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Abstract 

The mitochondrion is an organelle that plays a vital role in energy production, cytoplasmic protein degradation and 
cell death. Mitophagy is an autophagic procedure that specifically clears damaged mitochondria and maintains its 
homeostasis. Emerging evidence indicates that mitophagy is involved in many physiological processes, including cel-
lular homeostasis, cellular differentiation and nerve protection. In this review, we describe the regulatory mechanisms 
of mitophagy in mammals and yeasts and highlight the recent advances relevant to its function in carcinogenesis and 
drug resistance. Finally, a section has been dedicated to describing the role of mitophagy in anticancer therapeutics, 
which is a new frontier that offers a precise and promising strategy.
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Background
The stability of mitochondria is essential for cellular 
homeostasis and diverse cellular functions [1–6]. Apart 
from the well-known role of intracellular energy facto-
ries through oxidative phosphorylation (OXPHOS) [1, 
2], mitochondria are the organelles responsible for the 
production of reactive oxygen species (ROS), cytoplasmic 
protein degradation [3], maintenance of calcium homeo-
stasis [4], heme biosynthesis [5], apoptotic activation [6] 
and innate immunity through mitochondrial antiviral-
signaling protein (MAVS) [7].

Autophagy is an important process in cells for degrad-
ing proteins and organelles in a lysosome-dependent 
manner. Mitophagy refers to the process of degrading 
mitochondria through selective autophagy [8–10]. The 
concept of mitophagy was first proposed by the Lemas-
ters group in 2005 [8]. Under the conditions of ROS 

stimulation, nutrition deficiency, and cell senescence, 
mitochondria undergo membrane potential depolariza-
tion [8, 11]. Cellular proteins and depolarized mitochon-
dria are sequestered in autophagosomes. Subsequently, 
autophagosomes fuse with lysosomes to degrade these 
contents and maintain the stability of the intracellu-
lar environment and mitochondrial fitness [8]. How-
ever, under severe conditions, in which mitophagy 
cannot handle a large number of damaged or dysfunc-
tional mitochondria, cell death pathways are activated, 
and mitophagy is suppressed [12]. In addition to elimi-
nating damaged mitochondria, researchers have iden-
tified numerous physiological and pathophysiological 
functions of mitophagy. Mitophagy contributes to cell 
development and erythrocyte differentiation. In mam-
mals, the differentiation of erythrocytes relies on the 
removal of mitochondria by mitophagy [13]. When 
knocking out the mitophagy-related gene BCL2/ade-
novirus E1B 19  kDa protein-interacting protein 3-like 
(BNIP3L) in mice, mitochondria accumulation occurs 
in erythrocytes, which results in anemia [14]. In adipo-
cytes, mitophagy eliminates excessive mitochondria to 
promote a beige-to-white adipocyte transition [15]. Since 
mitophagy maintains mitochondrial homeostasis, it is 
not surprising that the dysregulation of mitophagy has a 
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role in human diseases. In the brain tissue of Parkinson’s 
disease patients, there are excessive dysfunctional mito-
chondria, and the mutation of PTEN-induced putative 
kinase 1 (PINK1) was identified in this tissue [16]. Then 
PINK1 is proven to be a mitophagy-related gene [17]. 
Additionally, a similar phenomenon is found in Alzhei-
mer’s disease patients, indicating that mitophagy plays a 
protective role in neurodegenerative diseases [18]. The 
occurrence and development of cancers is a complicated 
pathophysiological process, and the effect of mitophagy 
on cancers will be discussed later.

In this review, we present a brief introduction to the 
main mechanisms of mitophagy regulation. We also elu-
cidated the roles of mitophagy in carcinogenesis, drug 
resistance and anticancer therapeutics.

Common mechanisms of mitophagy
Mitochondrial membrane receptors‑mediated mitophagy
Mitochondrial membrane receptors mainly include 
BCL2/adenovirus E1B 19  kDa protein-interacting pro-
tein 3 (BNIP3), BNIP3L, FUN14 domain-containing 
protein 1 (FUNDC1), activating molecule in Beclin 1-reg-
ulated autophagy (AMBRA1), FK506-binding protein 8 
(FKBP8), ATPase family AAA domain-containing pro-
tein 3B (ATAD3B), and some kinds of lipids (cardiolipin 
(CL) and C18-ceramide). These mitochondrial receptors 
depend on microtubule-associated protein 1 light chain 
3 (LC3)-interacting region (LIR) motifs interacting with 
LC3 for mitochondrial clearance. They are regulated at 
the transcriptional or post transcriptional level under 
hypoxia and starvation conditions by kinases, phos-
phatases, glucocorticoids and other regulation factors.

BNIP3 and its homologous BNIP3L belong to the BH3-
only protein family and induce cell death and mitophagy 
[19–22]. Upon stress conditions, BNIP3 and BNIP3L are 
integrated into the outer membrane of mitochondria in 
the form of a homodimer [23–25]. BNIP3 binds to LC3 
by its LIR motif to induce mitophagy in various mam-
malian cells. Phosphorylation at Ser17 and Ser24 near 
the LIR motif is important for BNIP3-LC3 interactions 
[26]. The kinase or phosphatase responsible for the phos-
phorylation at Ser17 and Ser24 is not yet clear. BNIP3L 
shares a more than 50% amino acid sequence similarity 
with BNIP3 [21]. BNIP3L is a mitochondrial receptor 
mediating mitochondrial elimination during erythrocyte 
maturation [14, 22, 27]. Under hypoxic conditions or 
mitochondrial stress, BNIP3L interacts with ATG8 fam-
ily proteins (GABARAP1/LC3A) through its LIR motif. 
The interaction between BNIP3L and GABARAP1/LC3A 
leads to depolarized mitochondrial clearance upon retic-
ulocyte maturation [22, 28, 29]. In BNIP3L-deficient cells, 
autophagosomal formation is still functional, but mito-
chondria are unable to fuse with autophagosomes [13, 

14, 22, 29] Mitophagy induced by BNIP3 and BNIP3L is 
regulated by hypoxia-inducible factor 1-alpha (HIF-1α) 
[30–32]. The upregulation of HIF-1α under hypoxic con-
ditions can enhance the expression of BNIP3 by activat-
ing the transcription factor forkhead box O3 (FOXO3) 
[31]. Glucocorticoids repress PGC1α expression in a glu-
cocorticoid receptor (GR)-dependent manner and miti-
gate BNIP3L-dependent mitophagy [33].

FUNDC1 plays a distinct role in eukaryotic cells from 
BNIP3 and BNIP3L. A possible explanation for this might 
be that FUNDC1 is a mitophagy assistant under hypoxic 
conditions. FUNDC1 interacts with LC3 through the LIR 
motif at the cytosol-exposed N-terminus for selective 
mitophagy to couple with the core autophagic machin-
ery [34]. The phosphorylation of FUNDC1 at Tyr18 
in the LIR motif by Src kinase inhibits mitophagy from 
occurring [34]. FUNDC1 can be ubiquitinated by mem-
brane-associated ring-CH-type finger 5 (MARCH5) and 
degraded to avoid unnecessary mitochondrial clearance 
[35]. In addition, kinases such as casein kinase 2 (CK2) 
and Unc51-like kinase 1 (ULK1) and phosphatases such 
as phosphoglycerate mutase 5 (PGAM5) regulate the 
phosphorylation state of FUNDC1 and functionally 
cooperate to regulate mitophagy [34–37]. Collectively, 
the phosphorylation state of FUNDC1 dictates its affin-
ity to LC3 and subsequently influences the activation of 
mitophagy. The PGC-1α-NRF1 pathway is a crucial reg-
ulator in mitochondrial biogenesis. PGC-1α and NRF1 
also increase the expression of FUNDC1 to enhance 
mitophagy to promote mitochondrial turnover and 
maintain functional mitochondria [38]. Such a mecha-
nism serves to maintain the balance between the quality 
and quantity of mitochondria.

Ambra1 can induce the depolarization of mitochon-
dria which leads to functional mitophagy via a Parkin-
independent pathway. Ambra1 binds to the E3 ubiquitin 
ligase HUWE1 to induce the ubiquitylation of mitofusin 
2 (MFN2), a mitochondrial membrane protein, with an 
overall effect on mitophagy induction. After mitophagy 
induction, Ambra1 binds to LC3 to complete the 
autophagosome formation [39]. Ambra1 acts as an alter-
native mediator in PINK1/Parkin-mutant Parkinson’s 
disease patients [39]. Ambra1 can also be recruited by 
Parkin during mitochondrial depolarization and activates 
class III PI3K to form autophagosomes around mito-
chondria [40].

CL, a kind of lipid located at the inner mitochondrial 
membrane, is involved in mitochondrial metabolism. Its 
externalization enables its interaction with LC3 to induce 
subsequent mitophagy to protect cells from apoptotic cell 
death. This pathway could be induced by rotenone, stau-
rosporine, and 6-hydroxydopamine [41]. Additionally, 
Cers1 generates C18-ceramide, a bioactive sphingolipid, 
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and mediates its localization on the membrane of the 
mitochondria. After mitochondrial fission by dynamin-
related protein 1 (DRP1), ceramides interact with LC3B-
II to induce mitophagy [42].

FKBP8 is anchored in the outer membrane of mito-
chondria and acts as a mitophagy receptor. It recruits 
LC3A by its LIR motif to damaged mitochondria to 
mediate Parkin-independent mitophagy [43]. ATAD3B, 
a mitochondrial receptor, interacts with LC3 to induce 
parkin-independent mitophagy under stress conditions. 
ATAD3B-induced mitophagy promotes the clearance of 
damaged mitochondrial DNA (mtDNA) [44] (Fig. 1A).

The phenomenon of mitophagy was first discovered in 
yeasts in 2005 [8]. Similar to BNIP3/BNIP3L/FUNDC1 
in mammals, autophagy-related protein 32 (Atg32) is a 
mitochondrial receptor protein in the outer membrane of 
mitochondria with a classic tetrapeptide sequence W/Y/
XXI/L/V in yeasts. Under nitrogen starvation, Atg32 is 
phosphorylated by CK2, especially at Ser114, and then 
its N-terminus binds to autophagy-related protein 11 
(Atg11) [45–48]. The Atg32-Atg11 interaction is crucial 
for mitochondrial recruitment to the preautophagosomal 
structure (PAS) [47, 48]. The Atg32 cytoplasmic domain 
forms a conjugation with autophagy-related protein 8 
(Atg8) by its conserved motif to accelerate the process 
of autophagosomes engulfing the mitochondria. The 
autophagosomes and lysosomes eventually fuse to clear 
these contents [49, 50] (Fig. 1B).

PINK1/Parkin‑mediated mitophagy
PINK1, an outer mitochondrial membrane protein, is 
sensitive to mitochondrial membrane depolarization. 
Parkin, named for its causal role in the pathogenesis of 
early-onset Parkinson’s disease, is an E3 ubiquitin-protein 
ligase comprising five conserved domains, UBL, RING0, 
RING1, IBR, and RING2 [51, 52]. Under basal conditions, 
PINK1 is transported from the cytosol to the mitochon-
drial matrix through mitochondrial translocases, led by 
its N-terminal mitochondrial targeting sequence. When 
crossing the inner mitochondrial membrane, PINK1 is 
cleaved by matrix processing peptidase (MPP), mito-
chondrial protease presenilin-associated rhomboid-like 
protein (PARL), and ATPase family gene 3-like protein 

2 (AFG3L2). Then the cleaved form of PINK1 is released 
back to the cytosol and degraded through the ubiquitin–
proteasome pathway [53–55]. When mitochondria are 
compromised and depolarized, PINK1 accumulates on 
their outer membrane and then recruits Parkin. PINK1 
activates Parkin by phosphorylating Parkin on Thr175, 
Thr217, and Ser65 and thereby initiates mitophagy [56, 
57]. Parkin ubiquitinates the mitochondrial proteins of 
the mitochondrial outer membrane (such as mitofusin 
1 (Mfn1) and Mfn2) and promotes ubiquitin chain gen-
eration. PINK1 also phosphorylates ubiquitin at Ser65 
to enhance the recruitment and activation of Parkin and 
thus constitutes a feed-forward mechanism to promote 
mitophagy [58–60] (Fig. 1C).

Several other ubiquitin-protein E3 ligases function in 
mitophagy in addition to Parkin. An E3 ligase called pro-
tein ariadne-1 homolog (ARIH1) is dependent on PINK1 
to initiate mitophagy in the absence of Parkin [61]. Seven 
in absentia homolog 1 (SIAH-1), a conserved ubiquitin 
E3 ligase, promotes mitophagy by forming the PINK1-
synphilin-1-SIAH-1 complex in the absence of Parkin. 
Synphilin-1 is recruited to the damaged mitochondria 
by PINK1 to depolarize mitochondria and stabilize 
uncleaved PINK1. Synphilin-1 then recruits SIAH-1 
to ubiquitinate mitochondrial proteins and promotes 
mitophagy [62].

BNIP3 and BNIP3L also recruit Parkin to the mito-
chondria. Parkin ubiquitinates multiple mitochondrial 
membrane proteins, including voltage-dependent anion 
channel 1 (VDAC1), Mfn1 and mitochondrial Rho 
GTPase (MIRO), which subsequently interact with p62. 
The p62 adaptor interacts with LC3 to induce mitophagy 
[63, 64]. Additionally, PINK1 can be stabilized by BNIP3 
in its full-length form, which promotes its ability to 
recruit Parkin subsequently [65].

Although there are interconnections between these 
mitophagy pathways, significant differences can be 
noticed between PINK1/Parkin-mediated mitophagy and 
mitochondrial receptor-mediated mitophagy. The core 
mechanism of PINK1/Parkin-mediated mitophagy is the 
generation of ubiquitin chains recognized by autophagic 
receptors. However, mitochondrial receptors such as 
BNIP3 and FUNDC1 contain a conserved LIR motif 

Fig. 1  Mechanism of mitophagy regulation in mammals (A, C) and yeasts (B). A Mitophagy receptors mediate mitophagy under hypoxia or 
starvation in mammals. The proteins BNIP3, BNIP3L, FKBP8 and FUNDC1 on the outer member of mitochondria directly bind with LC3 through 
their LIR domains. Lipid CL externalizes from the inner mitochondrial membrane and interacts with LC3 to initiate mitophagy. B Atg proteins 
mediated mitophagy in yeasts. Under nitrogen starvation, the mitochondrial outer member receptor Atg32 is phosphorylated by CK2 and interacts 
with Atg8 or Atg11 to promote mitophagy. C PINK1/Parkin-mediated mitophagy under mitochondrial depolarization in mammals. Mitochondrial 
stress blocks the internalization of PINK1. Accumulated PINK1 on the outer member of mitochondria recruits cytosolic Parkin to mitochondria and 
phosphorylates them. Then, the activated Parkin ubiquitinates the mitochondria outer member proteins such as Mfn1/Mfn2. Adaptors containing 
LIR motifs (e.g., p62, OPTN, NBR1) recognize these polyubiquitinated proteins and connect to autophagosomes via LC3

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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and directly bind to LC3 on autophagosomes by the LIR 
motif.

The role of mitophagy in carcinogenesis, drug resistance 
and cancer therapeutics
Mitophagy and carcinogenesis
Mitophagy plays a multifaceted role in carcinogenesis 
and cancer progression. Whether it behaves as a tumor 
promoter or suppressor largely depends on the sta-
tuses and subtypes of cancer cells [66, 67]. Mitophagy 
can remove damaged or dysfunctional mitochondria to 
maintain the balance between the quality and quantity of 
mitochondria. After mitophagy, functional mitochondria 
generate less ROS and limit the tumor-initiating capac-
ity of ROS [68]. On the other hand, once the tumors 
are already in progress, mitophagy can function as a 
cytoprotective method to guide tumor progression 
against chemotherapy-induced apoptosis [69, 70]. Func-
tional mitophagy inhibits the accumulation of damaged 
mitochondria and prevents carcinogenesis. A study in 
mouse hepatic cancer reported that thyroid hormone T3 
restrains carcinogenesis through activating the PINK1/
Parkin pathway [71]. The PINK/Parkin pathway can 
induce mitophagy in liver cells, remove dysfunctional 
mitochondria and reduce ROS generation. The dele-
tion or mutation of genes such as PARK2 and BNIP3 can 
cause mitophagy inhibition, thereby promoting carcino-
genesis and cancer progression [72–75]. Loss-of-function 
mutations in PARK2 gene that encodes Parkin, have been 
detected in human colorectal cancer. The overexpression 
of Parkin can inhibit the proliferation of colorectal can-
cer cells. In PARK2 heterozygous deletion mice, intestinal 
cancer development is accelerated [72]. FUNDC1-medi-
ated mitophagy also inhibits inflammasome activation 
and protects against liver carcinogenesis. After the spe-
cific depletion of FUNDC1 in liver cells, dysfunctional 
mitochondria accumulate and therefore trigger inflam-
masome activation and carcinogenesis [76].

Cancer stem cells (CSCs), which form only a small pro-
portion of the tumor cell population are closely related 
to the carcinogenesis, invasion, and the drug resistance 
of cancer. CSCs act as the bottleneck that restricts anti-
cancer therapeutics. Mitophagy serves as a pro-sur-
vival pathway for CSCs. For example, in hepatic cancer, 
mitophagy can maintain the stemness and self-renewal 
ability of CSCs. Mitophagy can promote p53 degrada-
tion, which is combined with mitochondrial clearance. 
The inhibition of mitophagy leads to p53 transfer into 
the nucleus and blocks NANOG expression. Without 
this vital maintaining factor of CSC stemness, the hepatic 
CSC population is downregulated [77]. ISGylation of Par-
kin by ubiquitin-like protein ISG15 in pancreatic cancer 
stem cells (PaCSCs) promotes mitophagy to maintain 

CSC self-renewal ability. Inhibition of ISG15 could result 
in reduced Parkin and impaired mitophagy, subsequently 
impairing PaCSC renewability and tumorigenesis capac-
ity [70]. BNIP3L is highly expressed under hypoxic 
conditions. BNIP3L-mediated mitophagy promotes glio-
blastoma survival by clearing ROS and it may play a criti-
cal role in CSC maintenance [24].

Mitophagy and drug resistance
Certain chemotherapeutic drugs induce mitochon-
drial dysfunction, produce cytotoxic substances such as 
ROS, and influence normal metabolic activities [78–81]. 
Mitophagy is a cytoprotective process in the adapta-
tion to chemotherapy drug treatment. Therefore, target-
ing mitochondria is regarded as a promising anticancer 
therapy.

Cisplatin is a widely used platinum-based compound 
that shows anticancer activity against various cancers. 
Cancers eventually develop resistance to cisplatin. There-
fore, circumventing drug resistance is quite a challenge 
[61, 69, 82, 83]. Caveolin-1 (Cav-1)/Parkin-mediated 
mitophagy contributes to the resistance of the non-
small cell lung cancer cell line A549 to cisplatin. The 
cav-1-knockdown A549 cells appear more sensitive to 
cisplatin because of the downregulated Rho-associated 
coiled-coil-containing protein kinase 1 (ROCK1) and 
subsequently suppresses Parkin-mediated mitophagy 
[82]. Apurinic endonuclease 1 (APE1) plays an important 
role in the cisplatin resistance of A549 cells, and APE1 is 
overexpressed in A549 cells and induces Parkin-mediated 
mitophagy. The knockdown of APE1 restores cisplatin 
sensitivity and promotes cell apoptosis [83]. In addi-
tion, another E3 ubiquitin ligase, ARIH1, is essential for 
initiating PINK1-dependent mitophagy in the absence 
of Parkin. ARIH-induced mitophagy acts as a defense 
mechanism against cisplatin-induced A549 cell death. In 
ARIH1 knockout cells, cisplatin at the same dose domi-
nantly affects cell growth [61].

A new derivative of betulinic acid (BA), B5G1, has 
potent anticancer activity toward multidrug-resistant 
cancer cells by the induction of mitochondrial apopto-
sis. However, B5G1 can induce mitophagy through the 
upregulation of PINK1 and subsequent Parkin recruit-
ment. The inhibition of mitophagy by mitochondrial 
division inhibitor 1 (mdivi-1) or bafilomycin sensitizes 
drug-resistant cancer cells to B5G1 [81].

Doxorubicin, a DNA damaging agent, greatly influ-
ences cell survival by inducing cell death and mito-
chondrial dysfunction. However, in colorectal cancer, 
damaged mitochondria are cleared by BNIP3L-medi-
ated mitophagy to reduce oxidative stress and facilitate 
cell survival. The inhibition of mitophagy by BNIP3L 
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knockout significantly improves its sensitivity to doxoru-
bicin [69].

Mitophagy as a target for anticancer therapeutics
Mitophagy promotes cell survival by adapting to stress, 
but it may lead to cell death due to excessive mitochon-
drial clearance. Therefore, mitophagy inducers and inhib-
itors may be equally effective in anticancer treatment.

The inhibition of mitophagy plays a pivotal role in 
downregulating the drug resistance of cancer cells [78, 
84, 85]. In cervical cancer, drug resistance to cisplatin 
suppresses the efficacy of chemotherapy. Melatonin 
(N-acetyl-5-methoxytryptamine) is an endogenous 
indoleamine and a famous antioxidant that reduces 
hypoxia–ischemia damage and improves sleep. It can also 
control tumor progression and inhibit mitophagy. Mech-
anistically, melatonin abates mitophagy by downregu-
lating c-Jun N-terminal kinase (JNK) and subsequently 
Parkin, and it aggravates cervical cancer cell apoptosis 
[85]. In hepatic carcinoma, chemotherapeutic drugs such 
as cisplatin do not perform well in eliminating cancer 
cells due to inherent mitophagy and autophagy. Cisplatin 
activates dynamin-related protein 1 (DRP1) to enhance 
mitophagy. An inhibitor of DRP1-mediated mitophagy 
(mdivi-1) or a lysosome inhibitor (bafilomycin) increases 
the susceptibility of hepatic cancer cells to cisplatin 
rather than directly causing apoptosis [86]. Liensinine, 
an inhibitor of mitophagy, can markedly increase sen-
sitivity to cisplatin in breast cancer. Liensinine inhibits 
mitophagy by suppressing the excessive accumulation of 
autophagosomes, autophagosome-lysosome fusion and 
the maturation of several important lysosomal hydrolases 
[87].

Enhanced mitophagy may lead to cell apoptosis due 
to insufficient functional mitochondria. Enhanced 
mitophagy can also provide a promising strategy for ther-
apeutic intervention in other cancers. Ketoconazole, an 
oral antifungal agent, induces PINK1/Parkin-mediated 
mitophagy by downregulating the expression of COX-
2, which promotes the apoptosis of hepatic carcinoma 
cells [88]. In addition, sorafenib stimulates the apopto-
sis of liver cancer cells through PINK1/Parkin-mediated 
mitophagy. It stabilizes PINK1 on the outer membrane 
of mitochondria and recruits Parkin to dysfunctional 
mitochondria to initiate mitophagy [89]. Two mitochon-
dria-targeted drugs, Mito-CP and Mito-Metformin, 
release ULK1 from mTOR-mediated inhibition, decrease 
mitochondrial membrane potential, and abrogate colo-
rectal cancer cell proliferation through mitophagy [90] 
(Table 1).

Conclusions
With deep dissection of its role in carcinogenesis and 
drug resistance, mitophagy could become a break-
through in cancer therapy. Whether these mitophagy 
inhibitors can be employed in clinical therapy for 
tumors? How to induce apoptosis of tumor cells rather 
than normal cells by regulation of mitophagy? In addi-
tion to endoplasmic reticulum stress, are there other 
organelles or physiological processes related to mito-
chondrial autophagy? Are there mitophagy inducers 
in specific tissues and cell types? How do normal cells 
sense the precisely regulated dynamic balance of mito-
chondria? A great deal of literature indicates that main-
taining the balance between mitochondrial degradation 
and accumulation is essential for cellular homeostasis. 
Therefore, under certain conditions, the inhibition of 
mitophagy does more harm than good or has a slightly 

Table 1  Mitophagy inhibitors and inducers in anticancer therapeutics

No Drug Mitophagy 
inhibitor or 
inducer

Mechanisms in anticancer therapeutics

1 Melatonin Inhibitor Downregulates c-Jun N-terminal kinase (JNK) and subsequently Parkin, and aggravates cell apoptosis [85]

2 Mdivi-1 Inhibitor Increases the susceptibility of hepatic cancer cells to cisplatin by increasing mitochondrial membrane perme-
ability [86]

3 Liensinine Inhibitor Suppresses the excessive accumulation of autophagosomes, autophagosome-lysosome fusion and the matu-
ration of several important lysosomal hydrolases [87]

4 Ketoconazole Inducer Induces PINK1-Parkin mitophagy pathway by downregulating the expression of COX-2 and promotes the 
apoptosis of hepatic carcinoma cells [88]

5 Sorafenib Inducer Stabilizes PINK1 on the outer membrane of mitochondria and recruits Parkin to dysfunctional mitochondria to 
initiate mitophagy in liver cancer cells [89]

6 Mito-CP and 
Mito-Met-
formin

Inducer Release ULK1 from mTOR-mediated inhibition, decrease mitochondrial membrane potential, and abrogate 
colorectal cancer cell proliferation [90]
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positive effect on the prognosis. As the energy factory 
of normal cells, the definitive role of mitochondria in 
cancer merits further systematic investigation. Iden-
tifying the precise role of mitophagy will provide an 
effective approach for mitophagy-based cancer therapy.

To develop new therapeutic strategies for rational 
anticancer therapy, further studies should pay more 
attention to the specific mechanisms of mitophagy in 
CSCs, such as the relationship between the amounts 
of mitochondria and the maintenance of CSCs. It is 
important to understand the interactions between 
oncogenic signaling pathways and mitophagy, the 
specific role of mitophagy in drug resistance, and the 
influences of mitophagy on different chemotherapeu-
tic drugs. Mitophagy inducers or inhibitors should be 
delivered in a more targeted way. At the same time, 
with the development of novel drug therapies,  it is 
important to be aware of the toxic effects derived from 
mitochondrial dysfunction and carefully consider them.
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