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Functional brain networks derived from resting-state functional magnetic resonance

imaging (rs-fMRI) have been widely used for Autism Spectrum Disorder (ASD) diagnosis.

Typically, these networks are constructed by calculating functional connectivity (FC)

between any pair of brain regions of interest (ROIs), i.e., using Pearson’s correlation

between rs-fMRI time series. However, this can only be called as a low-order

representation of the functional interaction, because the relationship is investigated

just between two ROIs. Brain disorders might not only affect low-order FC, but

also high-order FC, i.e., the higher-level relationship among multiple brain regions,

which might be more crucial for diagnosis. To comprehensively characterize such

relationship for better diagnosis of ASD, we propose a multi-level, high-order FC network

representation that can nicely capture complex interactions among brain regions.

Then, we design a feature selection method to identify those discriminative multi-level,

high-order FC features for ASD diagnosis. Finally, we design an ensemble classifier with

multiple linear SVMs, each trained on a specific level of FC networks, for boosting the final

classification accuracy. Experimental results show that the integration of both low-order

and first-level high-order FC networks achieves the best ASD diagnostic accuracy

(81%). We further investigated those selected discriminative low-order and high-order

FC features and found that the high-order FC features can provide complementary

information to the low-order FC features in the ASD diagnosis.

Keywords: autism spectrum disorder, high-order functional connectivity, brain network, resting-state fMRI,

learning-based classification

INTRODUCTION

Autism spectrum disorder (ASD) is a prevalent and highly heterogeneous childhood
neurodevelopmental disease. It impairs children’s social interaction, communication,
and many other behavioral and cognitive functions in varying degrees (Ecker et al.,
2010). According to the latest report released by the Centers for Disease Control and
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Prevention1, one out of 68 American children was affected by
some form of ASD, an increase of 78% compared with the
past decade. Accurate early diagnosis and timely intervention,
especially for the infants under 12-month-old, may tremendously
improve the outcome (Wolff et al., 2012; Jin et al., 2015;
Zwaigenbaum et al., 2015). However, ASD is a very complex
and highly heterogeneous disorder, involving many higher-level
brain functions and even whole-brain structures and functions,
which makes the diagnosis very challenging. To help tackle
this challenge, several neuroimaging studies have used different
non-invasive brain imaging modalities (Anagnostou and Taylor,
2011; Zhao et al., 2017), including structural magnetic resonance
imaging (sMRI) (Wee et al., 2014a), electroencephalogram (EEG)
(Duffy and Als, 2012), and diffusion tensor imaging (DTI)
(Ingalhalikar et al., 2011; Gopikrishna et al., 2013), for developing
computer-aided ASD diagnosis tools.

Recently, resting-state functional magnetic resonance
imaging (rs-fMRI), which uses blood-oxygenation-level-
dependent (BOLD) signals as a neurophysiological index to
probe brain activity, has been applied to the diagnosis of
ASD (Plitt et al., 2014; Price et al., 2014; Ha et al., 2015).
Sensitive to the spontaneous and intrinsic neural activity,
the BOLD signals can be used as effective and non-invasive
measures to investigate neuropathological substrates of many
neurological and psychiatric disorders at a whole-brain system
level (Asghar et al., 2011; Keith et al., 2015). In particular,
functional connectivity (FC), defined as the temporal correlation
of the BOLD signals of different brain regions, reflect the close
interactions of multiple brain regions that could be structurally
segregated. In previous studies, many FC modeling methods
have been proposed to construct brain functional networks,
including Pearson’s correlation, partial correlation, and sparse
representation (Dijk et al., 2010; Wee et al., 2014b; Biao et al.,
2016). However, most existing studies used Pearson’s correlation
for measuring FC due to its simplicity (Wee et al., 2012; Jie et al.,
2014). However, the Pearson’s correlation based FC networks
can only capture the low-order functional relationship between
two brain regions. This type of low-order FC networks may
overlook more complex, high-order relationship that could be
also altered in ASD children; thus, the use of additional high-
order relationship may further help ASD diagnosis. Note that
the high-order FC could capture the interaction among multiple
brain regions, rather than simple pair-wise relationship. To
date, several methods for constructing high-order FC networks
have been developed (Chen et al., 2016; Wee et al., 2016; Zhang
et al., 2016, 2017a,b; Zhou et al., 2018). For example, Chen
et al. (2016) used sliding window approach to derive dynamic
FC (time-varying FC) and then conducted additional round of
Pearson’s correlations (“correlation’s correlation”) between each
pair of dynamic FC time series to build a high-order FC network.
A more neurobiologically intuitive high-order FC method
was proposed by Zhang et al. (2016) for more sensitive early
Alzheimer’s disease detection and has been adopted in other
studies (Zhang et al., 2017a,b; Zhou et al., 2018). This method
also uses “correlation’s correlation,” where the first round of

1https://www.cdc.gov/ncbddd/autism/data.html.

correlation analysis generates regional FC topographical profiles
(the FCs between one region to all other regions), which are
further correlated between each pair of regions. In this way,
the high-order FC represents similarity of FC topographical
profiles, which supplements the traditional, BOLD-signal-
synchronization-based low-order FC (Zhang et al., 2016). For
more details, please refer to some previous methodological
papers and clinical application papers (Chen et al., 2016; Wee
et al., 2016; Zhang et al., 2016, 2017a,b; Zhou et al., 2018).

To the best of our knowledge, very few studies have used
high-order FC for ASD children diagnosis. We hypothesize
that brain networks in ASD children could be altered due to
miswiring during abnormal development. Such miswiring could
affect both low-order FC and high-order FC. Similar to the
hypothesis behind Alzheimer’s disease studies using high-order
FC (Chen et al., 2016; Wee et al., 2016; Zhang et al., 2016,
2017b; Zhou et al., 2018), we propose that the high-order FC
could be also affected in ASD and thus can be used as effective
biomarkers for ASD diagnosis. There are two types of high-
order FC methods previously proposed (Hansen et al., 2015;
Chen et al., 2016; Wee et al., 2016; Zhang et al., 2016, 2017a,b;
Glomb et al., 2017; Zhou et al., 2018). The first type of methods
applied a second round of Pearson’s correlation on the dynamic
FC time series (Chen et al., 2016; Wee et al., 2016), but the
neurological significance of the time-varying FC is still unclear
and it could cause dramatically increased feature dimensionality
(Zhang et al., 2016, 2017a), which could affect the robustness
of classification model. The second type of methods is more
straightforward (Zhang et al., 2016, 2017a,b; Zhou et al., 2018),
by first calculating regional low-order FC topographical profiles
(each characterizing the FC between one brain region and all
other brain regions) and then using them as regional features to
further compute another level of Pearson’s correlation between
any pair of brain regions (i.e., “correlation of correlations”). This
kind of high-order FC networks could carry complementary
information to the traditional low-order FC networks, and could
be jointly used for improving ASD diagnosis. Theoretically, by
repeating such a “correlation of correlations” analysis iteratively,
one can generate many higher-order FC networks, each of which
is derived from a precedent level of high-order FC network by
computing the next higher level of correlations. Thus, it is of
scientific and clinical importance to investigate (1) whether ASD
diagnosis can benefit from high-order functional networks, and
(2) to what extend integrating different levels of FC networks
could improve the accuracy of ASD diagnosis.

To explore these hypotheses, we extend our previous
works on high-order FC by proposing high(er)-order brain
functional network representations at multiple levels. We then
use these multi-level FC networks (with different levels of
functional interactions) for a joint and better ASD diagnosis.
Furthermore, we devise a generalized, multi-level high(er)-order
brain networks based classification framework, which includes an
ensemble of multiple classifiers, each trained using a specific level
of high(er)-order FC network to capture level-specific diagnostic
information. We apply our new framework to the Autism
Brain Imaging Data Exchange (ABIDE) database for individual-
based classification between ASD children and normal controls

Frontiers in Human Neuroscience | www.frontiersin.org 2 May 2018 | Volume 12 | Article 184

https://www.cdc.gov/ncbddd/autism/data.html
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhao et al. HON for Diagnosis of ASD

(NC). Figure 1 shows the pipeline of the proposed classification
framework, which mainly includes the following four steps:

(1) Low-order FC network (LON) construction. We first
estimate low-order FC network from the raw rs-fMRI time
series. Each low-order network is represented as a correlation
matrix.

(2) Multi-level high-order FC network construction. We
construct the first-level of high-order FC network
(represented by an “HON-1” matrix), with each element as
the Pearson’s correlation coefficient between two associated
low-order FC profiles from two corresponding brain regions.
We iteratively derive the second-, third- and higher-levels
of higher-order networks (i.e., HON-2, HON-3, and so on)
by using their respective previous level of high(er)-order FC
profiles.

(3) LASSO-based feature selection. We treat the elements in
the networks derived from Steps (1–2) as features for each
subject. Then, LASSO algorithm (Tibshirani, 1996) is used
to select multi-level high(er)-order FC features that are most
relevant to the classification task.

(4) Ensemble classification. We construct an ensemble classifier
with multiple linear SVM (support vector machine)
classifiers (Cortes and Vapnik, 1995); each is trained using
a specific level of FC features. The classification scores by all
SVM classifiers are fused by weighted averaging to produce
the final classification result.

The main contribution of this paper is devising a multi-
level higher-order FC representation strategy to capture the
interactions among brain regions at multiple levels. As such, the
features generated in different levels can contain supplementary
information for joint classification.

MATERIALS AND DATA PREPROCESSING

The rs-fMRI dataset used in this study are obtained from the
ABIDE database (Martino et al., 2014), which was created as a

data repository for facilitating collaboration across laboratories
to help accelerate scientific discovery in the autism research.
To alleviate data heterogeneity, we randomly retrieved the rs-
fMRI images from 54 ASD patients (47 male and 7 female)
and 46 normal controls (40 male and 6 female) under 15
years of age, scanned at New York University Langone Medical
Center. The detailed demographic information of the two groups,
including age, gender, full-scale intelligence quotient (FIQ),
and head motion (characterized by frame-wise displacement
(FD)), were analyzed in Table 1. As we can see from Table 1,
there were no significant differences (p > 0.05) in age, gender,
FIQ, and FD between the normal control and ASD groups.
ASD subjects were diagnosed based on the autism criteria in
Diagnostic and Statistical Manual of Mental Disorders, 4th
Edition, Text Revision (DSM-IV-TR) (American Psychiatric
Association, 2000). More details on data collection, exclusion
criteria, and scan parameters are available on the ABIDEwebsite2

The subjects were scanned on a 3-Tesla Siemens Allegra
scanner over 6min, producing 180 time points at a repetition
time of 2 s. In Table 2, we summarize main scanning parameters
used in this study. The children taking psychostimulants were
required to withhold the medication at least 24 h prior to the
scan and subject to physician approval. During the rs-fMRI scan,
most individuals were asked to relax with their eyes open, while
a white cross-hair against a black background was projected on
a screen. Their eye status was monitored by an eye tracker. The
mean frame-wise displacement was computed to describe head
motion for each individual. The individuals were excluded if their
mean FD is larger than 1mm (Lin et al., 2015; Ray et al., 2015).
On the other hand, head motion effect was further corrected with
the Friston 24-parameter model in the following process.

For rs-fMRI data preprocessing, we used a widely adopted
Data Processing Assistant for rs-fMRI (DPARSF) toolbox (Yan
and Zang, 2010). Specifically, the first 20-s data were discarded to
ensure magnetization stabilization. Slice acquisition timing was

2http://fcon_1000.projects.nitrc.org/indi/abide/abide_I.html.

FIGURE 1 | Overview of the proposed multi-level high-order functional connectivity classification framework for ASD diagnosis.
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TABLE 1 | The demographic information for ASD group and NC group.

Gender(M/F) Age(years) FIQ(mean±sd) FD(mm)

(mean±sd) (mean±sd)

ASD 47/7 10.7 ± 2.28 109.41 ± 18.78 0.15 ± 0.07

NC 40/6 11.22 ± 2.34 114.20 ± 12.73 0.14 ± 0.05

p 0.99a 0.27b 0.078b 0.36b

ASD, autism spectrum disorder; NC, normal control; M, male; F, female; FIQ, full scale

intelligence quotient; FD, frame-wise displacement; pa: Statistical significance level was

calculated using the χ2-test; pb: Statistical significance level was computed using the

two-tailed two-sample t-test.)

TABLE 2 | The rs-fMRI acquisition parameters.

Parameter Make(model) Voxel Size Flip Angle TR/TE

Value Siemens

Magnetom (Allegra)

3.0 × 3.0 ×

4.0 (mm3)

90 (deg) 2,000/15 (ms)

Parameter FOV read Slice

thickness

Bandwidth # of Slices

Value 240 (mm) 4.0 (mm) 3906 (Hz/Px) 33

corrected for each volume, followed by head motion correction
(i.e., realignment) with rigid-body transformation. Then, all rs-
fMRI volumes were normalized to the Montreal Neurological
Institute (MNI) space and resampled to a resolution of 3 × 3
× 3 mm3. Data scrubbing was further carried out to reduce
the negative effect of head motion, and the volumes with FD
larger than 0.5mm were removed (Power et al., 2012), along
with the preceding two time points and the following two time
points. We further performed the two-tailed two-sample t-test
on the number of volumes left after scrubbing to investigate
if there exist significant difference between ASD group and
NC group. We got a p-value of 0.19. Thus, this indicated
there was no significant difference (p > 0.05) between the two
groups in term of the number of volumes. Then, white matter,
cerebral spinal fluid (CSF), global signals were regressed out as
nuisance covariates. Head motion was corrected with the Friston
24-parameter model (i.e., 6 head motion parameters, 6 head
motion parameters from the previous time point and the 12
corresponding squared items) to regress out head motion effects
from the realigned data (Satterthwaite et al., 2013; Yan et al.,
2013). Next, we parcellated the brain space into 116 regions-of-
interest (ROIs) by applying the Automatic Anatomical Labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) to each image. For
each ROI, we computed its mean time series and performed
the band-pass filtering (0.01–0.08Hz) for trading-off between
avoiding physiological noise (Cordes et al., 2001), measurement
error (Achard et al., 2008), andmagnetic field drifts of the scanner
(Tomasi and Volkow, 2010).

METHODS

Because each FC network is represented as a fully-connected
graph in a matrix format, we will mainly introduce how the

corresponding matrices of the low-order and high-order FC
networks are constructed in this section. Specifically, we first
introduce how we derived the low-order FC network (LON)
from the rs-fMRI time-series of a subject. Next, we introduce
the construction strategy of multi-level high-order FC networks
(HONs). Finally, the multi-level brain FC feature extraction,
selection, and classification framework is described.

Conventional Low-Order FC Network
Construction
For each subject, we define xi ∈ RM as the average rs-fMRI signal
of all BOLD time-series signals in the voxels belonging to the
i-th ROI. Here, M denotes the total number of temporal image
volumes. We compute the Pearson’s correlation between the i-th
and the j-th ROIs as follows:

cij = corr(xi, xj) (1)

Then, a conventional correlation-based FC network (i.e., low-
order FC network) is generated by a corresponding symmetric
matrix CLON , as defined below:

CLON =
(

cij
)

1≤i,j≤M
(2)

where each row or column of CLON denotes the Pearson
correlation series between a specific ROI and all other ROIs. Each
element in CLON is the Pearson correlation between the average
time-series of a pair of ROIs i and j. Notably, CLON encodes
low-order interactions between any pair of ROIs.

Multi-Level High-Order FC Networks
Construction
To fully capture high-order functional interactions across brain
regions, we adopt a method proposed in (Zhang et al., 2016,
2017a) to generate the high-order FC networks based on
“correlation’s correlation.” Specifically, let ci = (ci1, ci2, · · · , ciM)

denote a vector containing the correlations between the i-th
ROI and all other ROIs. Mathematically, ci denotes the i-th row
or column of the symmetric matrix CLON in Equation 2. We
compute the “correlation’s correlation” between the i-th ROI and
the j-th ROI as follows:

c2ij = corr(ci, cj) (3)

where ci =
(

ci1, · · · , ci(i−1), ci(i+1), · · · , ci(j−1), ci(j+1), · · · , ciM
)

and cj =
(

cj1, · · · , cj(i−1), cj(i+1), · · · , cj(j−1), cj(j+1), · · · , ciM
)

. c2ij
indicates how the FC profiles between the i-th ROI and all other
ROIs resemble the FC profiles between the j-th ROI and all
other ROIs, which can reveal more complex relationship between
the FC profiles (or the vectors {ci}), not just the original rs-
fMRI time series xi. As a result, the correlation c2ij in Equation

3 can extract interaction information from all different ROIs,
whereas the correlation cij in Equation 1 involves just the two
different ROIs. In other words, the correlation coefficient c2ij
is able to characterize more complex and abstract interaction
among multiple brain regions. Thus, the corresponding matrix
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CHON−1 of the first-level of high-order FC network (HON-1) can
be defined as follows:

CHON−1 =

(

c2ij

)

1≤i,j≤M
(4)

Furthermore, for a specific subject, we can obtain multi-
level FC networks by their corresponding matrix series,
i.e., {CLON ,CHON−1, · · · ,CHON−t}, in a subsequent level-by-level
manner, in which each matrix CHON−i ( i ≥ 2) is derived
from the previous-level matrix CHON−(i−1). In this way, higher-
level connectivity features can be obtained from the low-level
connectivity features, and thus form hierarchical representations
of functional interactions across multiple brain regions.

Multi-Level FC Feature Extraction,
Selection and Classification
For the l-th subject, we use its corresponding set of multi-

level FC matrices {C
(l)
LON ,C

(l)
HON−1, · · · ,C

(l)
HON−t} as raw features.

Noting the symmetry of each FC matrix, we only vectorize its
lower off-diagonal triangular part to define the feature vectors,

i.e., {y
(l)
0 , y

(l)
1 , · · · , y

(l)
t }, for representing the l-th subject. The

dimensionality of y
(l)
i (0 ≤ i ≤ t) is M(M−1)

2 , where M denotes
the number of ROIs as mentioned above.

The feature vectors {y
(l)
0 , y

(l)
1 , · · · , y

(l)
t } extracted from multi-

level FC networks might include irrelevant or redundant features
for ASD diagnosis. Therefore, feature selection is necessary. In
order to select a small subset of features that are most relevant
to ASD pathology, we adopt L1-norm regularized least squares
regression, known as LASSO (Least Absolute Shrinkage and
Selection Operator) (Tibshirani, 1996), due to its simplicity and
efficiency (Wee et al., 2012, 2016; Jin et al., 2015; Biao et al., 2016).
Specifically, let ωi = (wi1,wi2, · · · ,wid)

T represent the weight

vector for the feature selection task and K =
(

k1, k2, · · · , kN
)T

is the class labels of N training data (from N training subjects).
Here, d is the number of features. Mathematically, the LASSO
model can be described as follows:

1

2

N
∑

l=1

∥

∥

∥

∥

kl −
(

y
(l)
i

)T
ωi

∥

∥

∥

∥

2

2

+ λ ‖ωi‖1 (5)

where λ is a parameter for controlling the strength of L1-norm
regularization. The first term in Equation 5 is the empirical
loss on the training data, and the second term is the L1 −

norm regularization term that is used to enforce some elements of
ωi to be zero (i.e., corresponding to non-discriminative features
in our classification task). In this way, we can jointly achieve
classification error minimization and sparse feature selection.

Let{ỹ
(l)
0 , ỹ

(l)
1 , · · · , ỹ

(l)
t } denote selected features from the original

feature vectors {y
(l)
0 , y

(l)
1 , · · · , y

(l)
t }.

After selecting the most important features by LASSO, we
use SVM with a linear kernel for ASD classification (Cortes
and Vapnik, 1995). SVM seeks a maximum margin hyperplane
to separate the samples of one class from another class. The
empirical risk on training data and the complexity of the model

can be balanced by the hyper-parameter γ , thus ensuring good
generalization ability on the unseen data. Herein, we train
an ensemble of L SVM classifiers, each trained on a specific

feature set
{

ỹ
(l)
i

}L

l=1
(i = 0, 1, · · · , t), where L denotes the

number of levels used for computing different levels of functional
connectivity. Then, the decision scores from all SVM models are
fused linearly (by a weighting parameter α tuned for each SVM,
α was selected from 0.1 to 0.9 with step 0.1) to produce the
final label for the target subject. Note that we use 10-fold cross
validation on the training data to evaluate the performance α of
our algorithm for fair comparison. Hence, the value of α might
change across cross-validated folds.

EXPERIMENTS

For evaluation, we tested our proposed method for classifying
ASD and NC subjects. We also performed feature weight
analysis to identify multi-level brain connections that are most
discriminative for classifying ASD and NC.

Comparison of ASD Diagnosis Using
Different Feature Types
For comparison, we used connectional brain features extracted
from different orders of FC networks, including the matrix CLON

from LON, CHON−1 from HON-1, CHON−2 from HON-2, and
their combinations. We trained a set of linear SVMs based on the
LIBSVM toolbox3, each using a set of specific-level connectional
features. For the case using specific-level connectional features,
the output of each SVM is regarded as the final classification
result. For the case of using the combination of different levels
of connectional features, the final classification result is obtained
by fusing decision scores from all SVMs.

In this study, we adopted a 10-fold cross-validation strategy
to evaluate the generalization performance of our proposed
method. Basically, all training subjects were partitioned into 10
subsets (each subset with a roughly equal sample size), and each
time the samples within one subset are selected as the testing
dataset, while the remaining samples in the other 9 subsets are
combined together as the training dataset for feature selection
and classification. Finally, we report the average accuracy of
classification results across all 10 cross-validation folds.

As the performance of our method depends on a few hyper-
parameters, such as λ in the feature selection step (see Equation
5), γ in SVM model, and α in the decision fusion step, it is
important to fine-tune these hyper-parameters. Hence, we used
a nested cross-validation on the training data to automatically
identify the optimal values for these hyper-parameters within the
following ranges: λ ∈ [0.1, 0.2, · · · , 0.6], γ ∈

[

2−5, 2−4, · · · , 25
]

,
and α ∈ [0.1, 0.2, · · · , 0.9]. Specifically, we further split the
training set into the training subset and the validation subset
and further performed another cross-validation. That is, for
each combination of values for hyper-parameters, the validation
subset from the training set is used for testing and the remaining
training subset is used for training. This procedure was repeated

3https://www.csie.ntu.edu.tw/~cjlin/libsvm/.
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10 times, which produced a classification accuracy under a
specific combination of hyper-parameter values. Then, the hyper-
parameter values with the best classification accuracy on the
validation data were chosen and used to construct the optimal
model based on all the training samples. The constructed model
with optimized parameters was applied to the testing data.

For comprehensive evaluations, we used six different
statistical measures, namely classification accuracy (ACC),
sensitivity or true positive rate (TPR), specificity or true negative
rate (TNR), precision or positive predictive value (PPV), negative
predictive value (NPV), and F1 score4 Higher values for these
scores indicate better performance.

To avoid biased results due to the fold selection, the entire
10-fold cross-validation process was further repeated 20 times,
each with a different partition of subjects. The average statistics
of the 20 repetitions were finally reported. Table 3 shows the
mean classification performance for each compared feature type,
where CLON denotes the feature derived from the low-order FC
networks (LON) and CLON + CHON−1 denotes the combination
of LON andHON-1. The meaning of the other symbols is similar.
We also use the bold font to highlight the best results in the
Table 3. At the same time, each feature type was also given a
serial number for simplifying its description in the following.
In order to investigate if there is any significant difference
in ASD classification when different feature types were used,
we performed the pair-wise t-test based on the 10-fold cross-
validation accuracies. The p values at the 5% significance level are
reported in Table 4, where each serial number denotes a different
model using corresponding feature type in Table 3. The p values
between the feature derived from CLON + CHON−1 and any other
feature type are highlighted in bold.

As we can see from Table 4, there were significant differences
(p < 0.05) in classification performance between any two
different feature types. It indicates that the CLON + CHON−1

method significantly outperforms all other methods. From the
results shown in Table 3, we can draw the following conclusions.
(1) Compared with the single feature types, the combination
of functional features with different orders can achieve better
diagnostic accuracy. This indicates that different feature types
can provide complementary information for diagnosis. (2)
The combination of CLON and CHON−1 achieves the best
performance for all metrics, which might indicate that there
exists more strongly complementary information between LON
andHON− 1. In contrast, other combinations of different feature
types possibly include more irrelevant or redundant information,
thus affecting their discriminative performance in classification.

In addition to the above ensemble learning for integrating
low-order and high-order networks, we also evaluate another
widely adopted strategy by firstly concatenating the features from
different FC networks and then performing feature selection with
LASSO and constructing a single linear SVM classification. The
experimental results are shown in Table 5, where ⊕ denotes
simple feature concatenation. For example, CLON ⊕ CHON−1

denotes the concatenated features from the LON and HON-1. As
we can see, simply concatenating the features from different types

4https://en.wikipedia.org/wiki/Sensitivity_and_specificity.

of networks only slightly improves the classification performance
when compared to those using single type of brain networks
(using either LON or HON-1), but is inferior to the ensemble
classification (Table 3). The possible reason of such results is
that considering different FC networks may contain information
at different levels, leading to different distributions of their
corresponding features. Simply concatenating the features can
make the feature correlation and distribution more complex,
making it difficult to capture by the traditional feature selection
methods. In contrast, constructing two classifiers in respective
feature space is able to avoid this problem and thus provide more
reliable results.

The Most Discriminative Features for ASD
Diagnosis
Based on the results of LASSO regression, we identified the most
discriminative low-order and high-order functional features as
those with the highest selection frequency across all 10-fold cross-
validation runs. Note here we used the frequency of a feature to
be selected in all cross-validation runs to reflect the contribution
of the feature to the classification. Higher frequency indicates a
larger contribution of the corresponding feature.

Figure 2 displays the connectogram of the 10 most
discriminative connections, where each connection denotes

TABLE 3 | ASD classification using different feature types.

Feature type ACC TPR TNR PPV NPV F1

1 CLON 0.73 0.75 0.70 0.74 0.72 0.75

2 CHON−1 0.70 0.73 0.67 0.70 0.70 0.71

3 CHON−2 0.67 0.74 0.64 0.65 0.74 0.69

4 CLON + CHON−1 0.81 0.82 0.80 0.83 0.78 0.83

5 CLON + CHON−2 0.76 0.77 0.75 0.80 0.72 0.78

6 CHON−1 + CHON−2 0.72 0.77 0.67 0.69 0.76 0.73

7 CLON + CHON−1 + CHON−2 0.78 0.81 0.75 0.78 0.78 0.79

TABLE 4 | Significance test between different pair of feature types.

2 3 4 5 6 7

1 0.044 0.037 0.018 0.047 0.049 0.040

2 0.042 0.003 0.025 0.042 0.024

3 0.001 0.034 0.046 0.03

4 0.036 0.024 0.047

5 0.034 0.049

6 0.045

TABLE 5 | Classification accuracy based on simple feature concatenation.

Feature type ACC TPR TNR PPV NPV F1

CLON ⊕ CHON−1 0.79 0.81 0.77 0.80 0.77 0.80

CLON ⊕ CHON−2 0.74 0.79 0.69 0.70 0.78 0.75

CHON−1 ⊕ CHON−2 0.72 0.74 0.70 0.74 0.70 0.74

CLON ⊕ CHON−1 ⊕ CHON−2 0.77 0.79 0.74 0.78 0.76 0.79
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FIGURE 2 | Connectogram and involved brain regions of the top 10 discriminative connections selected by our framework in (A) the low-order FC network (LON), (B)

the first-level high-order FC network (HON-1) and (C) the second-level high-order FC network (HON-2), respectively. The thickness of each line reflects its selection

frequency, i.e., thicker lines indicate higher selection frequency. The brain slice view shows the involved brain regions (or ROIs). The brain slices were located at (−5, 4,

9) in the standard Montreal Neurological Institute (MNI) space. For the abbreviations of brain regions, please refer to Table 6.

the correlation between two brain regions (Krzywinski et al.,
2009). The thickness of each line reflects the frequency of being
selected for the respective feature, i.e., a thicker line indicating
higher frequency of being selected in all cross-validation runs.
We also list the abbreviations of the selected ROIs in Table 6,
and use the bold font to highlight the ROIs that are related to the
perception of emotion, the interpretation of sensory information,
language performance, and sports coordination (Herbert et al.,
2005; Krzywinski et al., 2009; Ha et al., 2015).

From the results shown in Figure 2 and Table 6, we derive
the following conclusions. (1) It can be clearly observed that
the discriminative connections and brain regions are distributed
across both hemispheres and different lobes, indicating the
distributed pattern of functional abnormalities over the whole
brains of ASD patients. (2) The majority of brain regions
with top selection frequencies, such as inferior frontal gyrus,
amygdala, angular gyrus, and hippocampus, are related to social
communication, emotion expression, language comprehension,
and action coordination (Herbert et al., 2005; Ecker et al.,
2015; Ha et al., 2015). These findings are in agreement with
the behavioral phenotype of ASD (Geschwind and Levitt,
2007; American Psychiatric Association, 2013). (3) The selected
features from the high-order network are largely different from
those from the low-order network, indicating that different
functional networks may provide complementary discriminative
information for diagnosis.

CONCLUSION

In this article, we proposed extracting multi-level high-order
FC networks, derived from rs-fMRI, to capture the high-order
correlation across different brain regions for ASD diagnosis. This
is based on our hypothesis that different pairs of brain regions

TABLE 6 | ROIs selected from LON, HON-1, and HON-2.

Abbreviation ROI name Abbreviation ROI name

PreCG Precentral gyrus IFGoperc Inferior frontal gyrus

(opercula)

MFG Middle frontal gyrus SFGmed Superior frontal gyrus

(medial)

OFCmed Orbitofrontal cortex

(medial)

REC Rectus gyrus

INS Insula ACG Anterior cingulate

gyrus

DCG Middle cingulate gyrus HIP Hippocampus

AMYG Amygdala SMG Supramarginal gyrus

ANG Angular gyrus PAL Pallidum

TPOsup Temporal pole (superior) TPOmid Temporal pole (middle)

VI-VER Lobule VI of vermis III-VER Lobule III of vermis

III-Cb Lobule III of cerebellar hemisphere

could influence each other, and their high-order correlations
could contain more important discriminative information for
ASD diagnosis, which is actually consistent with previous works,
i.e., in Chen et al. (2016), Wee et al. (2016), Zhang et al.
(2016, 2017a,b), Zhou et al. (2018). This important high-
order connectivity information is overlooked in most existing
methods for ASD diagnosis, which simply focused on low-order
correlations between pairs of brain regions.

Experimental results have shown that (1) high-order FC
networks indeed include crucial discriminant information for
ASD diagnosis, and (2) the combination of different order
FC networks, especially LON and HON-1, can significantly
improve ASD diagnostic performance. Furthermore, we found
that the most discriminative brain regions are related to
episodic memory, social cognition and emotion processing.

Frontiers in Human Neuroscience | www.frontiersin.org 7 May 2018 | Volume 12 | Article 184

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Zhao et al. HON for Diagnosis of ASD

These findings are in line with the behavioral phenotype of
ASD, which is associated with several impairments of interaction,
language, behavior, and cognitive functions.

Lastly, it should be noted that we used a simple feature
selection method, thus the selected features may still include
redundant information, which could affect our classification
accuracy. Accordingly, the strategies for discriminative feature
selection and fusion need further investigation, which will be
investigated in our future work. In addition, it should be noted
that LASSO regression tends to select only one feature from
multiple highly correlated features. In the context of diagnosis,
this means that, although these features could be also essentially
valuable for discrimination, they might be discarded after feature
selection due to the multi-collinearity in the data matrix. In this
work, we mainly followed the lead of previous studies (Jin et al.,
2015; Biao et al., 2016; Wee et al., 2016) and applied LASSO
to select features since it has shown many merits in reducing
model dimensionality and ameliorating overfitting problem.

In our future work, the other features that might have been
discarded but are highly correlated with those selected ones
deserve dedicated investigation.
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