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ABSTRACT
The successful treatment of keloids is a great challenge in the plastic surgery field. Activating 
transcription factor 3 (ATF3) is discovered as an adaptive responsive gene, which plays a critical 
role in fibroblast activation. This study aimed to investigate the expression and biological role of 
ATF3 in the pathogenesis of keloids. ATF3 expression in normal skins and keloids was evaluated 
by real-time PCR, western blot and immunohistochemistry. Effects of ATF3 on cell growth, 
apoptosis, invasion and collagen production were evaluated in keloid fibroblast cells overexpres-
sing or downregulating ATF3. ATF3 expression was significantly elevated in keloid tissues when 
compared with that of normal skins and parakeloidal skin tissues. Moreover, ATF3 promoted cell 
proliferation and collagen production in keloid fibroblast cells. Conversely, transfection with siRNA 
targeting ATF3 led to decreased cell viability and collagen synthesis via inhibiting transforming 
growth factor-β1 (TGF-β1) and fibroblast growth factor 2/8 (FGF2/8) production in keloid fibro-
blasts. ATF3 could reduce the apoptosis rate of keloid fibroblast cells. Molecularly, we found that 
ATF3 promoted BCL2 level and inhibit the expression of BCL2 associated agonist of cell death 
(Bad), Caspase3 and Caspase9 in keloid fibroblast cells. ATF3 also enhanced the invasive potential 
via upregulating the expression of Matrix Metalloproteinases (MMP) family members (MMP1, 
MMP2, MMP9 and MMP13). ATF3 could induce activation of TGF-β/Smad signaling pathway in 
fibroblasts. Collectively, ATF3 could promote growth and invasion, and inhibit apoptosis via TGF- 
β/Smad pathway in keloid fibroblast cells, suggesting that ATF3 might be considered as a novel 
therapeutic target for the management of keloid.
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Introduction

Keloid is one of the most common pathological scars 
produced from deregulated wound healing that 
occurs upon skin tissues damage [1]. Keloid is char-
acterized by overproduction of extracellular matrix, 
excessive fibroblast proliferation, overexpression of 
growth factors and anomalous disposition of 

collagen fibers [2]. The main therapeutic modality 
of keloid includes surgery, drugs, laser therapy and 
radiotherapy [3]. However, the complete pathophy-
siology of keloid remains unclear.

Activating transcription factor 3 (ATF3) belongs to 
the ATF/CREB family. As a responsive gene, ATF3 is 
frequently elevated upon stimulation from a wide 
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range of intra- and extracellular stresses [4,5]. ATF3 
plays critical roles in regulating cellular behaviors by 
homo- or heterodimerizing with ATF members to 
activate or repress downstream genes [6]. Many stu-
dies have shown that ATF3 plays a vital role in cardiac 
fibrosis and apoptosis by modulating downstream 
signaling pathways, such as ERK1/2, JNK, and NF- 
κB [4,7]. Moreover, ATF3 promotes cell cycle transi-
tion by activating cyclin D1 expression in hepatocytes 
[8]. Changes in ATF3 expression are also associated 
with innate immunity response [9,10]. 
Lipopolysaccharide induced activation of TLR4 pro-
motes ATF3, modulating the expression of various 
inflammatory genes, such as interleukin-6 (IL-6) and 
tumor necrosis factor-α (TNF-α) [11]. Particularly, 
accumulating evidence showed that ATF3 plays 
a critical role in fibroblast activation [12–14]. 
However, it remains unknown whether ATF3 could 
regulate the cellular behaviors of keloid fibroblasts.

Transforming growth factor-beta (TGF-β) could be 
abundantly released by injured tissues, and thus plays 
a critical role in pathological fibrosis, including keloid 
formation [15]. Firstly, TGF-β binds to type II TGF-β 
receptor (TβRII) which associates with and phosphor-
ylates type I receptor (TβRI). Secondly, TβRI activates 
Smad signaling pathway to initiate a variety of physio-
logical effects. Accumulating evidence revealed that 
TGF-β was dramatically elevated in keloid fibroblasts. 
A recent study has demonstrated a critical role of 
TGF-β/Smad signaling in the activation of keloid 
fibroblasts [16].

In the present study, we hypothesized that 
ATF3 is involved in the pathogenesis of keloids 
by activating TGF-β/Smad signaling. To prove 
such a hypothesis, we detected the expression pro-
file of ATF3 in human keloid tissues and evaluated 
its effects on keloid fibroblast cell growth, apopto-
sis, invasion and collagen production. 
Additionally, the functional relevance of ATF3 
and TGF-β/Smad pathway in activated keloid 
fibroblasts was investigated.

Materials and methods

Samples

Thirty paired keloids and their adjacent skin tissues 
were collected at the Medical Plastic and Cosmetic 
Center, the Affiliated Hospital of Qingdao University 

between December 2018 and December 2019. Healthy 
skin tissues (n = 30) were collected at the Medical 
Plastic and Cosmetic Center, the Affiliated Hospital 
of Qingdao University during the same period. The 
keloid patients were not treated with any drugs, hor-
mones, and radiation before surgery. This study was 
approved by the ethics committee of the Affiliated 
Hospital of Qingdao University and all participants 
signed informed consent.

Cell culture

The tissue was surgically removed, rinsed in PBS, 
and incised into small pieces of 1 mm size. They 
were digested by type I collagenase at 37°C for 
4–6 h and subject to centrifugation at 800 x g for 
10 min. Then, fibroblasts were collected and 
seeded to cell culture dishes in an incubator (5% 
CO2, 37°C). When the confluence reached above 
90%, cells were trypsinized and passaged. After 
three or four passages, fibroblasts were used for 
experiments.

MTT assay

Keloid fibroblast cells were seeded into 96-well 
plates at a density of 3.0 × 103 cells per well in 
200 mL DMEM medium for 12 h. Then, cells were 
transfected with negative control siRNA (siRNA 
NC), negative control plasmids (overexpression 
NC) and target gene-manipulated groups (recom-
binant plasmid encoding ATF3 and ATF3 siRNA). 
After 48 h of transfection, cell viability was 
detected by adding fresh medium containing 
20 mL of MTT solution (5 mg/mL). After incuba-
tion at 37°C for 2 h, the optical absorbance was 
measured at 490 nm.

Transfections

Transfections of plasmid DNA were performed 
using the Lipofectamine 2000 (ThermoFisher 
Scientific, Inc., Waltham, MA, USA) according to 
the manufacturer’s instructions. The ATF3 over-
expression was conducted by constructing the full- 
length ATF3 sequences into cells via pLV-IRES- 
DsRed plasmids (GenePharma, Shanghai, China). 
The siRNA specific for ATF3 was purchased from 
RiboBio (Guangzhou, Guangdong, China). For 
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gene transduction, fibroblasts were incubated with 
the viral media supplemented with 8 µg/ml poly-
brene overnight at a 37°C incubator supplemented 
with 5% CO2. Forty-eight hours after transfection, 
cells were harvested for subsequent experiments.

Real-time PCR
Total RNAs were extracted and reversely transcribed 
into cDNA with a cDNA synthesis kit (Stratagene, 
USA), followed by the manufacturer’s recommenda-
tions. The PCR reaction was performed on the ABI 
7300 Sequence Detection System (Applied 
Biosystems, Carlsbad, CA, USA). The primer 
sequences used were as follows: ATF3: 5ʹ- 
CAGAGCCTGGTGTTGTGCTA-3ʹ (forward) and 
5ʹ-AGGTGTCGTCCATCCTCTGTT-3ʹ (reverse); 
TGF-β1: 5ʹ-AGAGCCATCGCCATAGTGTC-3ʹ (for-
ward) and 5ʹ- AGAGACGCTGCCATTGATCC −3ʹ 
(reverse); FGF8: 5ʹ- AAGAGCTGGGCTAAGCCGT 
C −3ʹ (forward) and 5ʹ-GTGCCCGTCTG 
AAAACACCT-3ʹ (reverse); fibroblast growth factor 
2 (FGF2): 5ʹ- ATCCACCAGAGCAAGAGTCC-3ʹ 
(forward) and 5ʹ- GGTCACAGGACTGA 
ACCACAT −3ʹ (reverse); collagen I (COLI): 5ʹ- 
CCTGAGAGGAGCATCAAGAGC-3ʹ (forward) 
and 5ʹ- AAGCGAGCAGAGAGGCTTAC −3ʹ 
(reverse); collagen III (COLIII): 5ʹ- TCCAGTTCCT 
TTCTG GCGAA −3ʹ (forward) and 5ʹ-AGGGC 
CTACCAAGAAGATGC −3ʹ (reverse); BCL2: 5ʹ- 
AGCTCCAGGGCTATCACTCA −3ʹ (forward) and 
5ʹ- CATGG GCAGCTACTCGTCTT −3ʹ (reverse); 
Bad: 5ʹ-TAGTACTGGGTAGCCCTCGC-3ʹ (for-
ward) and 5ʹ- CCGCTTGTTG GGGTCATAGT-3ʹ 
(reverse); Caspase3: 5ʹ- TGATAGCGTGCC 
ATGCAAAG-3ʹ (forward) and 5ʹ- GGGCTTGCGA 
CAATCACAAC −3ʹ (reverse); Caspase9: 5ʹ- 
TCAGTGTGTGGGAG GACAGA-3ʹ (forward) and 
5ʹ- AAGCTGAGCTACTCA GAG GGA-3ʹ (reverse); 
β-actin: 5ʹ- CTGTATGCCTCTGGTCGTAC-3ʹ (for-
ward) and 5ʹ- TGATGTCACGCACGATTTCC-3ʹ 
(reverse). The amplification program included an 
initial denaturation at 94°C for 5 seconds, followed 
by 35 cycles of 30 seconds at 94°C, 30 seconds at 55°C, 
and 40 seconds at 72°C, and a final extension at 72°C 
for 10 minutes. The relative mRNA expression of each 
gene was calculated using 2(-ΔΔCt) with β-actin as the 
internal reference.

Western blot

Total proteins from tissues or fibroblasts were 
lysed with lysis buffer. Equal amounts of protein 
samples (20 μg) were subject to a 10% SDS-PAGE 
gel and then transferred on to a PVDF mem-
brane. Thereafter, the membrane was blocked 
with 5% nonfat dry milk in PBS for 2 h at 
room temperature. The membrane was incubated 
with the primary antibody against ATF3 (dilu-
tion, 1:1000, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA), TGF-β1 (dilution, 1:1000, 
Santa Cruz Biotechnology, Santa Cruz, CA, 
USA), FGF8 (dilution, 1:1000, Santa Cruz 
Biotechnology, Santa Cruz, CA, USA), FGF2 
(dilution, 1:1000, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), COI (dilution, 1:1000, 
Santa Cruz Biotechnology, Santa Cruz, CA, 
USA), COIII (dilution, 1:1000, Santa Cruz 
Biotechnology, Santa Cruz, CA, USA), BCL2 
(dilution, 1:1000, Santa Cruz Biotechnology, 
Santa Cruz, CA, USA), Bad (dilution, 1:1000, 
Santa Cruz Biotechnology, Santa Cruz, CA, 
USA), Caspase3 (dilution, 1:1000, Santa Cruz 
Biotechnology, Santa Cruz, CA, USA), Caspase9 
(dilution, 1:1000, Santa Cruz Biotechnology, Santa 
Cruz, CA, USA), and β-actin (dilution, 1:5000, 
Santa Cruz Biotechnology, Santa Cruz, CA, 
USA) overnight at 4°C. After washing for three 
times in TBST, the membrane was incubated with 
horseradish peroxidase-conjugated secondary 
antibody at room temperature for 2 h. The pro-
tein signals were detected using an enhanced 
chemiluminescence kit (ECL, Amersham) and 
quantified using Quantity-One software (Bio-Rad 
Laboratories, USA).

Immunohistochemistry

The 4-mm paraffin sections were deparaffinized, 
rehydrated and heated in a microwave oven. The 
section was incubated with the primary antibody 
against ATF3 (dilution, 1:1000, Santa Cruz 
Biotechnology, Santa Cruz, CA, USA) at 37°C for 
60 min, and then with secondary antibodies at 37° 
C for 30 min. After DAB coloration, images of the 
cell were observed under an Olympus microscope 
(Tokyo, Japan).
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Apoptosis assay

Keloid fibroblast cells (1.0 × 106 cells) were harvested, 
washed, and fixed in ice-cold ethanol. Then, cells were 
re-suspended in the staining solution containing 5 µL 
of FITC-conjugated annexin V antibody and 5 µL of 
propidium iodide (BD Bioscience, San Jose, CA, 
USA). After incubation in the dark, the apoptotic 
cells were detected on a flow cytometer (BD 
Bioscience, San Jose, CA, USA).

Transwell invasion assay

Keloid fibroblast cells (3.0 x 103 cells) were cul-
tured on the top of an 8-μm pore transwell cham-
ber (Millipore, Billerica, MA, USA) pre-coated 
with Matrigel (BD Biosciences, San Jose, CA, 
USA). The lower chamber contained 500 μl of 
DMEM with 10% FBS. After incubating at 37°C 
for 30 min, cells in the lower surface of the mem-
brane were fixed in methanol, stained with 0.5% 
crystal violet. The invasive cells were counted 
under an inverted microscope (Tokyo, Japan).

Statistical analysis

Data were expressed as mean ± SD and subject to 
the SPSS 17.0 Windows version of software (SPSS). 
Differences between multiple groups were ana-
lyzed by one-way ANOVA followed by Dunnett’s 
multiple comparisons test. P < 0.05 was considered 
to be statistically significant.

Results

ATF3 expression is up-regulated in human keloid 
tissues

ATF3 has been reported to be involved in fibroblast 
activation [12,13]. In order to test the functional rele-
vance of ATF, we firstly determined its expression 
profile in normal skins (n = 30), keloids (n = 30) and 
the corresponding parakeloidal tissues (n = 30). Data 
showed that the mRNA and protein expression of 
ATF3 was significantly elevated in keloid tissues 
when compared with that of normal skins and para-
keloidal skin tissues (Figure 1(a,b)). Additionally, 
immunohistochemical analysis showed that the pro-
tein expression level of ATF3 was obviously up- 
regulated in keloid tissues (Figure 1(c)). These results 

validated the up-regulation of ATF3 in keloid tissues, 
suggesting that ATF3 may play a role in the pathogen-
esis of keloid.

ATF3 promotes keloid fibroblast proliferation 
and collagen production

To examine the functional relevance of ATF3 in keloid 
fibroblasts, we evaluated the effect of overexpressing or 
downregulating ATF3 in fibroblast cells. Firstly, ATF3 
was successfully upregulated in fibroblast cells upon 
transfection with the recombinant plasmids encoding 
ATF3, or downregulated following transfection with 
siRNA targeting ATF3 (Figure 2(a,b)). As a result, 
MTT assay showed that ATF3 up-regulation signifi-
cantly promoted cell viability compared to the control 
group, whereas transfection with siRNA targeting ATF3 
led to an inhibition of cell viability in keloid fibroblast 
cells (Figure 2(c)). TGF-β1, FGF2 and FGF8 are critical 
regulator in fibroblast activation [15,17]. Moreover, up- 
regulation of ATF3 significantly elevated the mRNA 
and protein levels of TGF-β1, FGF2, and FGF8, while 
inhibition of ATF3 decreased TGF-β1, FGF2, and FGF8 
levels in keloid fibroblast cells (Figure 2(d-f)). Moreover, 
we found that ATF3 obviously promoted collagen pro-
duction via elevating COLⅠ and COLⅡⅠ levels in keloid 
fibroblast cells (Figure 2(g,h)). Moreover, a similar 
expression pattern of these proteins was observed in 
fibroblast cells overexpressing or downregulating 
ATF3 (Figure 2(i)). Collectively, these findings suggest 
that ATF3 could promote cell growth and collagen 
production in keloid fibroblast cells.

ATF3 suppresses apoptosis in keloid fibroblast 
cells

It is well known that apoptosis is associated with 
proliferative ability. Therefore, we further explored 
the role of ATF3 on fibroblast cell apoptosis. Flow 
cytometric analysis showed that ectopic expression 
of ATF3 significantly reduced the numbers of apopto-
tic cells compared to that of the control group, while 
inhibition of ATF3 increased the apoptotic rate of 
keloid fibroblast cells (Figure 3). In addition, we eval-
uated the mRNA and protein levels of apoptosis- 
related genes, including BCL2, Bad, Caspase3 and 
Caspase9 [18], in keloid fibroblast cells. Consistently, 
real-time PCR analysis showed that ATF3 up- 
regulation significantly promoted BCL2 mRNA and 
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inhibited mRNA levels of Bad, Caspase3 and Caspase9 
(Figure 4(a-d)) in keloid fibroblast cells. By contrast, 
transfection with siRNA targeting ATF3 led to an 
inhibition of BCL2 mRNA and upregulation of 

mRNA levels of Bad, Caspase3 and Caspase9 in keloid 
fibroblast cells (Figure 4(a-d)). Moreover, a similar 
expression pattern of these proteins was observed in 
fibroblast cells overexpressing or downregulating 

Figure 1. ATF3 expression is up-regulated in human keloid tissues.
The expression levels of ATF3 in the healthy controls, keloid tissue and the normal skin were determined by real-time PCR (a), 
western blot (b) and immunohistochemistry (c, 400X). *** P < 0.001. 

Figure 2. ATF3 promotes cell proliferation and collagen production in keloid fibroblast cells.
(a and b) Western blot confirmed that ATF3 was upregulated or downregulated in keloid fibroblast cells following transfection with 
recombinant vectors encoding ATF3 or siRNA targeting ATF3. (c) The cell viability of fibroblast cells was evaluated by MTT assay in 
different groups. Real-time PCR was performed to determine the mRNA expression of TGF-β1 (d), FGF2 (e), FGF8 (f), COL� (g) and 
COL� (h). (i) Western blot was conducted to examined the protein levels of TGF-β1, FGF2, FGF8, COL� and COL� in different groups. 
** P < 0.01; *** P < 0.001, compared to control. 
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Figure 3. ATF3 suppresses apoptosis in keloid fibroblast cells.
Keloid fibroblast cells were transfected with recombinant vectors encoding ATF3 or siRNA targeting ATF3. Flow cytometry was used 
to detect the cell apoptosis. In addition, real-time PCR (b) and western blot (c) were conducted to detect the mRNA and protein 
expression of BCL2, Bad, Caspase3 and Caspase9. *** P < 0.001, compared to control. 

Figure 4. ATF3 inhibited the expression of pro-apoptosis factors in keloid fibroblast cells.
Keloid fibroblast cells were transfected with recombinant vectors encoding ATF3 or siRNA targeting ATF3. Real-time PCR was 
conducted to detect the mRNA expression of BCL2 (a), Bad (b), Caspase3 (c) and Caspase9 (d) in fibroblast cells. Western blot (e) was 
performed to determine the protein expression of BCL2, Bad, Caspase3 and Caspase9 in fibroblast cells. *** P < 0.001, compared to 
control. 
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ATF3 (Figure 4(e)). Collectively, these data suggest 
that ATF3 could suppress the apoptosis rate in the 
keloid fibroblast cells.

ATF3 promotes the invasive potential of keloid 
fibroblast cells
To determine if ATF3 affected the invasiveness of 
keloid fibroblast cells, transwell assay was conducted 
after overexpression or downregulation of ATF3. 
Subsequently, enforced expression of ATF3 elevated 
the number of cells with invasive potential; mean-
while, ATF3 siRNA-transfected cells presented with 
fewer invasive cell number compared to that of the 
control group (Figure 5). In addition, the mRNA levels 
of MMP1, MMP2, MMP9, and MMP13 were elevated 
in ATF3-overexpressing cells and downregulated in 
fibroblast cells transfected with siRNA targeting ATF3 
(Figure 6(a-d)). Consistently, western blot analysis 
showed that up-regulation of ATF3 significantly pro-
moted levels of MMP1/2/9/13, whereas siRNA ATF3 
led to an inhibition of MMP1/2/9/13 in keloid fibro-
blast cells (Figure 6(e)). Collectively, these data suggest 
that ATF3 could elevate the expression of MMPs and 
promote the invasion of keloid fibroblast cells.

ATF3 activates the TGF-β/Smad signaling 
pathway

To explore the underlying mechanism by which ATF3 
regulates cell proliferation, apoptosis and invasion of 
keloid fibroblasts, the expression pattern of critical 
components of TGF-β/Smad signaling was detected. 
Consequently, data showed that overexpression of 
ATF3 dramatically promoted the protein levels of 
TGF-β RI (Figure 7(a,b)) and RII (Figure 7(a,c)), as 
well as the phosphorylation of Smad2 (Figure 7(a,d)) 
and Smad3 (Figure 7(a,e)). By contrast, interference of 
ATF3 decreased the expression of TGF-β RI, TGF-β 
RII, p-Smad2, and p-Smad3 (Figure 7(a-e)), suggest-
ing that ATF3 exhibited its biological role via regulat-
ing TGF-β/Smad pathway in fibroblasts.

Discussion

Pathological keloid will result in a deformed appear-
ance, but the molecular mechanism underlying the 
keloids has not been fully elucidated. In the present 
study, we detected the expression pattern of ATF3 in 
normal skins and keloid tissues, and evaluated its 
functional roles in keloid fibroblast behaviors. Data 
showed that ATF3 was dramatically up-regulated in 

Figure 5. ATF3 promotes the invasive potential of keloid fibroblast cells.
Keloid fibroblast cells were transfected with recombinant vectors encoding ATF3 or siRNA targeting ATF3. Transwell invasion assay 
was used to evaluate the invasive potential of keloid fibroblast cells. Moreover, real-time PCR (b) and western blot (c) were 
conducted to detect the mRNA and protein expression of MMP1, MMP2, MMP9 and MMP13. *** P < 0.001, compared to control. 
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keloid tissues. In addition, downregulation of ATF3 
could suppress cell growth and invasion, promoted 
cell apoptosis, and inhibit collagen synthesis in keloid 
fibroblasts, suggesting that ATF3 serves as a novel 
target for the management of keloids.

Accumulating evidence suggests that ATF3 
expression is upregulated by a variety of extra- 
and intra-cellular stimulators [12,13]. Most studies 
focus on the role of ATF3 in cancers and validate 
its critical effects on cell growth, apoptosis, cell 

Figure 6. ATF3 promotes the expression of MMPs in keloid fibroblast cells.
Keloid fibroblast cells were transfected with recombinant vectors encoding ATF3 or siRNA targeting ATF3. Real-time PCR was 
performed to determine the mRNA expression of MMP1 (a), MMP2 (b), MMP9 (c) and MMP13 (d) in fibroblast cells. Western blot (e) 
was conducted to detect the protein expression MMP1/2/8/13 in fibroblast cells. *** P < 0.001, compared to control. 

Figure 7. ATF3 promotes the activation of TGF-β/Smad signaling pathway in keloid fibroblast cells.
Keloid fibroblast cells were transfected with recombinant vectors encoding ATF3 or siRNA targeting ATF3. (a) Western blot was 
conducted to detect the protein levels of TGF-β RI, TGF-β RII, p-Smad2, p-Smad3, total Smad2, and total Smad3. Quantification of 
protein signals of TGF-β RI (b) TGF-β RII (c), p-Smad2 (d), and p-Smad3 (e). *** P < 0.001, compared to control. 
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cycle arrest, metastasis, and acquired drug resis-
tance in a variety of tumor cells [19–22]. ATF3 
deficiency has been linked to the spontaneous 
tumorigenesis in an animal model, which is 
mediated by genome instability [23]. In breast 
cancer, ATF3 is involved in regulating the proa-
poptotic effect of chemotherapeutic drugs [20]. 
Changes in ATF3 expression are also linked to 
the activation of inflammatory response. 
Moreover, ATF3 could enhance macrophage 
migration and M1/M2 polarization by inducing 
activation of Wnt/β-catenin pathway [24]. In car-
diac fibroblast cells, ATF3 directly promotes cell 
proliferation via regulating apoptosis/prolifera-
tion-related genes [25]. However, the expression 
pattern and biological role of ATF3 in keloid 
fibroblasts remain unknown. In the present 
study, we found that mRNA and protein expres-
sion of ATF3 was significantly elevated in keloid 
tissues as compared with that of normal healthy 
controls and parakeloidal skin tissues, suggesting 
that ATF3 may be involved in the pathogenesis of 
keloid tissues. Subsequent functional assays 
showed that ATF3 promoted cell proliferation 
and collagen production in keloid fibroblast cells. 
Conversely, transfection with siRNA targeting 
ATF3 led to decreased cell viability and collagen 
synthesis via inhibiting TGF-β1 and FGF2/8 pro-
duction in keloid fibroblasts. The positive roles of 
TGF-β1 and FGF2/8 in the proliferation and col-
lagen production of fibroblasts have been pre-
viously reported [26]. Moreover, ATF3 could 
reduce the apoptosis rate of keloid fibroblast 
cells. Molecularly, we found that ATF3 promoted 
BCL2 level and inhibit the expression of Bad, 
Caspase3 and Caspase9 in keloid fibroblast cells. It 
is well known that BCL2 is an anti-apoptotic factor 
while Bad and Caspase3/9 are contributors to cellular 
apoptosis [27,28]. Orchestrated changes in cell adhe-
sion molecules and proteolytic enzymes (such as 
MMP) are associated with the onset of cell invasion 
in both physiological and pathological situations 
[29,30]. Furthermore, we found that overexpression 
of ATF3 enhanced the invasive potential via upregu-
lating the expression of MMP family members, 
including MMP1, MMP2, MMP9 and MMP13.

It is well documented that TGF-β/Smad path-
way plays a critical role in pathological fibrosis 
[31,32]. Activation of TGF-β/Smad pathway 

could increase the expression of vascular endothe-
lial growth factor and, in turn, lead to abnormal 
wound healing [33,34]. In the present study, we 
observed that ATF3 dramatically induced the acti-
vation of TGF-β/Smad signals in fibroblasts, sug-
gesting that ATF3 mediated-fibroblast activation is 
dependent on TGF-β/Smad pathway.

Conclusion

The present study provides new insights into the 
role of ATF3 in human keloid tissues. Our data 
showed that ATF3 potently promotes growth and 
invasion, and suppresses apoptosis in keloid fibro-
blasts via activating TGF-β/Smad pathway, sug-
gesting that ATF3 might serve as a novel 
therapeutic target for the management of keloid.

Highlights

1. ATF3 enhanced cell proliferation and collagen production 
in keloid fibroblasts.
2. ATF3 promoted cell invasion and reduced apoptosis in 
keloid fibroblasts.
3. Mechanically, ATF3 induced the activation of TGF-β/ 
Smad pathway in fibroblasts.
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