chronic glucocorticoid
deficiency. In addition to these four LHA-related articles, a
fifth, by Diniz and Bittencourt, relates broadly to them all as
it provides a comprehensive and nicely illustrated review of
the role of largely LHA-located melanin-concentrating hormone
(MCH) neurons in relation to their participation in control of
motivated behaviors.

Of the three remaining topic articles, one, by Hashikawa
et al., also focuses on aggressive behavior: its neuroanatomical
focus is the ventromedial hypothalamic nucleus (VMH), and
a specific locus is the ventrolateral subdivision (VMHvl).
Evidence to support a role for the VMHvl in generation
of aggression is reviewed in relation to VMHvl neuronal
connections. Hypothalamic connections are also the subject of
an article by Micevych and Meisel, who focus their attention
on circuit integration in relation to the control of female
sexual behavior. Lastly, an article by Khan et al. demonstrates
implementation of a novel computer-assisted method to facilitate
interoperability between different brain atlases. To illustrate the
approach (that has broad potential application), the authors use
their hypothalamic datasets relating to behavioral control.

HISTORICAL PERSPECTIVES

To round out this editorial are two illustrated perspectives (edited
by JDH). The first, by George Fink, is broadly relevant to the
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FIGURE 2 | Electron micrograph of the external layer of the median eminence of a rat at the first postnatal day. Note the high density of nerve terminals, containing

several agranular and granular vesicles, around part of a primary portal capillary vessel (P), which is fenestrated (F). The vesicles contain packaged neurohormone or

neurotransmitter that undergo quantal release upon nerve depolarization resulting from action potentials. The neurohormones are released into the perivascular space

(PVS), and from there they move rapidly into portal vessel blood for transport to the pituitary gland. This arrangement is typical of the neurohemal junctions found in

the several circumventricular organs of the brain. Scale bar = 1µm. E, endothelial cell; G, glial process; P, portal vessel; PVC, perivascular cell (reproduced with

permission from Fink and Smith, 1971).

topic, and the second, by Menno Kruk, relates more closely
to some of the included articles. Both are historically-informed
vignettes that serve to frame the included articles and the topic,
and are also offered to inspire future research into hypothalamic
structure and function.

External Layer of the Median Eminence a
Neurovascular Synapse
The external layer of the median eminence (MEex) is
comprised of hypothalamic neuron axons that terminate on
the primary plexus of hypophysial portal vessels, where they
form neurovascular synapses (Figure 2). This organization
has been exploited experimentally as a model system for
investigating central neurotransmission (Fink and Smith, 1971),
and to investigate interactions between multiple different
neurotransmitters expressed by different types of hypothalamic
neurons whose axons converge in the MEex. This is exemplified
by physiological and pharmacological studies on the release
into hypophysial portal blood of several neurohormones, most
of which are neuropeptides, such as gonadotropin-releasing
hormone (GnRH) and corticotropin releasing factor (CRF)
(Fink, 2012). However, non-peptide neurotransmitters such as
dopamine, which inhibits prolactin release, are also released
into hypophysial portal blood. The hypophysial portal vessels
(Figure 3) convey these neurohormones to the anterior pituitary
gland where they stimulate or inhibit the release of pituitary
hormones (Fink, 2012).

FIGURE 3 | View through a dissecting microscope of the hypophysial portal

vessels on the anterior surface of the pituitary stalk (left) of an anesthetized rat.

The portal vessels (pv) (veins) arise from the primary capillary bed on the

median eminence (me) (pink area to the left) and fan out over the anterior

pituitary gland (AP) (right) at the me-AP junction. The tuberoinfundibular artery,

a branch of the superior hypophysial artery, can be seen arching across the

top of the me-AP junction, where it enters the AP. This artery passes through

the anterior pituitary gland to supply arterial blood to the neurohypophysis.

(reproduced with permission from Fink, 2012). Scale bar = ∼500µm.

It is possible to collect hypophysial portal vessel blood
experimentally and thereby determine directly the characteristics
of neurohormone/transmitter release under experimental
conditions. The interaction of neurohormones is exemplified by
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FIGURE 4 | Graphic summary of mathematical analyses of the distribution of attack-eliciting electrodes in the rat hypothalamus (adapted and reproduced with

permission from ref. Kruk et al., 1983). Colored square dimensions (as voxels) are 150µm. Fiercest attacks (attack jumps) at the lowest current intensity are evoked

from sites within and closely adjacent to the ventromedial hypothalamic nucleus (VMH) (red squares); whereas, milder attacks at low current intensity are evoked from

a wider range of sites within and close to the VMH (orange squares). Yellow squares represent sites where attacks were elicited reliably at higher current intensities.

The extensions (orange and yellow squares) of the “attack area” beyond the VMH somewhat overlap direct and indirect projections from parts of the amygdala, and

cerebral cortex to the VMH and lateral hypothalamic area. It is noteworthy that the excitability of amygdala, hippocampal, and prefrontal cortical region neurons is

subject to slow and rapid, as well as genomic and non-genomic, effects of corticosteroids (Joels et al., 2018). Impairing the adrenocortical stress response impairs

elicited attacks, especially at sites indicated by the orange and yellow squares. Collectively, these findings suggest that corticosteroid effects on “fight-or-flight”

responses in social conflict may be transmitted by amygdalar, hippocampal or prefrontal cerebral cortical connections to the VMH “core” and “shell.” Distances shown

are mm (“Frontal” distances are relative to an interaural zero point). Abbreviations (for additional information see Kruk et al., 1983): ar, arcuate hypothalamic nucleus;

CAI, internal capsule (R, rostral); CSOV, hypothalamic supraoptic decussations; F, fornix; FMT, mammillothalamic tract; ha, anterior hypothalamus (general region of);

hd, dorsal hypothalamus (general region of); hl, lateral hypothalamus (general region of); hpv, hypothalamic paraventricular nucleus; hvmm, ventromedial hypothalamic

nucleus, dorsomedial part; hvmc, ventromedial hypothalamic nucleus central part; hvml, ventromedial hypothalamic nucleus ventrolateral part; so, supraoptic nucleus;

TO, optic tract; tr, reticular thalamic nucleus; tv, ventral thalamus; xd, dorsal region (of hd); ZI, zona incerta.

the potentiation of CRF anterior pituitary signaling by arginine
vasopressin (AVP) (Gillies et al., 1982; Sheward and Fink, 1991).
Portal vessel blood measurements may also provide information
on the processing of neuropeptide precursors and identify
potentially novel signaling molecules (Antoni et al., 1992; Fink
et al., 1992; Caraty et al., 2010; Clarke et al., 2012).

Direct measurements of GnRH in hypophysial portal blood
confirmed the existence of the estrogen-induced ovulatory
surge in spontaneously ovulating mammals (Sarkar et al., 1976;
Sherwood et al., 1980; Caraty et al., 2010; Clarke et al., 2012), and
demonstrated the way that estrogen feedback moderates pulsatile
GnRH release (Sarkar and Fink, 1980; Clarke and Cummins,
1982; Fink, 2018). The latter explains why pulsatile gonadotropin
release occurs in ovariectomized, but not intact, rhesus monkeys

(Dierschke et al., 1970), and the differences in gonadotropin pulse
frequency in post-menopausal compared with pre-menopausal
women (Yen et al., 1972). Similarly, glucocorticoid negative
feedback inhibition of adrenocorticotropic hormone (ACTH)
secretion from the anterior pituitary gland, depending on its
duration, is mediated by central moderation of CRF and AVP
release as well as well as blockade of the pituitary response to CRF
(Plotsky et al., 1986; Fink et al., 1988; Sheward and Fink, 1991).

The post-synaptic consequences of MEex neurovascular
synaptic signaling can readily be determined by studying
pituitary hormone release, which has elucidated novel
mechanisms such as the self-priming effect of GnRH, by
which the decapeptide can increase by several fold its effect on
gonadotropin release, can enable small pulses of GnRH to induce
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FIGURE 5 | (A) Hypothalamic sites at which electrical stimulation elicited social conflict responses in three mammalian species: opossum, cat, and marmoset

(adapted and reproduced with permission from Lipp and Hunsperger, 1978). The similar distribution of response sites for the three species suggests evolutionary

conservation of “fight-or-flight” neuronal circuits at the level of the ventromedial hypothalamic nucleus (VMH). The different types of “social conflict” motor responses

indicated reflect different aspects of “fight-or-flight” behaviors. Similar response site distribution patterns in the vicinity of the VMH have also been reported in rat and

mouse (Lammers et al., 1988; Wong et al., 2016). (B) Comparative distribution from an earlier study of social conflict responsive sites (low-threshold) in the cat, shown

in sagittal section (adapted and reproduced with permission from Yasukochi, 1960). Attacks and “rage” are elicited mostly within the VMH, while the response site for

“rage” alone is shifted rostrally, and that for “fear” alone still further rostral in the hypothalamus, suggesting a VMH-centric circuit organization to control “fight-or-flight”

behaviors in the cat (for additional perspective see Hinde, 1970). Ch. Op, optic chiasm; C. mam, mammillary body; FX, fornix; PV, paraventricular hypothalamic

nucleus; TMT, thalamic mammillothalamic tract; TO, optic tract. Triangles in (B) = “yearning”.

an ovulatory gonadotropin surge, and has been used extensively
in artificial insemination, animal husbandry, and fish farming
(Fink, 1995, 2015).

The Hypothalamic Ventromedial Nucleus: A
Crucial Node in the Fight-Flight Balance?
Establishing that estrogen receptor-α (ESR1)-expressing neurons
within the VMH ventrolateral part (VMHvl) are necessary and
sufficient for aggressive behavior (Lin et al., 2011; Falkner et al.,

2014; Kennedy et al., 2014) transformed the neuroscience of
aggression, as it provided a specific locus from which to explore
the “aggressive network” (Anderson, 2012; Yang et al., 2013,
2017; Hashikawa et al., 2016, 2017, 2018; Remedios et al., 2017;
Hashikawa et al.). Other studies have identified cell groups in the
amygdala and lateral septum that modify VMH activity (Choi
et al., 2005; Wong et al., 2016). Moreover, activation of inhibitory
(GABAergic) neurons in the medial amygdala can also elicit
aggressive behavior (Hong et al., 2014). How the activity of these
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different cell groups is integrated is not fully understood, but a
recent physiological experiment suggests a possible mechanism.
Differential innervation of the “core” and “shell” of the VMH,
directly from the basomedial amygdala, and indirectly from
the anterior bed nucleus of the stria terminalis, produces “. . . a
net inhibition or disinhibition of core neurons. . . depending on
the firing rate of shell neurons,” imparting “. . . flexibility to this
regulator of defensive and social behavior” (Yamamoto et al.,
2018). Such flexibility might explain the episodic nature and
context-sensitivity of fighting and underlie dynamic selection
of appropriate behavioral responses in general (Brown et al.,
1969b; Lammers et al., 1989; Haller et al., 1998a; Anderson, 2012;
Yang et al., 2013, 2017; Hong et al., 2014; Kennedy et al., 2014;
Hashikawa et al., 2016, 2018; Remedios et al., 2017; Todd et al.,
2018; Todd and Machado, 2019).

Stimulation of the VMH and its surround is reported to evoke
aggressive and defensive responses in several mammalian species
(Yasukochi, 1960; Roberts et al., 1967; Brown et al., 1969a; Lipp
and Hunsperger, 1978; Lammers et al., 1988; Kruk et al., 1983)
(Figures 4, 5). However, predominant VHMvl association with
overtly aggressive responses (Lin et al., 2011; Falkner et al., 2014,
2016; Kennedy et al., 2014) contrasts with VMH dorsolateral
and central part association with defensive responses (Wang
et al., 2015). This suggests the existence of a VMH-centric circuit
for controlling opposing agonistic responses, echoing earlier
ethological concepts of a mechanism for controlling “fight or
flight” balance (Hinde, 1970).

In a manner similar to feedback (and feed-forward) control
of the pituitary gland by circulating hormones (mentioned in
the first perspective), the adrenocortical stress response (ACSR)
(Joels et al., 2018) controls spontaneous and hypothalamus-
elicited agonistic responses in experienced and inexperienced
animals in different ways (Haller et al., 1998b, 2000a,b; Kruk
et al., 1998, 2004, 2013; Mikics et al., 2007). An impaired
ACSR tilts the balance toward “flight or freeze” in rats naïve
to conflict but produces “pathological” attacks on opponents in
bouts of spontaneous aggression (Haller et al., 2001, 2004). The

behavioral changes correlate to altered hypothalamic excitability
and enhanced amygdalar activity (Halasz et al., 2002; Kruk, 2014;
Haller, 2018; Haller). A dynamic ACSR is clearly required for an
adaptive response to social conflict. Interestingly, the absence of a
well-timed ACSR in humans results in misguided aggression and
poor conflict handling (Haller), possibly reflecting dysfunctional
hypothalamic control.

CONCLUDING REMARKS

The ability to perform motivated behaviors (purposeful
movements) is a defining characteristic of animals. In this ability,
with respect to the control of fundamental behaviors in mammals
and other vertebrates, the hypothalamus takes center stage. The
works of twentieth century ethologists, exemplified in those
of Tinbergen (1951), paved a path that has led inexorably into
the hypothalamus, and they continue to inspire neuroscientists
interested in the study of behavior.

The current Research Topic, and the articles that comprise
it, reflect ongoing and growing interest in the hypothalamus,
driven partly by the increasing availability of investigative tools
borne of molecular biology and computer science. However,
with regard to those tools, Tinbergen’s advocacy for observations
of nature, rather than availability of technique, to direct one’s
research, seems prescient. More generally, current interest is also
driven by a renewed recognition that a better understanding of
hypothalamus structure and function has potential relevance for
numerous diseases that impact the vital and varied physiological
and behavioral functions in which the hypothalamus plays a
central role (Hahn et al., 2019).
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