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Abstract

Expertise enables humans to achieve outstanding performance on domain-specific tasks, and programming is
no exception. Many studies have shown that expert programmers exhibit remarkable differences from novices
in behavioral performance, knowledge structure, and selective attention. However, the underlying differences
in the brain of programmers are still unclear. We here address this issue by associating the cortical represen-
tation of source code with individual programming expertise using a data-driven decoding approach. This ap-
proach enabled us to identify seven brain regions, widely distributed in the frontal, parietal, and temporal
cortices, that have a tight relationship with programming expertise. In these brain regions, functional catego-
ries of source code could be decoded from brain activity and the decoding accuracies were significantly
correlated with individual behavioral performances on a source-code categorization task. Our results sug-
gest that programming expertise is built on fine-tuned cortical representations specialized for the domain
of programming.

Key words: brain decoding; functional magnetic resonance imaging; program comprehension; programming ex-
pertise; the neuroscience of programming

Significance Statement

The expertise needed for programming has attracted increasing interest among researchers and educators
in our computerized world. Many studies have demonstrated that expert programmers exhibit superior be-
havioral performance, knowledge structure, and selective attention, but how their brain accommodates
such superiority is not well understood. In this article, we have recorded brain activities from subjects cover-
ing a wide range of programming expertise. The results show that functional categories of source code can
be decoded from their brain activity and the decoding accuracies on the seven brain regions in frontal, pari-
etal, temporal cortices are significantly correlated with individual behavioral performances. This study pro-
vides evidence that outstanding performances of expert programmers are associated with domain-specific
cortical representations in these widely distributed brain areas.

Introduction
Programming expertise is one of the most notable ca-

pabilities in the current computerized world. Since human
software developers keep playing a central role in soft-
ware projects and directly impact their success, this

relatively new type of expertise is attracting increasing atten-
tion frommodern industries (Li et al., 2015; Baltes and Diehl,
2018) and educational institutes (Heintz et al., 2016;
Papavlasopoulou et al., 2018). Moreover, huge productivity
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variations were repeatedly found even between pro-
grammers with the same level of experience (Boehm and
Papaccio, 1988; DeMarco and Lister, 2013). Previous stud-
ies have shown the psychological characteristics of expert
programmers in their behaviors (Vessey, 1985; Koenemann
and Robertson, 1991), knowledge structures (Fix et al.,
1993; Von Mayrhauser and Vans, 1995), and eye move-
ments (Uwano et al., 2006; Busjahn et al., 2015). Although
these studies clearly illustrate the behavioral specificity of
expert programmers, it remains unclear what neural bases
differentiate expert programmers from novices.
Recent studies have investigated the brain activity of

programmers using functional magnetic resonance imag-
ing (fMRI). Siegmund et al. (2014, 2017) contrasted brain
activity during program output estimations against syntax
error searches and showed that the processes of program
output estimations activated left-lateralized brain regions,
including the middle frontal gyrus (MFG), inferior frontal
gyrus (IFG), inferior parietal lobule (IPL), and middle tem-
poral gyrus (MTG). Their results suggested that program
comprehension is associated with natural language proc-
essing, division of attention, and verbal/numerical work-
ing memory. Peitek et al. (2018a) reanalyzed the same
data as Siegmund et al. (2014) to investigate the correla-
tion between the BOLD activation strength and individual
programming experience, which was determined by sub-
ject’s self-estimation, but did not find any significant
trend. An exploratory study argued that a correlation ex-
ists between activity pattern discriminability and subjects’
grade point average (GPA) scores counting only courses
from the Computer Science department as a proxy for
programming expertise (Floyd et al., 2017). However, the
GPA scores would reflect a mixture of diverse factors (IQ,
memory ability, calculation skills, etc.), and the assumed
relationship to programming expertise was difficult to be
empirically validated. Further, the main limitation of these
prior studies is the use of a homogeneous subject group
that only covered a small range of programming exper-
tise. Recruitment of more diverse subjects in terms of
their programming expertise may enable the elucidation
of the potential differences of brain functions related to
the expertise.
Here, we aim to identify the neural bases of programming

expertise that contribute to the outstanding performances of
expert programmers. To do this, we defined two fundamen-
tal factors in our experiment: an objectively determined ref-
erence of programming expertise and a laboratory task that
exhibits experts’ superior performances under the general

constraints of fMRI experiments. First, we adopted the pro-
grammers’ ratings in competitive programming contests
(AtCoder; https://atcoder.jp/), which are objectively deter-
mined by the relative positions of their actual performances
among thousands of programmers. We recruited top-rated
and middle-rated programmers as well as novice controls to
cover a wide range of programming expertise in our fMRI
experiment. Second, we developed the program categoriza-
tion task and confirmed that behavioral performances of this
task were significantly correlated with the adopted reference
of programming expertise. This confirmation allows us to
expect an association between the outstanding performan-
ces of expert programmers and brain activity patterns re-
corded by fMRI while they performed this laboratory task.
Our core hypothesis is that higher programming ex-

pertise and experts’ outstanding performances relate to
specific multivoxel pattern representations, potentially
influenced by their domain-specific knowledge and train-
ing experiences. This hypothesis is motivated by prior
studies that contrasted multivoxel activity patterns of ex-
perts against novices and demonstrated that domain-
specific expertise generally associates with representa-
tional changes in the brain (de Borst et al., 2016; Martens
et al., 2018; Gomez et al., 2019). For example, Bilali�c et
al. (2016) showed that the multivoxel patterns in expert
radiologists’ fusiform face area were more sensitive in
differentiating x-ray images from control stimuli than
novices. Similarly, identifying the multivoxel pattern rep-
resentations specific to expert programmers offers a good
starting point for understanding the cognitive mechanisms
behind programming expertise. From the previous studies
on non-expert programmers and expertise in other do-
mains, the high-level visual and left fronto-parietal regions
might be inferred as potential neural correlates of program-
ming expertise (Siegmund et al., 2014; Bilali�c, 2017).
However, to the best of our knowledge, there is no prior evi-
dence that directly associates programming expertise with
specific brain regions. Thus, we employ a whole-brain
searchlight analysis (Kriegeskorte et al., 2006) to identify the
regions related to programming expertise.

Materials and Methods
Subjects
To begin this study, we defined three recruiting criteria:

expert, top 20% rankers in AtCoder who had an AtCoder
rate equal to or higher than 1200; middle, 21–50% rankers
who had an AtCoder rate between 500 and 1199; novice,
subjects who had four years or less programming experi-
ence and no experience in competitive programming. We
shared our recruiting message via mailing lists and messag-
ing applications with diverse graduate or undergraduate stu-
dent communities in Japan. Through this procedure, 95
programmers from 28 universities and three companies
completed our entry questionnaire to be registered as
candidate subjects. The list of candidate subjects con-
sisted of 19 experts (all male), 43 middles (one female),
and 33 novices (nine females). Nine left-handed subjects
and 20 subjects with less than half a year experience
in Java programming were excluded from the list. Five
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subjects aged under 20 years old were also excluded to
avoid additional bureaucratic processes. We asked the
remaining candidate subjects for experiment participa-
tion basically on first-in-first-out strategy. Note that set-
ting novice as programmers who had an AtCoder rate
under 500 was another potential recruiting criterion, but
we did not adopt the criterion because low values in the
rate reflects two indistinguishable factors: low program-
ming expertise or not enough contest participation. In
addition, possession of AtCoder rate itself could imply
possession of moderate programming expertise. Thus,
our recruiting criteria set novice as a programmer with
shorter experience in programming and no experience in
competitive programming.
Thirty healthy subjects (two females, aged between 20

and 24years) with normal or corrected-to-normal vision
participated in the experiment (for the demographic infor-
mation of recruited subjects, see Table 1). All were right-
handed [assessed by the Edinburgh Handedness Inventory
(Oldfield, 1971); laterality quotient = 83.66 24.0, ranged
between 15.9 and 1100] and understood basic Java
grammars with at least half a year experience in Java
programming. The averaged AtCoder rates (1967 in ex-
pert and 894 in middle) were equivalent to the top 6.5%
and 34.1% positions among 7671 registered players
based on the ranking on July 1, 2017, respectively. Seven
additional subjects were scanned but not included in the
analysis because one (novice) showed neurologic abnor-
mality in MRI images, three (one expert and two middles)
retired from the experiment without full completion, three
(one expert and two novices) showed strongly-biased be-
havioral responses judged when the behavioral perform-
ance of one or more choices did not reach chance-level in
the training experiments, signaling a strong response bias
of sticking to a specific choice. This study was approved
by the Ethics Committees of Nara Institute of Science and
Technology and CiNet and subjects gave written informed
consent for participation. The sample size was chosen to
match previous fMRI studies on human expertise with simi-
lar behavioral protocols (Amalric and Dehaene, 2016;
Bilali�c et al., 2016; de Borst et al., 2016).

Stimuli
For this study 72 code snippets written in Java were

collected from an open codeset provided by AIZU
ONLINE JUDGE (http://judge.u-aizu.ac.jp/onlinejudge/);
an online judge system where many programming prob-
lems are listed and everyone can submit their own source
code to answer those problems online. We selected four
functional categories (category) and eleven subordinate
concrete algorithms (subcategory) based on two popular

textbooks about computer algorithms (Cormen et al.,
2009; Sedgewick and Wayne, 2011; for the detailed de-
scriptions, see Fig. 1A, Extended Data Fig. 1-1). We first
searched in the open codeset for Java code snippets im-
plementing one of the selected algorithms and found
1251 candidates. The reasons why we focused on Java in
this study were because the language has been one of
the most famous programming languages and prior fMRI
studies on programmers also used Java code snippets as
experimental stimuli (Siegmund et al., 2014, 2017; Peitek
et al., 2018a). To meet the screen size constraint in the
MRI scanner, we excluded code snippets with a number
of lines of.30 and a max number of characters per line of
.120. From all remaining snippets, we created a set of
72 code snippets with minimum deviations of these
numbers of lines and characters to minimize visual varia-
tion as experimental stimuli; the mean and SD of the
number of lines and max characters per line were
26.46 2.4 and 59.36 17.1, respectively. In the codeset,
18 snippets each belonged to one of the category
classes and six snippets each belonged to one of the
subcategory classes except for the linear search class
with twelve snippets (for detailed statistics on each cate-
gory and subcategory class, see Extended Data Fig. 1-
2). The indentation styles of code snippets were normal-
ized by replacing a tab-space with two white-spaces and
user-defined functions were renamed to neutral such as
“function1” because some of the functions indicated
their algorithms explicitly (for example snippets, see
Extended Data Fig. 1-3). We verified all code snippets
had no syntax error and run correctly without run-time
error.

Experimental design
The fMRI experiment consisted of six separate runs

(9min 52 s for each run). Each run contained 36 trials of
the program categorization task (Fig. 1B) plus one dummy
trial to avoid the undesirable effects of MRI signal instabil-
ity. We used 72 code snippets as stimuli and each snippet
was presented three times through the whole experiment
(216 trials in total), but the same snippet appeared only
once in a run. We employed PsychoPy (version 1.85.1;
Peirce, 2007) to display the code snippets in white text
and a gray background without syntax highlighting to
minimize visual variations. In each trial of the program cat-
egorization tasks, a Java code snippet was displayed for
10 s after a fixation-cross presentation for 2 s. Subjects
then responded within 4 s by pressing buttons placed
under the right hand to indicate which category class was
most plausible for the code snippet and all response data
were automatically collected for the calculation of

Table 1: Demographic information of recruited subjects

N Sex (M/F) Age AtCoder rate PE (year) JE (year) CPE (year)
Expert 10 10 / 0 22.66 1.1 19696 467 6.96 2.8 2.86 2.4 4.16 2.6
Middle 10 9 / 1 22.56 0.8 8946 175 4.86 1.7 1.16 0.8 1.36 0.8
Novice 10 9 / 1 21.76 1.2 NA 2.86 0.6 1.46 1.0 NA

Numerics from fourth (age) to last columns denote mean 6 SD. PE, programming experience; JE, JAVA experience; CPE, competitive programming experience.
Significant differences were observed between PE of expert-novice, middle-novice; CPE of expert-middle (two-sample t test, p, 0.05 FDR-corrected).

Research Article: New Research 3 of 16

January/February 2021, 8(1) ENEURO.0405-20.2020 eNeuro.org

http://judge.u-aizu.ac.jp/onlinejudge/
https://doi.org/10.1523/ENEURO.0405-20.2020.f1-1
https://doi.org/10.1523/ENEURO.0405-20.2020.f1-2
https://doi.org/10.1523/ENEURO.0405-20.2020.f1-2
https://doi.org/10.1523/ENEURO.0405-20.2020.f1-3


Math

Power

Primality
test

Search

Binary
search

Linear
search

Sort

Bubble
sort

Insertion
sort

Selection
sort

String

Run length
encode

String sort

Substring
search

Category

Subcategory

Greatest
common divisor

public static void main(String[] args) {
long m = scan.nextLong();
long n = scan.nextLong();
System.out.println(function1(m, n, 100));

}
private static long function1(long m) {

long result = 1;
for (long i = 1; i <= n; i++) {

result *= m;
if (result >= M) {

result = result % M;
result = function1(result, (long) n / i, 100);
i = n - (n % i);

}
}
return result;

}

Sort
(3)

Search
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Math
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String
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Baseline
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tButton press

A
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Figure 1. Experimental design. A, Hierarchy of categories used in this study. Category and subcategory represent abstract function-
ality and concrete algorithms, respectively, based on two popular textbooks of programming. Every code snippet used in this study
belonged to one subcategory class and its corresponding category class. B, Program categorization task. After a fixation-cross pre-
sentation for 2 s, a Java code snippet was displayed for 10 s in white text without any syntax highlight. Then, subjects responded
the category of given code snippet by pressing a button. C, Overview of the decoding framework. MRI data were collected from 30
subjects with different levels of programming expertise while they performed the program categorization task. Whole-brain search-
light analysis (Kriegeskorte et al., 2006) was employed to explore the potential loci of programming expertise. For each searchlight
location, a linear-kernel SVM classifier (decoder) was trained on multivoxel patterns to classify category or subcategory of given
Java code snippets.

Research Article: New Research 4 of 16

January/February 2021, 8(1) ENEURO.0405-20.2020 eNeuro.org



individual behavioral performance. To clarify classification
criteria, a brief explanation about each category class
was provided before the experiment started. The presen-
tation order of the code snippets was pseudo-random-
ized under balancing the number of exemplars for each
category class across runs. The corresponding buttons
for each answer choice were also randomized across tri-
als to avoid linking a specific answer choice with a specif-
ic finger movement. Subjects were allowed to take a
break between runs and to quit the fMRI experiment at
any time.
All subjects took two additional sessions, named “train-

ing” and “post-MRI,” outside of the MRI scanner using a
laptop computer and PsychoPy to display source code
stimuli. The training session was performed within 10 d
before the fMRI experiment to mitigate potential con-
founds caused by task unfamiliarity. The session con-
sisted of three separate runs with the same program
categorization task as the fMRI experiment. A different set
of 72 Java code snippets from those used in the MRI ex-
periment, which covered the same algorithms, was used
as stimuli in the training session; each snippet was pre-
sented once or twice in the entire session but the same
snippet did not appear twice in a run. The post-MRI ses-
sion was performed within 10 d after the fMRI experiment
for assessment of individual ability in subcategory cate-
gorizations and was consisted of two separate runs using
the same codeset as the fMRI experiment. Before the
post-MRI session started, we explained the existence of
subcategory to the subjects and assessed whether they
recognized subcategory classes during the fMRI experi-
ment using a questionnaire. Program categorization tasks
in the post-MRI session followed the same procedure as
the fMRI session. In each trial, a Java code snippet was
displayed for 10 s after a fixation-cross presentation for 2
s. Then, within 4 s, the subjects were asked to classify the
given code snippet from two or three choices of subcate-
gory classes according to its superordinate category, e.
g., “bubble sort,” “insertion sort,” and “selection sort”
were displayed when the snippet in “sort” category was
presented. We calculated behavioral performance as the
ratio of correct-answer-trials to all-trials; unanswered tri-
als, i.e., no button input within the response phase, were
regarded as “incorrect” for this calculation. Chance-level
behavioral performance was 25% in the training sessions
and fMRI experiments and 37.25% in the post-MRI ses-
sions adjusted for imbalanced numbers of answer choices.
Again, these two additional sessions were performed out-
side of the MRI scanner, in other words, every subject did
only one experiment with fMRI scanning.

MRI data acquisition
MRI data were collected using a 3-Tesla Siemens

MAGNETOM Prisma scanner with a 64-channel head
coil located at CiNet. T2*-weighted multiband gradient
echo-EPI sequences were performed to acquire func-
tional images covering the entire brain [repetition time
(TR) = 2000ms, echo time (TE) = 30ms, flip angle = 75°,
field of view (FOV) = 192� 192 mm2, slice thickness = 2
mm, slice gap = 0 mm, voxel size = 2� 2 � 2.01 mm3,

multiband factor = 3]. A T1-weighted magnetization-
prepared rapid acquisition with a gradient-echo se-
quence was also performed to acquire fine-structural
images of the entire head (TR = 2530ms, TE = 3.26ms,
flip angle = 9°, FOV = 256� 256 mm2, slice thickness = 1
mm, slice gap = 0 mm, voxel size = 1� 1 � 1 mm3).

MRI data preprocessing
We used the Statistical Parametric Mapping toolbox

(SPM12; http://www.fil.ion.ucl.ac.uk/spm/) for prepro-
cessing. The first eight scans in dummy trials for each run
were discarded to avoid MRI signal instability. The func-
tional scans were aligned to the first volume in the fourth
run to remove movement artifacts. They were then slice-
time corrected and co-registered to the whole-head T1
structural image. Both anatomic and functional images
were spatially normalized into the standard Montreal
Neurologic Institute 152-brain average template space
and resampled to a voxel size of 2� 2 � 2 mm3. MRI sig-
nals at each voxel were high-pass2013filtered with a cut-
off period of 128 s to remove low-frequency drifts. A
thick gray matter mask was obtained from the normal-
ized anatomic images of all subjects to select the voxels
within neuronal tissue using the SPM Masking Toolbox
(Ridgway et al., 2009). For each subject independently,
we then fitted a general linear model (GLM) to estimate
voxel-level parameters (b ) linking recorded MRI signals
and conditions of source code presentations in each
trial. The fixation and response phases in each trial were
not explicitly modeled. The model also included motion
realignment parameters to regress-out signal variations
because of head motion. Finally, 216 b estimate maps
(36 trials� six runs) per subject were yielded and used
as input for the following multivariate pattern analysis.

Multivoxel pattern analysis
We used whole-brain searchlight analysis (Kriegeskorte

et al., 2006) to examine where significant decoding accu-
racies exist using the Decoding Toolbox (version 3.99;
Hebart et al., 2015) and LIBSVM (version 3.17; Chang and
Lin, 2011). A four-voxel-radius sphered searchlight, cover-
ing 251 voxels at once, was systematically shifted through-
out the brain and decoding accuracy was quantified on
each searchlight location. A linear-kernel support vector
machine (SVM) classifier was trained and evaluated using a
leave-one-run-out cross-validation procedure, which itera-
tively treated data in a single run for testing and the others
for training. In each fold, training data were first scaled to
zero-mean and unit variance by z-transform and test data
were scaled using the estimated scaling parameters. We
then applied outlier reduction using [�3, 13] as cutoff val-
ues and all scaled signals larger than the upper cutoff or
smaller than the lower cutoff were set to the closest value
of these limits. The SVM classifier was trained with three
cost parameter candidates [0.1, 1, 10], which control the
trade-off between margin maximization and the tolerance
of misclassification rate in the training step, and the best
parameter was chosen by a grid search in nested cross-
validations. The outlier boundary and cost parameter
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candidates were selected based on the estimated com-
putational load and the documents of tools employed.
Specifically, we here adopted a relatively small set of pa-
rameter candidates because of the constraint of the high
computational load of searchlight analysis. Finally, the
trained classifier predicted category or subcategory of seen
source code from the leave-out test data and decoding ac-
curacy was calculated as a ratio of correct-classifications
out of all-classifications. Note that corrected misclassifica-
tion cost weights were used in subcategory decoding to
compensate for the imbalanced number of exemplars
across subcategory classes.
The training and evaluation procedures were performed

independently for each subject and a whole-brain decod-
ing accuracy map was obtained per subject. We then
conducted second-level analyses to examine the signifi-
cance of decoding accuracies and the correlations be-
tween individual decoding accuracies and behavioral
performances. For this purpose, the decoding accuracy
maps were spatially smoothed using a Gaussian kernel of
6-mm full-width at half maximum (FWHM) and submitted
to random effects analysis as implemented in SPM12.
The analysis tested the significance of group-level decod-
ing accuracy and Pearson’s correlation coefficient be-
tween individual decoding accuracies and behavioral
performances. A relatively strict statistical threshold of
voxel-level p, 0.05 familywise error (FWE)-corrected was
used for decoding accuracy tests and a standard thresh-
old of voxel-level p,0.001 uncorrected and cluster-level
p, 0.05 FWE-corrected was used for correlation tests.
The chance-level accuracy (25% in category decoding
and 9.72% in subcategory decoding; adjusted for imbal-
anced numbers of exemplar) and zero correlation were
adopted as null hypotheses. Additionally, the resultant
significant searchlight maps, i.e., decoding accuracy map
and correlation map to behavioral performance, were
superimposed on a single cortical surface of the ICBM152

template brain using BrainNet viewer (Xia et al., 2013). We
performed this superimposition to identify the searchlight
centers that had both sufficient information to represent
functional categories of source code and significant cor-
relation between individual behavioral performances and
decoding accuracies.

Data and code availability
The experimental data and code used in the present

study are available from our repository: https://github.
com/Yoshiharu-Ikutani/DecodingCodeFromTheBrain.

Results
Behavioral data
We evaluated the relationship between the adopted

reference of programming expertise and behavioral per-
formance on the program categorization task. A signifi-
cant correlation was observed between AtCoder rate
[mean= 954.3, SD= 864.6] and behavioral performance
in the fMRI experiments [mean= 76.0, SD= 13.5 (%)],
r= 0.593, p= 0.0059, n= 20 (Fig. 2A). The correlation re-
mained significant if we included behavioral performan-
ces of non-rate-holders (i.e., novices) as zero-rated
subjects; r= 0.722, p= 0.000007, n= 30. We additionally
found a positive correlation between AtCoder rate and
behavioral performance on subcategory categorization
in the post-MRI experiments [mean= 65.9, SD= 17.0
(%)], r = 0.688, p= 0.0008, n= 20 (Fig. 2B). The significant
correlation also remained significant if we included non-
rate-holder subjects; r = 0.735, p= 0.000004, n= 30.
From all behavioral data, we certainly concluded that be-
havioral performances on the program categorization task
significantly correlated with expertise of competitive program-
ming. The behavioral evidence allowed us to study the poten-
tial association between experts’ outstanding performances
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Figure 2. Correlations between behavioral performance and programming expertise indicator. A, Scatter plot of behavioral perform-
ances of category classifications against the values of adopted expertise reference (i.e., AtCoder rate). B, Scatter plot of behavioral
performances of subcategory classifications against the values of the same expertise reference. Each dot represents an individual
subject. Significance of the correlation coefficients (r) was denoted as *p,0.05 and **p,0.005. The solid lines indicate a fitted re-
gression line estimated from all subject data.
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and brain activity patterns measured using fMRI while sub-
jects performed this laboratory task.

Multivoxel activity patterns associated with
programming expertise
We first examined where we could decode the function-

al categories of source code from programmers’ brain ac-
tivity. Figure 3 visualizes the searchlight centers that
showed significantly higher decoding accuracy than
chance as estimated from all subject data using a rela-
tively strict whole-brain statistical threshold (voxel-level
p, 0.05 FWE-corrected). The figure shows that signifi-
cant decoding accuracies were observed in the broad
areas of the bilateral occipital cortices, parietal cortices,
posterior and ventral temporal cortices, as well as the bi-
lateral frontal cortices around IFGs. Given the result, we
confirmed that functional categories of source code were
represented in the widely distributed brain areas and the
cortical representations of each category class were line-
arly separable by a simple SVM classifier.
To associate the cortical representation of source code

with individual programming expertise, we investigated a
linear correlation between behavioral performances and
decoding accuracies for each searchlight location. Figure
4A visualizes the searchlight centers that showed signifi-
cantly high correlation coefficients using thresholds of
voxel-level p, 0.001 uncorrected and cluster-level p, 0.05
FWE-corrected. We observed significant correlations in the
areas of bilateral IFGs pars triangularis (IFG Tri), right superi-
or frontal gyrus (SFG), left IPL, left MTG and inferior temporal
gyrus (IT); see the slice-width visualization shown as Figure
4B and Table 2 for the list of significant clusters. In this cor-
relation analysis, the right IFG Tri showed the highest peak
correlation coefficient. These results provided evidence that
cortical representations in the distinct brain areas mainly
located in frontal, parietal, and temporal cortices were signif-
icantly associated with experts’ outstanding behavioral per-
formances on the program categorization task. In contrast,

cortical representations in the bilateral occipital cortices in-
cluding early visual areas did not show a significant correla-
tion to individual behavioral performances, while significant
decoding accuracies were broadly observed in the cortices
shown as Figure 3.
Two previous analyses separately showed where signif-

icant decoding accuracies exist and whether the decod-
ing accuracies significantly correlate with behavioral
performances. To achieve more validated evidence for
the cortical representations associated with programming
expertise, we integrated these two analyses and identified
searchlight centers that had sufficient information to rep-
resent functional categories of source code and their de-
coding accuracies significantly correlated with individual
behavioral performance. Specifically, the two significant
searchlight maps, i.e., decoding accuracy map and corre-
lation map to behavioral performance, were superim-
posed on a single cortical surface to investigate the
overlap between them. As a result, we found 1205 search-
light centers (equal to 0.79%) that survived from both sta-
tistical thresholds of decoding accuracy and correlation
to behavioral performances; shown as red-colored dots in
Figure 5A. The survived searchlight centers were mainly
observed in the bilateral IFG Tri, left IPL, left supramargi-
nal gyrus (SMG), left MTG/IT, and right MFG as shown in
Figure 5B. These results revealed a tight association be-
tween superior behavioral performances of expert pro-
grammers and improvement of decoding accuracy in
these seven brain regions.

Cortical representations of subcategory information
We next investigated where we could decode the sub-

category of source code from programmers’ brain activity
to examine finer-level cortical representations. In our ex-
periment, subjects responded sort when they had been
presented with the code snippets implementing one of
three different sorting algorithms; i.e., bubble, insertion,
and selection sorts (Fig. 1A). This cognitive process could
be considered as a generalization process that incorpo-
rates different but similar algorithms (subcategory) into a
more general functionality class (category). Additionally,
several psychologists indicated that experts specifically
show high behavioral performances in subordinate-level
categorizations as well as basic-level categorizations
(Tanaka and Taylor, 1991). In fact, we have observed
that the ability to differentiate subcategory classes sig-
nificantly correlated to programming expertise in com-
petitive programming (Fig. 2B). This observation implies
that the detailed difference of source code functionalities
might be represented in programmers’ brain activity pat-
terns. The decoding accuracy of subcategory may be corre-
lated with programming expertise, although they classified
only category classes, not subcategory, of given code snip-
pets and the existence of subcategory classes had never
been revealed until the end of the fMRI experiment.
We employed searchlight analysis with the same setting

as used in the previous analysis to reveal the spatial distri-
bution of significant subcategory decoding accuracies
and significant correlations to behavioral performances.
Figure 6 illustrates the searchlight centers that showed
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Figure 3. Decoding accuracy for functional category of source
code. Significant searchlight locations estimated from all sub-
ject data (N=30). Heat colored voxels denote the centers of
searchlights with significant decoding accuracy (voxel-level
p, 0.05, FWE corrected). See Extended Data Figure 3-1 for the
distribution of voxel-level peak decoding accuracies. The brain
surface visualizations were performed using BrainNet viewer,
version 1.61 (Xia et al., 2013).
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significantly higher subcategory decoding accuracy than
chance (9.72%; corrected for imbalanced exemplars)
using a threshold of voxel-level p,0.05 FWE-corrected.
The linear correlation between subcategory decoding ac-
curacies and individual behavioral performances was
then assessed using thresholds of voxel-level p, 0.001
uncorrected and cluster-level p, 0.05 FWE-corrected

(Fig. 7). As a result, only a cluster on the left SMG and
STG showed a significant correlation; the peak correlation
coefficient was observed in the left STG. Finally, we inte-
grated the results from decoding and correlation analysis
of subcategory and confirmed that 120 searchlight cen-
ters (equal to 0.08%) on the left SMG and STG survived
from both statistical thresholds of decoding accuracy and
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Figure 4. Searchlight-based correlation analysis between behavioral performances and decoding accuracies. A, Locations of
searchlight showing significant correlations. Significance was determined by a threshold of voxel-level p, 0.001 and cluster-level
p, 0.05, FWE corrected for the whole brain. B, Slice-wise visualizations of the significant clusters using bspmview (http://www.
bobspunt.com/software/bspmview). C, Correlation between behavioral performance and decoding accuracy. Each dot represents
an individual subject data. For all significant clusters and peak correlations, see Table 2. SMG, supramarginal gyrus; IPL, inferior pa-
rietal lobule; MTG, middle temporal gyrus; IT, inferior temporal gyrus; SFG, superior frontal gyrus; MFG, middle frontal gyrus; IFG
Tri, inferior frontal gyrus pars triangularis; IFG Orb, inferior frontal gyrus pars orbitalis; MCC, medial cingulate cortex.

Table 2: Clusters showing significant correlations between behavioral performance and category decoding accuracy
(voxel-level p, 0.001 and cluster-level p, 0.05, FWE-corrected)

MNI coordinates
Region name x y z Peak corr. (r) t value Cluster extent
R IFG (Tri) 46 22 8 0.789 6.81 369
L posterior-medial frontal �12 0 66 0.711 5.36 298
R superior medial gyrus 6 52 42 0.699 5.17 587
L IPL �56 �28 50 0.698 5.16 649
R SFG 24 4 60 0.675 4.84 428
L IFG (Tri) �52 30 24 0.671 4.79 346
L IT �50 �54 0 0.635 4.35 347

Region names were identified using automated anatomic labeling atlas 2 (Rolls et al., 2015).
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correlation to behavioral performances (Fig. 8A, red-col-
ored dots). These results suggest that cortical representa-
tions of fine functional categories on the left SMG and
STG may play an important role in achieving advanced-
level programming expertise, although the representa-
tions are not explicitly required by the tasks.

Discussion
We have shown that functional categories of source

code can be decoded from programmers’ brain activity
measured using fMRI. Decoding accuracies on the bilateral
IFG Tri, left IPL, left SMG, left MTG and IT, and right MFG
were significantly correlated with individual behavioral

performances on the program categorization task. Fur-
thermore, decoding accuracies of subcategory on the left
SMG and STG were also strongly correlated with the behav-
ioral performances while the subordinate-level representa-
tions were not directly induced by the performing tasks. Our
results revealed an association between the outstanding per-
formances of expert programmers and domain-specific corti-
cal representations in these brain areas widely distributed in
the frontal, parietal, and temporal cortices.
Previous fMRI studies on programmers have aimed at

characterizing how programming-related activities, such
as program comprehension and bug detection, take
place in the brain (Siegmund et al., 2014, 2017; Floyd et
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Figure 5. Identifying searchlight centers that showed both significant decoding accuracy and significant correlation to individual be-
havioral performances. A, Scatter plot of searchlight results. x-axis shows t values calculated from all subjects’ decoding accuracies
on each searchlight locations. y-axis indicates correlation coefficients between decoding accuracies and behavioral performances.
Red-colored dots denote the searchlights showing both significant decoding accuracy and correlation, while blue and black denote
those only showed significant decoding accuracy or correlations. Non-significant searchlights were colored in gray. The observed
distributions of decoding accuracies and correlations are respectively shown on top-side and right-side of the figure accompanied
with null distributions calculated by randomized simulations. B, Locations of searchlight centers that showed both significant de-
coding accuracy and significant correlations to individual behavioral performances.
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al., 2017; Castelhano et al., 2019; Peitek et al., 2018a,b).
Exceptionally, an exploratory study reported that BOLD
signal discriminability between code and text comprehen-
sion was negatively correlated with participants’ GPA
scores in a university (Floyd et al., 2017). However, the re-
lationship between GPA scores and programming exper-
tise was ambiguous and the observed correlation was
relatively small (r = �0.44, p=0.016, n=29). Our aim in
the present study was substantially different: we sought
the neural bases of programming expertise that contrib-
ute to expert programmers’ outstanding performances.
To address the goal, we adopted an objectively-deter-
mined reference of programming expertise and recruited
a population of subjects covering a wide range of pro-
gramming expertise. Despite the difference in research
aims, a subset of brain regions specified in this study was
similar to those specified by prior fMRI studies on pro-
grammers (Siegmund et al., 2014, 2017; Peitek et al.,
2018a). In particular, this study associated the left IFG,
MTG, IPL, and SMG with programming expertise, while
previous studies related them with program comprehen-
sion processes. This commonality may suggest that both
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Figure 6. Decoding accuracy for subcategory of source code.
Searchlight locations showing significant subcategory decoding
accuracy than chance estimated from all subject data (N=30).
Heat colored voxels denote the centers of searchlights with sig-
nificant subcategory decoding accuracy (voxel-level p, 0.05,
FWE corrected). For the distribution of voxel-level peak subca-
tegory decoding accuracies, see Extended Data Figure 6-1.
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Figure 7. Searchlight-based correlation analysis between behavioral performances and subcategory decoding accuracies. A,
Locations of searchlight showing significant correlations. Significance was determined by a threshold of voxel-level p, 0.001 and
cluster-level p,0.05, FWE corrected for the whole brain. B, Slice-wise visualizations of the significant clusters. C, Correlation be-
tween behavioral performance and decoding accuracy. Each dot represents an individual subject data. Only one cluster
(extent = 501 voxels) had significant correlation in this analysis and three peak correlations in the cluster were shown here. STG,
superior temporal gyrus.
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program comprehension processes and its related exper-
tise depend on the same set of brain regions.
The potential roles of the specified brain regions in our

study should be addressed to orient future researches on
programming activity and expertise. First, the left IFG Tri
and the left posterior MTG are frequently involved in se-
mantic selecting/retrieving tasks (Démonet et al., 1992;
Thompson-Schill et al., 1997; Simmons et al., 2005; Price,
2012). Several studies indicated that these two regions
are sensitive to cognitive demands for directing semantic
knowledge retrieval in a goal-oriented way (Rodd et al.,
2005; Kuhl et al., 2007; Whitney et al., 2011). The

involvement of the two regions in our findings may be in-
duced by similar demands specialized for the retrieval of
program functional categories and suggest that higher
programming expertise is related to the abilities of goal-
oriented knowledge retrieval. Second, many neuroscient-
ists have shown the left IPL and SMG to be functionally
related to visual word reading (Bookheimer et al., 1995;
Philipose et al., 2007; Stoeckel et al., 2009) and episodic
memory retrieval (Wagner et al., 2005; Vilberg and Rugg,
2008; O’Connor et al., 2010). Both cognitive functions
potentially relate to the program categorization task used
in our experiment. Visual word reading can be naturally
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Figure 8. Identifying searchlight centers that showed both significant subcategory decoding accuracy and significant correlation to
individual behavioral performances. A, Scatter plot of searchlight results; x-axis shows t values calculated from all subjects’ decod-
ing accuracies on each searchlight locations; y-axis indicates correlation coefficients between subcategory decoding accuracies
and behavioral performances. Red-colored dots denote the searchlights showing both significant decoding accuracy and correla-
tion, while blue and black denote those only showed significant decoding accuracy or correlations. Non-significant searchlights
were colored in gray. The observed distributions of subcategory decoding accuracies and correlations are respectively shown on
top-side and right-side of the figure accompanied with null distributions calculated by randomized simulations. B, Locations of
searchlight centers that showed both significant subcategory decoding accuracy and significant correlations to individual behavioral
performances.
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engaged since source code is comprised of many
English-like words and subjects may have actively recol-
lected previously-acquired memories to compensate for
insufficient clues because they had only 10 s to categorize
the given code snippet. The involvements of the left IPL
and SMG in programming expertise suggest that expert
programmers might possess different reading strategies
and/or depend more on domain-specific memory retrieval
than novices. In addition, the set of IFG and IPL has been
frequently discussed together as a fronto-parietal network
and they often show synchronous activity in a wide range
of tasks (Watson and Chatterjee, 2012; Ptak et al., 2017).
Importantly, a recent fMRI study on programmers sug-
gested an association between program comprehension
and fronto-parietal network that was functionally related
to formal logical inference (Liu et al., 2020). Our results are
consistent with these findings, implying that the fronto-
parietal network plays a key role in experts’ program com-
prehension processes.
Other novel findings in the present study included po-

tential involvement of the left IT, right MFG, and right IFG
Tri with programming expertise. Importantly, these re-
gions were not specified by previous studies focusing on
the relationship between brain activity and program com-
prehension processes of non-expert subjects (Siegmund
et al., 2014, 2017; Floyd et al., 2017; Peitek et al., 2018a),
suggesting that the regions might be more related to ex-
pert programmers’ program comprehension processes.
Because the left IT is well known for the function in high-
level visual processing including word recognition and
categorical object representations (Chelazzi et al., 1993;
Nobre et al., 1994; Kriegeskorte et al., 2008); our results
may suggest that the high-level visual cortex in expert
programmers could be fine-tuned by their training experi-
ence to realize faster program comprehension process.
From another perspective, the observed map involving
the left IFG Tri, IPL, and MTG/IT (Fig. 4A) could be associ-
ated with a semantic system in the brain (Patterson et al.,
2007; Binder et al., 2009). Our results might suggest that
an expert programmer’s brain recruits a similar language-
related network for both natural language processing and
program comprehension. In contrast, the primary visual
area showed significant decoding accuracy but no corre-
lation to programming expertise. The primary visual area
mainly reflects primitive visual features such as color,
contrast, spatial frequency (Tong, 2003), while computa-
tions in the high-level visual cortex are characterized by
both bottom-up (i.e., how stimuli are visually represented)
and top-down (how the representation is used for a cogni-
tive task) effects (Kay and Yeatman, 2017). Previous stud-
ies indicated that fine-tuned representations in the high-
level visual cortex, rather than in the primary visual area,
could be associated with visual expertise (Bilali�c et al.,
2016) and reading skill Kubota et al. (2019). In our experi-
ment, the primary visual area represented a large amount
of visual information regardless of programming exper-
tise levels because all subjects were presented with the
same set of code snippets inducing similar visual pat-
terns on their retinas. Therefore, the information in the
primary visual area was sufficient to decode category

and subcategory classes but the decoding accuracies
were not necessarily to be correlated with individual be-
havioral performances. Meanwhile, the amount of infor-
mation represented in the high-level visual cortex might
be modulated by individual programming expertise. In
line with previous expertise studies, our results imply
that expertise in program comprehension could be
mainly associated with high-level visual perception.
The right MFG and IFG Tri are functionally related to

stimulus-driven attention control (Corbetta et al., 2008;
Japee et al., 2015). The involvement of these two regions
suggests that programmers with high-level programming
expertise may employ different attention strategies than
less-skilled ones. Moreover, additional engagements of
right hemisphere regions in experts are common across
expertise studies. For example, chess experts (Bilali�c et
al., 2011) and abacus experts (Tanaka et al., 2002;
Hanakawa et al., 2003) showed additional right hemi-
sphere region involvements when performing their do-
main-specific tasks. Several fMRI studies further suggest
that such activation shifts from left to right hemisphere
may be related to experts’ cognitive strategy changes
(Bilali�c et al., 2011; Tanaka et al., 2012). Cognitive strat-
egy changes have been observed repeatedly in compari-
sons between expert and novice programmers: a major
characteristic is a transition from bottom-up (or textual-
driven) to top-down (or goal-driven) program comprehen-
sion, which becomes feasible by experts’ domain-specific
knowledge (Koenemann and Robertson, 1991; Fix et al.,
1993; Von Mayrhauser and Vans, 1995). The involvement
of the right MFG and IFG Tri observed in this study might
be related to such cognitive strategy differences between
programmers in the program categorization task. From
another perspective, activations in the prefrontal and pari-
etal regions including bilateral IFG/MFG and left IPL have
been associated with the extent of cognitive demands
(Harvey et al., 2005). While our study did not have a direct
indicator of cognitive demands across categories, the dif-
ference in behavioral performances for each category can
be a clue to assess the extent of cognitive demand across
the categories. We used the one-way ANOVA to test the
difference in mean behavioral performances between cat-
egories but no significant difference was found for any
groupings (see Extended Data Fig. 2-1). Although these
results do not provide a direct indication of cognitive de-
mands across categories, we have no positive evidence
that the extent of cognitive demands had a significant ef-
fect on the observed decoding accuracies.
Our results associated programming expertise with

decoding accuracies of not only category but also sub-
category, although the subordinate-level categorizations
were not explicitly required by the performing task. We
observed that individual behavioral performances were
significantly correlated with subcategory decoding accu-
racies on the left STG and SMG. These two regions are
functionally related to prelexical and phonological proc-
essing in natural language comprehension (Démonet et
al., 1992; Moore and Price, 1999; Burton et al., 2001).
Interestingly, we also found a significant correlation be-
tween behavioral performances and category decoding
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accuracies on the temporal regions (left MTG and IT) as-
sociated with more semantical processing (Rodd et al.,
2005; Whitney et al., 2011; Price, 2012). If these func-
tional interpretations could be adaptable to program
comprehension processes, it would be intuitive that sub-
ordinate concrete concepts (i.e., subcategory) of source
code are processed in the left STG/SMG and more se-
mantically abstract concepts (i.e., category) are repre-
sented in the left MTG/IT. Further, Mkrtychian et al.
(2019) have associated STG, MTG, and IFG with the
processing of abstract concepts in their review on con-
creteness effects, implying that representations in these
three regions could reflect relative differences in ab-
stractness between the category and subcategory in our
study. These interpretations might suggest a hypothesis
that an expert programmer’s brain has a hierarchical se-
mantic processing system to obtain mental representa-
tions of source code for multiple levels of abstraction.
Our decoding framework specialized for the functional

category of source code could be extended by the recent
advances of decoding/encoding approaches in combina-
tion with distributed feature vectors (Diedrichsen and
Kriegeskorte, 2017). Several researchers have demon-
strated frameworks to decode arbitrary objects using a
set of computational visual features representing catego-
ries of target objects (Horikawa and Kamitani, 2017) and
to decode perceptual experiences evoked by natural
movies using word-based distributed representations
(Nishida and Nishimoto, 2018). Other studies have also
used word-based distributed representations to system-
atically map semantic selectivity across the cortex (Huth
et al., 2016; Pereira et al., 2018). Meanwhile, researchers
in the program analysis domain have proposed distrib-
uted representations of source code based on abstract
syntax tree (AST; Alon et al., 2019a; Zhang et al., 2019).
Alon et al. (2019b), for instance, have presented continu-
ous distributed vectors representing the functionality of
source code using AST and path-attention neural net-
work. The combination of recent decoding/encoding ap-
proaches and distributed representations of source code
may enable us to build a computational model of program
comprehension that connects semantic features of
source code to programmers’ perceptual experiences.

Limitations of the study
The results obtained via the present study were limited

to a specific type of programming expertise evaluated by
the expertise reference and laboratory task used in the
experiment. We particularly examined the ability to se-
mantically categorize source code that correlated with
programming expertise to win high scores in competitive
programming contests. Perhaps there is a qualitative
gap between expertise in competitive programming and
practical/industrial software development. For example,
the ability to write efficient SQL programs may be an ex-
plicit indicator of another type of programming expertise,
but this study did not cover such type of programming
expertise. The program categorization task used in this
study primarily evaluated the skill in recognizing algo-
rithms quickly and accurately, which was one aspect of a

wide range of cognitive skills that constitute program-
ming expertise. We considered that the evaluated skill is
related to program comprehension and is also con-
nected to skills in code refactoring and debugging be-
cause these processes require a deep understanding of
algorithms or how the code works, while its relation to
writing code is not assessed in this study. Thus, our re-
sults should not be taken to imply the relationship be-
tween the neural correlates revealed here and other
types of programming expertise that could not be exam-
ined by this experiment. However, it is also a fact that we
cannot investigate the neural bases of programming ex-
pertise without a clear definition of expertise indicator
and laboratory task that well fit the general constraints of
fMRI experiments. To mitigate the potentially inevitable
effects caused by this limitation, we adopted the objec-
tively-determined reference of programming expertise
that directly reflects programmers’ actual performances
and recruited a population of subjects covering a wide
range of programming expertise. This study can be a
baseline for future researches to investigate the neural
bases of programming expertise and related abilities.
Our experiment, which was designed to fit the general

constraints of fMRI measurement, might embrace several
caveats to external validity. First, we used the relatively
small code snippets with 30 lines at maximum because of
the constraint of the MRI screen size. Behavioral perform-
ances on system-level source code were not assessed in
the study. Thus, generalizing our results to the expertise
in systems-level program comprehension was not guar-
anteed. Second, only Java code snippets were used as
experimental stimuli in this study. The results obtained via
the experiments might be biased by the programming lan-
guage selected, for example, Python has more natural-
language-like syntax than Java and might induce more
activation in language-related brain regions. While a re-
cent fMRI study has examined brain activities elicited by
code written in two programming languages (Python and
ScratchJr; Ivanova et al., 2020), it is still unclear whether
the choice of a specific programming language can alter
an expert’s brain activity pattern. The relationship be-
tween programming expertise and types of programming
languages (e.g., procedural vs functional languages) is ex-
pected to be examined in future work.
Another potential concern of the present study was the

unfair gender balance in the subject population. While 95
programmers completed our entry questionnaire to be
registered as candidate subjects, only one middle-level
woman candidate and zero woman expert were found
(see Materials and Methods, Subjects). From this situa-
tion, we recognized the unavoidable gender bias in our
target population. To properly cover a wide range of pro-
gramming expertise, we were forced to give up on main-
taining gender balance at each expertise level. However,
several fMRI studies have reported possible gender differ-
ences in behavior, cognitive function, and neuroimaging
data (David et al., 2018; Huang et al., 2020). The results
obtained via this study might be biased by the gender im-
balance of the subject population. Future work should in-
vestigate whether behavioral and cognitive differences
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would be found between man and woman programmers.
In addition, while our sample size was determined in line
with previous expertise studies, ten subjects for each ex-
pertise level was not a big population and were insuffi-
cient to show statistically significant results between
different expertise classes. Therefore, making mention of
comparison between novice-middle or middle-expert
must be with great caution. Larger samples would be de-
sirable in future replication or follow-up studies.
Our findings reveal an association between program-

ming expertise and cortical representations of program
source code in a programmer’s brain. We demonstrated
that functional categories of source code can be de-
coded from programmer’s brain activity and the decod-
ing accuracies on the seven regions in the frontal,
parietal, and temporal cortices were significantly corre-
lated with individual behavioral performances. The re-
sults additionally suggest that cortical representations of
fine functional categories (subcategory) on the left SMG
and STG might be associated with advanced-level pro-
gramming expertise. Although research on the neural
basis of programming expertise is still in its infancy, we
believe that our study extends the existing human exper-
tise literature into the domain of programming by dem-
onstrating that top-level programmers have domain-
specific cortical representations.
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