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Abstract

Interacting proteins may often experience similar selection pressures. Thus, we may expect that neighbouring proteins in
biological interaction networks evolve at similar rates. This has been previously shown for protein-protein interaction
networks. Similarly, we find correlated rates of evolution of neighbours in networks based on co-expression, metabolism,
and synthetic lethal genetic interactions. While the correlations are statistically significant, their magnitude is small, with
network effects explaining only between 2% and 7% of the variation. The strongest known predictor of the rate of protein
evolution remains expression level. We confirmed the previous observation that similar expression levels of neighbours
indeed explain their similar evolution rates in protein-protein networks, and showed that the same is true for metabolic
networks. In co-expression and synthetic lethal genetic interaction networks, however, neighbouring genes still show
somewhat similar evolutionary rates even after simultaneously controlling for expression level, gene essentiality and gene
length. Thus, similar expression levels and related functions (as inferred from co-expression and synthetic lethal interactions)
seem to explain correlated evolutionary rates of network neighbours across all currently available types of biological
networks.
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Introduction

Recently, there has been increased interest in the influence of

biological networks on protein evolution. Network connectivity,

i.e., the number of connections that an individual protein has, was

the first parameter reported to influence protein evolution

[1,2,3,4,5]. A negative correlation between connectivity and

evolutionary rate was observed not only in protein-protein

interaction networks [1,6], but also in metabolic [5], co-expression

[6], and genetic interaction networks [7]: genes with more

interaction partners appear to evolve more slowly. However, in

particular in the case of protein interaction networks, these effects

are rather weak [3,8,9,10]. Furthermore, apparent network effects

may be artefacts caused by biases in the available datasets

[11,12,13], or by co-variation of network properties with other

variables [10,14].

In protein-protein interaction networks, another network param-

eter, betweenness was found to be correlated with evolutionary rate:

proteins with high betweenness (more ‘central’ proteins) tend to

evolve more slowly [15]. A corresponding effect of centrality was

also seen in the metabolic network of yeast [5]. In contrast,

transcription factors that are more central in the regulatory network

evolve faster than other genes [16], confirming that transcription

networks have differ drastically from other biological networks.

Again, the effect in protein interaction networks has been attributed

to co-variation of network properties with other variables, in

particular with gene expression level [14,17].

Thus, evidence for a direct influence of network structure on the

rate of sequence evolution is controversial and appears rather

weak. Are there other features in the network that influence

evolutionary rates? Here, we study the relationship between the

evolutionary rate of a given protein and the evolutionary rate of its

network neighbours. It has been reported that in the protein-

protein interaction network, interacting proteins tend to have

similar evolutionary rates [1,18,19,20,21,22]. There is an ongoing

debate if this correlated evolution of physically interacting proteins

is caused by compensatory mutations between binding partners

(co-evolution), or if it is simply due to similar selective constraints,

like those resulting from similar expression levels. Careful studies

of small sets of proteins have confirmed that co-evolution of

interacting binding sites does indeed occur [18,21,23]. An

investigation of the three-dimensional structures of about 100

yeast proteins indicated that buried residues – which are located

on a stable interaction surface between protein units – are under

stronger evolutionary constraints than solvent exposed sites [24],

even after excluding the effect of expression level. Moreover,

residues close to the binding sites responsible for protein-protein

interactions show higher co-evolution signals than residues outside

the binding region [25]. However, another analysis observed that

correlations purely based on the co-evolution of proteins surfaces

and binding interfaces are not higher than the correlation when

considering the complete sequences of interacting proteins [22].

One potential mechanism promoting similar evolutionary rates of

physically binding proteins could be similar fractions of residues

involved in protein-protein binding. These residues show reduced

evolutionary rates, both due to their decreased solvent accessibil-

ity, and due to the involvement in binding per se [26]. However, the

directly interacting residues constitute only about 10% of the total

sequence [21], and not all of these contribute strongly to the

binding energy. Thus, correlated evolution measured at the whole-

sequence level is probably not explained by direct co-evolution at

the binding interfaces [22,27].

Is correlated evolution of network neighbours also found in

other types of biological networks? If the protein and its network
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partners co-evolve or co-adapt [28], we indeed expect that the

partners show similar rates of evolution. For example, in the

protein-protein interaction network, interacting binding sites

usually show co-evolution [18,21,23,25]. Physically interacting

human proteins (i.e., neighbours in the protein-protein interaction

network) show stronger signs of correlated evolution than proteins

in the same biochemical pathway (i.e., neighbours in the metabolic

network) [29]. In co-expression networks, neighbouring genes are

often involved in the same biological function, and in genetic

interaction networks, the mutation of one protein changes the

fitness effects of mutations in its partners; thus, it appears likely

that neighbours in these networks also co-evolve. By comparing

the number of substitutions per site between interacting proteins,

we tested the strength of correlated evolution in the yeast protein-

protein interaction, co-expression, metabolic, genetic interaction,

and transcriptional regulatory networks.

From an analysis of the evolution rate of each focal protein in

the network and the mean rate of its neighbours, we show that

there is indeed a positive – although weak – neighbour correlation

in evolutionary rate for most biological networks. Further, we find

that the correlation can be mostly explained by shared

evolutionary constraints, in particular related to similar expression

levels. These results support the view that the co-evolution of

binding sites or functional similarity plays only a minor role in

determining network effects on overall protein evolution. Inter-

estingly, we find that co-expression implies correlated evolution

independently of other known predictors of evolutionary rate.

Results

Proteins evolve at similar rates as their network
neighbours

A number of independent studies have confirmed that

physically interacting proteins evolve at similar rates. We first

make sure that we can recover this observation using an updated

protein interaction data set and our modified methodology. In

order to ensure that all protein-protein interactions in the dataset

refer to direct contact between proteins, protein interactions

within the same complex but without direct contact were

excluded.

We considered each protein in turn as the ‘focal’ protein, and

calculated the average evolutionary rate across its direct network

neighbours. If adjacent proteins show similar evolutionary rates,

we would expect a positive correlation between the evolutionary

rate of the focal protein and the average neighbour rate. We

indeed found the expected correlation in the protein-protein

interaction data (Figure 1; for dN, Spearman’s rank correlation

coefficient r = 0.15, p = 3.761026; for dN/dS, r = 0.14,

p = 2.161025).

We thus confirmed that neighbouring proteins in the yeast

protein-protein interaction network evolve at similar rates. Is this

correlation a general feature of all biological networks? If all types

of interactions impose constraints on sequence evolution, this

correlation would generally be expected. To test this hypothesis,

we used recently published yeast network data, encompassing co-

expression data [30], genetic interaction data [31], transcription

regulation data [32], and metabolic data [33]. After removal of

duplicated links, we obtained final datasets with 14,283 interac-

tions in the metabolic network, 12,873 interactions in the

transcription network, 13,030 interactions in the synthetic lethal

interaction network, and 689,100 interactions in the co-expression

network. Note that for our first analysis of genetic interactions, we

only chose synthetic lethal interactions; below, we also analyze a

much larger data set of non-lethal genetic interactions.

As seen in Table 1, except for the transcription regulation network,

each of the biological networks exhibits a significant correlation

between the evolutionary rates of focal proteins and the average

evolutionary rates of their neighbours (p,0.002 from comparison to

random pairs in each case). These correlations are still relatively weak

(Spearman’s r between 0.18 and 0.27 for dN), but are somewhat

stronger than those seen for the protein-protein interaction network.

Thus, interacting neighbours show statistically significant similarity in

their evolutionary rates for all available genome-scale networks in

yeast, with the sole exception of the regulatory network.

For the transcription regulation network, there is no significant

neighbour correlation in evolutionary rates (Table 1). This may be

rooted in a fundamental difference between the regulatory

network and the other network types considered here: connections

in the transcriptional network are strongly asymmetrical. Our

results indicate that the sequence evolution of transcription factors

is decoupled from their target genes. This lack of correlation may

partly stem from the fact that network rewiring is the main

evolutionary force of transcription regulation [34].

In addition to the synthetic lethal genetic interaction data, which

is based on literature surveys, we also analysed a more recent genetic

interaction dataset from a large high-throughput experiment [7].

Only interactions fulfilling a stringent cut-off criterion were used in

order to ensure high data quality. In contrast to the findings

reported in Table 1 for the synthetic lethal interactions, we did not

observe any significant correlations between the evolutionary rates

of network neighbours, neither for the total network (including both

positive and negative interactions), nor for negative interactions

alone (total network: p = 0.30, r = 0.024; negative interactions:

p = 0.31, r = 0.024). Thus, it may be that only synthetic lethal

interactions have an influence on protein evolution, while weaker

(or positive) interactions do not.

The influence of network neighbourhoods on evolution
is largely explained by expression level

While our preliminary analysis shows that in most of the

networks, neighbouring genes have similar evolution rates, these

correlations may not be causal, but may stem from the influence of

other correlated (confounding) variables. Indeed, in the protein-

protein interaction network, Agrafioti et al. found that most of the

correlation can be attributed to similarities of the neighbours in

expression level [10], with additional contributions from correlated

functions and involvement in biological processes as inferred from

GO annotations. Another parameter one might think of in this

context is network connectivity (the number of direct neighbours)

[10], as some previous analyses found that connectivity influences

evolutionary rates in various networks. For the different network

types analysed here, we confirmed a weak but significant negative

correlation between connectivity and evolutionary rate dN, with

the transcriptional regulation network again being the only

exception (Table 1).

However, these weak correlations with connectivity are not

sufficient to explain the observed correlations among network

neighbours. After controlling for connectivity using partial

regression analysis, only the correlation between neighbours in

the metabolic network became non-significant (Table 2). Thus,

connectivity cannot generally explain why neighbouring proteins

evolve at correlated rates.

The most important factor determining yeast protein evolutionary

rates is gene expression level [35]. Principal component regression

analysis has shown that expression-related variables explain nearly half

of the variation in protein evolutionary rate among yeast proteins [8].

Thus, two interacting proteins might show signs of correlated

evolution just because they have similar expression levels. Indeed,

Network Neighbours and Evolution
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Figure 1. Correlations between the evolutionary rate dN of focal proteins and the average rate of their network neighbours
neighbours for four different types of interaction networks.
doi:10.1371/journal.pone.0018288.g001

Table 1. Significant correlations between the evolutionary rates of proteins and the average rates of their network neighbours,
except for the transcription regulation network.

dN vs. neighbour dN dN/dS vs. neighbour dN/dS dN vs. connectivity

Interaction type r1 p r p r p

Protein-protein 0.15 3.761026 0.14 2.161025 20.059 0.047

Synthetic lethal 0.18 6.2610211 0.16 8.561029 20.058 0.021

Metabolic 0.21 1.661024 0.18 0.0017 20.18 0.0014

Co-expression 0.27 ,10215 0.23 ,10215 20.0055 0.80

Regulation 20.02 0.34 20.02 0.50 20.28 ,10215

1Spearman’s rank correlation coefficient.
doi:10.1371/journal.pone.0018288.t001
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two previous analyses found that correlated evolution of network

neighbours is not due to compensatory mutations between binding

interfaces, but that similar expression levels account for most of the co-

evolution [10,22]. Do similar expression levels of interacting genes

more generally explain the co-evolution of neighbours in biological

networks?

It is widely accepted that there are three variables that measure

aspects of gene expression in yeast: mRNA expression level, codon

usage bias (measured, e.g., as codon adaptation index, CAI), and

protein abundance [8]. After controlling for expression level using

any one of these three factors, both the protein-protein interaction

network and the metabolic network do not show any significant

correlations among neighbours anymore.

In contrast, both the synthetic lethal interaction and the co-

expression network still exhibit highly significant correlations

between neighbours’ evolutionary rates even after controlling for

similar absolute expression levels (Table 2). While it may seem

confusing that we control co-expression for expression level, note

that co-expression is defined as correlated up- and down-regulation

across measurements in time-course experiments. Thus, two genes

A and B would be perfectly co-expressed if the number of transcripts

of A was always a fixed multiple of those of B. This means that high

co-expression does not necessarily imply similar absolute expression

levels. A statistically significant evolutionary rate correlation

between co-expressed and genes remains even after we additionally

control for two further potential confounding factors, protein length

and gene essentiality, even if co-expression explains only about 2%

of the variation in evolutionary rate; a similar result is seen for genes

with synthetic lethal interactions (Table 2).

Thus, all network effects on protein evolution appear to be

mediated by gene expression – either directly through co-

expression, or indirectly through similar expression levels of

interacting partners – or by strong negative genetic interactions.

This effect may not be unique to yeast: recently, it was shown that

co-expression also influences protein evolution rate in humans [36].

Discussion

Neighbouring proteins in yeast interaction networks – with the

exception of the strongly asymmetric transcriptional regulation

network – evolve at correlated rates. While the observed

correlations are statistically significant, their magnitude is

generally small: even when not controlling for expression level

and other confounding variables, network neighbourhood explains

only between about 2% and 7% of the variation in the non-

synonymous substitution rate dN (Table 2). By controlling for other

factors that constrain protein evolution, others have previously

shown that similar expression levels are sufficient to explain most

of the correlated evolutionary rates in the protein-protein network

[10,22]. We found that the same is true in the metabolic network,

but not in the co-expression and synthetic lethal genetic

interaction network. Thus, strong negative genetic interactions

appear to be more informative about evolutionarily relevant

functional similarity than protein-protein interactions or neigh-

bourhood in the metabolic network. Further, it appears that

neighbouring genes in different types of networks evolve at

somewhat similar rates largely because they have similar absolute

expression levels or because they are co-expressed.

Genes with a synthetic lethal interaction can compensate for

each others loss, suggesting that they can perform (at least

partially) identical biological functions. Similarly, co-expressed

genes often have correlated functions. Thus, our results suggest

that the weak signs of correlated evolution are not a mysterious

emergent property of networks, but rather a consequence of

similar absolute expression levels and of correlated function. In this

sense, our results generalize previous observation on the yeast

protein-protein interaction network [10] to other types of

biological networks.

Methods

Evolutionary rates
The evolutionary rates of yeast genes (dN, the number of non-

synonymous substitutions per non-synonymous site, and dN/dS, dN

divided by the number of synonymous substitutions per synonymous

site) were obtained from a comparison of 4 closely related yeast

species including Saccharomyces cerevisiae [37]. In the main text, we refer

to dN to represent the evolutionary rate of yeast protein coding

sequences. Alternatively using dN/dS does not change the results.

Network data
All network and other data is for the yeast Saccharomyces cerevisiae.

For all networks, only genes for which evolutionary rate values are

available were considered.

Table 2. Correlation between dN and average dN of the neighbours after controlling separately for protein abundance, codon
usage (CAI), or mRNA expression level; and after simultaneously controlling for all three expression measures and for protein
length, gene essentiality, and network connectivity using a linear model.

Controlling for:

Protein abundance Codon usage mRNA expression Connectivity
6 variables in combined linear
model

Interaction type r1 p r p r p r p % explained2 p

Protein-protein 0.068 0.083 0.031 0.41 0.059 0.08 0.074 0.025 - -

Synthetic lethal 0.13 561025 0.10 0.0003 0.14 661027 0.14 461027 1.3 (0.4–2.9) 0.00094

Metabolic 0.014 0.81 20.040 0.53 0.0034 1.0 0.028 0.62 - -

Regulation 20.013 0.70 20.023 0.46 20.017 0.52 20.005 0.84 - -

Co-expression 0.20 ,10215 0.143 3610215 0.17 ,10215 0.19 ,10215 2.2 (1.3–3.5) 4.461026

1Partial regression coefficient.
2Percent of variation in dN explained by average neighbour dN independently of the other variables, and 95% confidence intervals (calculated using a relative
importance measure that averages over orderings of regressors, with confidence intervals based on 1000 bootstraps [43]). This combined analysis was only performed
if controlling for individual variables did not remove the correlation with dN.

doi:10.1371/journal.pone.0018288.t002
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The co-expression network was obtained from a combination of

40 time-series microarray experiments [30]. Pearson’s correlation

coefficient r across all experiments was used as a measure of the co-

expression level of two genes. Two genes are linked in the resulting

co-expression network if their expression profiles are correlated

with r. = 0.5. Note that co-expression reflects correlated relative

changes in expression level across time points; it does not

necessarily imply similar absolute expression levels.

Protein-protein interaction data was obtained from the CCSB

interactome database (http://interactome.dfci.harvard.edu/index.

php?page = home). To ensure high data quality, literature-based

interactions (LC-multiple), as well as co-complex associations for

which we are not sure if the two proteins are in direct contact with

each other (Combined-AP/MS), were excluded. In total, we

obtained four datasets (CCSB-YI1, Ito-Core, Uetz-Screen and

Y2H-Union), containing a total of 6,273 protein-protein interac-

tions. We built the union of these four sets, removing duplicate

interactions. This led to 4,349 interactions in the final data set.

A synthetic lethality (strong negative genetic interaction)

network was extracted from BIOGRID, version 2.0.60 [31]. Only

interactions tagged with ‘‘Synthetic Lethality’’ were used, resulting

in a total of 15,196 interactions. After removing duplicate

interactions, we obtained a final data set of 13,030 interactions.

Another genetic interaction data set was published recently [38].

From this, only interactions below a stringent cutoff [38] were

used, resulting in a second set of 74,984 interactions.

The yeast metabolic network was obtained from Ref. [33] and

compiled according to the procedure previously reported [5]. After

removing duplicate interactions, we retained 11,179 interactions

in our dataset (14,283 in the raw data).

Other datasets
Protein abundance in log-phase growth were taken from Ref.

[39], yeast mRNA expression levels from Ref. [40], and codon

adaptation index (CAI) from Ref. [37]. Protein length was

calculated based on the protein sequences given in SGC [41].

The identity of more than 1,100 essential genes was obtained from

the Saccharomyces Genome Deletion Project web page (http://

yeastdeletion.stanford.edu/).

Statistical analyses
All statistical analyses were performed using the statistical

software environment R [42]. Partial regression analysis was

performed using an R script from Ref [8] as described therein. For

Table 2, percent of variation explained was calculated using a

relative importance measure that averages over orderings of

regressors, with confidence intervals based on 1000 bootstraps

[43].
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