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ABSTRACT
SARS-CoV-2, an emerging coronavirus, has spread rapidly around the world, resulting in over ten mil-
lion cases and more than half a million deaths as of July 1, 2020. Effective treatments and vaccines for
SARS-CoV-2 infection do not currently exist. Previous studies demonstrated that nonstructural protein
16 (nsp16) of coronavirus is an S-adenosyl methionine (SAM)-dependent 2’-O-methyltransferase (2’-O-
MTase) that has an important role in viral replication and prevents recognition by the host innate
immune system. In the present study, we employed structural analysis, virtual screening, and molecu-
lar simulation approaches to identify clinically investigated and approved drugs which can act as
promising inhibitors against nsp16 20-O-MTase of SARS-CoV-2. Comparative analysis of primary amino
acid sequences and crystal structures of seven human CoVs defined the key residues for nsp16 2-O’-
MTase functions. Virtual screening and docking analysis ranked the potential inhibitors of nsp16 from
more than 4,500 clinically investigated and approved drugs. Furthermore, molecular dynamics simula-
tions were carried out on eight top candidates, including Hesperidin, Rimegepant, Gs-9667, and
Sonedenoson, to calculate various structural parameters and understand the dynamic behavior of the
drug-protein complexes. Our studies provided the foundation to further test and repurpose these can-
didate drugs experimentally and/or clinically for COVID-19 treatment.
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Introduction

Three coronaviruses (CoVs): severe acute respiratory syn-

drome coronavirus (SARS-CoV-1), Middle East respiratory syn-
drome coronavirus (MERS-CoV), and the recently identified

SARS-CoV-2 in December 2019, have caused deadly pneumo-
nia in humans since the beginning of the 21st century

(Coronaviridae Study Group of the International Committee
on Taxonomy of, 2020; Wu, Zhao, et al., 2020; Zhu et al.,
2020). The SARS-CoV-2 causes coronavirus disease-19

(COVID-19) with influenza-like symptoms ranging from mild
discomfort to severe lung injury and multi-organ failure,

eventually leading to death. As of July 1, 2020, more than
ten million COVID-19 cases were reported worldwide, and

more than half million patients have died (https://www.who.
int/emergencies/diseases/novel-coronavirus-2019). Effective

treatments and vaccines for SARS-CoV-2 infection do not cur-
rently exist. Thus, there is an urgent and unmet need for the

discovery and development of antiviral therapeutics for the
treatment of COVID-19.

CoVs are positive-sense RNA viruses that replicate in the
cytoplasm of infected cells. Replication and transcription of
the CoV RNA genome are achieved by a complex RNA repli-
cation/transcription machinery, consisting of at least 16 viral
nonstructural proteins (nsps) (Coronaviridae Study Group of
the International Committee on Taxonomy of, 2020; Perlman
& Netland, 2009). Previous studies demonstrated that nsp16
proteins of SARS-CoV-1 and MERS-CoV have methyltransfer-
ase (MTase) activities that catalyze methylation of the first
transcribed nucleotide at the ribose 20-O position (20-O-Me)
(Aouadi et al., 2017; Chen et al., 2011; Decroly et al., 2011).
The 20-O-Me of viral cap RNA protects itself from degradation
by 50-30 exoribonucleases, ensures efficient translation, and
helps to prevent recognition by the host innate immune sys-
tem (Menachery et al., 2014). The importance of 20-O-MTase
activity for CoV infection and pathogenesis was previously
documented by in vitro and in vivo studies (Gonzales-van
Horn & Sarnow, 2017; Menachery et al., 2014; Sevajol et al.,
2014; Subissi et al., 2014). For SARS-CoV-1, the absence of
nsp16 20-O-MTase activity results in significant attenuation
characterized by decreased viral replication, reduced weight
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loss, and limited breathing dysfunction in mice (Menachery
et al., 2014). In addition, 20-O-Me acts as a recognition
marker that helps the host cell recognize its own RNA spe-
cies (Byszewska et al., 2014; Z€ust et al., 2011). Inhibition of
nsp16 20-O-MTase activities should restrain viral replication
and enable recognition by the host innate immune system.
This makes the nsp16-MTase a promising target for the iden-
tification of new anti-SARS-CoV-2 drugs.

Recent advances in structural bioinformatics and virtual
screening approaches have revolutionized the identification
and/or repurposing of marketed drugs or bioactive com-
pounds for effective treatment of various human diseases,
including infectious diseases (Chang et al., 2016; Gioia et al.,
2017; Kitchen et al., 2004; Lasko et al., 2017; Maia et al.,
2020; Pinzi & Rastelli, 2019; Slater & Kontoyianni, 2019).
Moreover, in silico approaches, including molecular dynamics
(MD), have also been widely used to determine the conform-
ational space of the investigated targets, ligands, and ligand-
target complexes, and thus better understand the dynamic
behavior of ligand-target complexes (Bhardwaj & Purohit,
2020; Pinzi & Rastelli, 2019; Rajendran et al., 2018; Slater &
Kontoyianni, 2019; �Sled�z & Caflisch, 2018). Very recently, a
virtual screening approach was used to identify potential
drugs to inhibit SARS-CoV-2 proteins, including surface spike
glycoprotein, main protease, and nsp16 (Bhardwaj et al.,
2020; Panda et al., 2020; Tazikeh-Lemeski et al., 2020; Vijayan
et al., 2020). For example, Bhardwaj et al. reported the identi-
fication of bioactive molecules from tea plant as SARS-CoV-2
main protease inhibitors (Bhardwaj et al., 2020). Molecular
docking and virtual screening approaches also have been
attempted to identify compounds targeting 20-O-MTase of
SARS-CoV-2 (Encinar & Menendez, 2020; Hijikata et al., 2020;
Tazikeh-Lemeski et al., 2020; Vijayan et al., 2020).

In the present study, we employed structural analysis, vir-
tual screening, and molecular simulation approaches to iden-
tify potential inhibitors targeting 20-O-MTase of SARS-CoV-2.
We first performed comparative analysis of primary amino
acid sequences and crystal structures of seven human CoVs
and defined the key residues for nsp16 20-O-MTase functions.
We executed virtual screening and docking analysis to rank
the potential inhibitors of nsp16 from more than 4,500 clinic-
ally investigated and approved drugs. MD simulations were
carried out on eight candidate compounds to calculate vari-
ous structural parameters and understand the dynamic
behavior of the drug-protein complexes. Our studies pro-
vided the foundation to further test and repurpose these
candidate drugs experimentally and/or clinically for COVID-
19 treatment.

Results

Comparative sequence and structure analysis of nsp16
2’-O-MTases

To identify inhibitors targeting nsp16, we first performed
comparative analysis of primary amino acid sequences and
crystal structures of seven human CoVs. Supplementary
Table 1 lists the detailed genome and protein information
that were employed in this study. In primary amino acid

sequences, nsp16 of SARS-CoV-2 was found to be 93.3%
identical to SARS-CoV-1, but only 56.6� 65.9% identical to
five other human CoVs (MERS-CoV, HCoV-OC43, -HKU1,
-NL63, and -229E). The nsp16 proteins belong to a class of
S-adenosyl methionine (SAM) - dependent 20-O-MTases pre-
sent in all life forms, and they all contain the conserved cata-
lytic KDKE motif (K46, D130, K170, and E203 in SARS-CoV-2)
(Figure 1A & B) (Bouvet et al., 2010; Chen et al., 2011;
Decroly et al., 2011).

We next analyzed crystal structures of nsp16s obtained
from SARS-CoV-2, SARS-CoV-1, and MERS-CoV that are avail-
able in RCSB Protein Data Bank (PDB) as of April 30, 2020
(Supplementary Table S1) (Berman et al., 2000; Chen et al.,
2011; Decroly et al., 2011). The three-dimensional (3 D) struc-
tures of nsp16s were solved in complex with nsp10 that
functions as a stimulatory factor to regulate 20-O-MTase func-
tion (Supplementary Figure S1) (Chen et al., 2011; Decroly
et al., 2011). Structural alignment was performed using TM-
align, an algorithm for sequence-independent protein struc-
ture comparisons (Zhang & Skolnick, 2005). We revealed the
highest coverage, percent identity, and structural conserva-
tion between SARS-CoV-2 and SARS-CoV-1 nsp16 bound to
natural ligand SAM [PDB: 6W4H chain A (Resolution: 1.80 Å);
and 3R24 chain A (Resolution: 2.00 Å), respectively], with TM-
score 0.958 and Root Mean Square Deviation (RMSD) ¼ 0.89.
The SARS-CoV-2 nsp16 structure is also highly similar to the
MERS-CoV complex bound to SAM and a cap analogue: 7-
methyl-GpppA [PDB:5YNM: chain A (Resolution: 1.68 Å)], with
TM-score 0.956 and RMSD ¼ 0.80 (Supplementary Figure S2).
The superposition of 6W4H and 5YNM revealed that the con-
served KDKE motif of SARS-CoV-2 nsp16 is located at the
bottom of the RNA binding pocket (Figure 1C & D).
Structural analysis also revealed that residues N43, Y47, G71,
G81, D99, L100, N101, D114, and M131 coordinate SAM bind-
ing in both SARS-CoV-1 and �2 through hydrogen bonds
and water-mediated interactions (Aouadi et al., 2017;
Viswanathan et al., 2020).

In humans, cap methyltransferase 1 (CMTR1) is a specific
20-O-MTase that catalyzes methylation of the first transcribed
nucleotide (N1) in cellular mRNA (Cap 1) (Belanger et al.,
2010; Smietanski et al., 2014). We also performed compara-
tive analysis of the crystal structures of CoV-2 nsp16 and
human 20-O-MTase CMTR1. SARS-CoV-2 nsp16 and human
CMTR1 MTase domain share little primary amino acid
sequence identity (12.1%) based on the Pairwise Sequence
Alignment with the Needleman-Wunsch algorithm at EMBL-
EBI services (https://www.ebi.ac.uk/Tools/psa/). A search of
the PDB using DALI service (http://ekhidna2.biocenter.hel-
sinki.fi/dali/) revealed structural similarity between CoV-2
nsp16 (PDB: 6W4H chain A) and human CMTR1 (PDB: 4N48
and 4N49), which have Dali Z-Scores 13.7 and 13.8, respect-
ively, and RMSD 3.4 (Supplementary Figure S3). However,
even though both nsp16 and CMTR1 contain a KDKE cata-
lytic tetrad motif and a conserved folding made of a
Rossmann b-sheet surrounded by helices on each side, sub-
stantial differences are found in the RNA binding groove as
well as the SAM binding pocket (Figures 1C and 2). In
CMTR1, Cap 0 binds in a deep pocket, with a triphosphate

2 Y. JIANG ET AL.

https://doi.org/10.1080/07391102.2020.1828172
https://www.ebi.ac.uk/Tools/psa/
http://ekhidna2.biocenter.helsinki.fi/dali/
http://ekhidna2.biocenter.helsinki.fi/dali/


Figure 1. Comparative analysis of primary amino acid sequences and crystal structures of CoV 2’-O-MTases. (A) Schematic presentation of the SARS-CoV-2 genome
organization. Expression of two open reading frames (ORF1a and ORF1b) yields 16 nsps, including 2’-O-MTase nsp16. S, E, M, and N indicate the four structural pro-
teins: spike, envelope, membrane, and nucleocapsid. (B) Sequence alignment of nsp16 proteins derived from genome sequences of the following: SARS-CoV-2,
SARS-CoV-1, MERS-CoV, HCoV-OC43, HCoV-HKU1, HCoV-NL63, and HCoV-229E. The secondary structure of SARS-CoV-2 nsp16 is shown above. Residues with 100%
conservation are indicated in solid red boxes and those with identity of 70% or higher are depicted in light red color. The red stars indicate the conserved KDKE
motif in 2’-O-MTases. (C) Surface representation of the SAM binding pocket and the RNA binding groove in SARS-CoV-2 nsp16 with coloring according to the elec-
trostatic potential. The surface electrostatic potential diagram (±5 kT/e) in SARS-CoV-2 nsp16 (PDB: 6W4H Chain A) was generated by PyMol; the blue areas repre-
sent positively charged areas, while the red areas represent negatively charged areas. (D) The KDKE catalytic tetrad motif is located at the bottom of the RNA
binding groove of nsp16.
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bridge and N1 phosphate backbone stabilized by a stack of
arginine residues along the RNA binding groove (Smietanski
et al., 2014). In contrast, the RNA binding groove on SARS-
CoV-2 nsp16 appears to be less positively charged and shal-
lower (Figure 1C). Additionally, the SAM binding pocket on
SARS-CoV-2 nsp16 is more negatively charged than that of
human CMTR1. Also, the SAM binding pocket on SARS-CoV-
2 nsp16 is more open and flexible compared to that of
CMTR1, which is deeper and longer (Figures 1C and 2). The
difference between the sequences and structures of the
human 20-O-MTase CMTR1 and CoV nsp16 could be
exploited to develop inhibitors that could specifically block
viral MTases.

Virtual screening of drugs against nsp16 of SARS-CoV-2

We hypothesize that the small-molecule antagonists of
nsp16 of SARS-CoV-2 will limit viral replication and/or
unmask viral RNA to intracellular innate immunity. To identify
new drugs that have the potential to inhibit nsp16 functions
of SARS-CoV-2, we first examined the druggability of all bind-
ing sites of 20-O-MTase by the DoGSiteScorer tool (Volkamer
et al., 2012). With values between zero and one, the SAM
pocket has the highest drug score (0.85) and RNA binding
pocket has a score of 0.55 in SARS-CoV-2 nsp16
(Supplementary Figure S1). Similar scores were observed in
MERS-CoV nsp16 (PDB: 5YNM) that was solved in complex

Table 1. Top ten scoring drugs for SARS-CoV-2 nsp16.

Drug Name 2D Structure AutoDock Vina Score (Energy) Rosetta’s Energy Score (REU) Clinical Stage

Hesperidin �10.30 �1502.39 Phase 3/ Approved

Rebastinib �10.20 �1498.69 Phase 2

Losulazine �10.27 �1497.67 Phase 0

Cep-32496 �10.20 �1497.02 Phase 1

R428 �10.40 �1495.17 Phase 2

Entrectinib �10.57 �1494.42 Approved

Osi-027 �10.50 �1492.85 Phase 1

MK3207 �10.97 �1491.61 Phase 2

Rimegepant �10.77 �1486.36 Approved

Bolazine �10.47 �1484.41

Note: For the drugs with multiple stereoisomers in MTiOpenScreen database, only one stereoisomer with the highest AutoDock Vina Score was listed.
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with both SAM and the cap RNA analogue (Supplementary
Figure S1).

As the aim of this work was to identify clinically investi-
gated and approved drugs for quickly repurposing to treat
COVID-19 infections, we made use of an MTiOpenScreen data-
base Drugs-lib that contains 7,173 stereoisomers correspond-
ing to 4,574 drugs, generated from ChEMBL, DrugBank,
DrugCentral, and SuperDrug2 (Lagarde et al., 2018, 2019).
Among them, the nsp16 natural ligand SAM would serve as a
positive control for virtual screening. Among the five available
nsp16 structures of SARS-CoV-2 (April 30, 2020), we selected
the PDB 6W4H structure which presents the best resolution
(1.8 Å) to screen the Drugs-lib using the MTiOpenScreen ser-
vice (Lagarde et al., 2019). The computations of
MTiOpenScreen were carried out with AutoDock Vina, a gradi-
ent optimization algorithm, which provided a list of the 1,500
highest-scoring compounds (Trott & Olson, 2010). We
repeated the MTiOpenScreen screening protocol three times
using the 6W4H structure to ensure the reliability of the
results. We found that four stereoisomers of SAM were ranked
in the top 1,500 best compounds in all three runs, with energy
equal to �8.10 kcal/mol (Figure 3A & B, Supplementary Table
S2). Among the 1,500 top hit compounds in each screening,
1,380 compounds were shared across all three MTiOpenScreen
runs with highly similar AutoDock Vina scores. Based on the

means of scores, we ranked these 1,380 compounds (stereo-
isomers) that correspond to 967 drugs (Supplementary Table
S2). The top ten drugs with the highest scores were MK3207,
Rimegepant, Entrectinib, Osi-027, Bolazine, R428, Hesperidin,
Losulazine, Rebastinib, and Cep-32496, with the means of
energy around �10.97 � �10.17 kcal/mol (Figure 3A and
Table 1). Notably, there are 38 Hesperidin stereoisomers and
four MK3207 stereoisomers among the 1,380 hits (Figure 3A
and Supplementary Table S2).

To understand previously reported pharmacological action
of hit compounds, we queried the biological target and
pathway classes in the Probes and Drugs Portal, in which
713 standardized (693 non-isomeric) drugs were available for
these 967 drugs (Skuta et al., 2017). The top target classes of
these drugs are G-protein-coupled receptors (241), catalytic
receptors (139), and kinases (129). The top pathways are sig-
nal transduction (453), immune system (270), and transcrip-
tion (247) (Figure 3C). For example, MK3207 and Rimegepant
are calcitonin gene-related peptide (CGRP) receptor antago-
nists, which have been clinically investigated and/or
approved for migraine treatment (Bell, 2014; Lipton et al.,
2019; Salvatore et al., 2010). Hesperidin possesses biological
and pharmacological properties as an effective antioxidant,
anti-inflammatory, anti-carcinogenic, and anti-hypertensive
agent (Aggarwal et al., 2020; Tejada et al., 2018).

Drugs similar to ligand of nsp16

Using the principles of structural similarity searching, analogues
of the natural ligand (SAM) in nsp16 might be potent inhibitors
against 20-O-MTase function. Since SAM was among our 1,380
highest-scoring compounds, we next computed the similarity
between each pair of compounds using the FragFp descriptors in
DataWarrior (Sander et al., 2015). Among them, we found that
seven drugs are chemically similar to SAM, namely Gs-9667,
Trabodenoson, Binodenoson, Sonedenoson, Regadenoson,
Metrifudil, and Selodenoson (Figure 3B and Table 2). All seven of
these drugs are adenosine receptor agonists that were clinically
investigated for treating various diseases, including cardiac
arrhythmias, neuropathic pain, inflammatory diseases, and cancer
(Gao & Jacobson, 2011; Jacobson et al., 2019).

Molecular docking simulation of top candidate drugs
against nsp16 of SARS-CoV-2

Rigid docking performed using Autodock Vina provided insight
into the binding affinity and hydrogen bond formation of the
candidate compounds on the nsp16 20-O-MTase. Next, the top
ten drugs and seven drugs structurally similar to SAM were
chosen for the ligand flexible docking simulation by using the
RosettaLigand program (Davis & Baker, 2009; Lemmon & Meiler,
2012). RosettaLigand employs the Monte Carlo minimization
protocol in which the ligand position and orientation are ran-
domly perturbed by a small deviation (0.1Å and 3�). A scoring
function in RosettaLigand includes an electrostatics model, an
explicit orientation-dependent hydrogen bonding potential, an
implicit solvation model, and van der Walls interactions (Davis &
Baker, 2009; Lemmon & Meiler, 2012). Rosetta’s energy scores

Figure 2. Comparison of 2’-O-MTase domain of human CMTR1 with nsp16 of
SARS-CoV-2. Top: Surface representation with electrostatic potentials showing
the RNA binding groove and the SAM binding pocket of human CMTR1 (PDB:
4N48). Bottom: Superposition of the KDKE catalytic tetrad motifs of nsp16 of
SARS-CoV-2 (PDB: 6W4H) and 2’-O-MTase domain of human CMTR1
(PDB: 4N48).
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(REU) of these 17 drugs were shown in Tables 1 and 2. With the
RosettaLigand simulation, Hesperidin ranked the highest with the
lowest REU among the top ten hits obtained from the Autodock
Vina screening. In the seven SAM-like drugs, similar to AutoDock
Vina results, Gs-9667 had the lowest REU score (Table 2).

Binding mode analysis and intermolecular interaction of
top drugs and nsp16

We next examined the interaction of these 17 drugs with
key residues for nsp16 20-O-MTase function. We found that
Hesperidin, Osi-027, Gs-9667, and Sonedenoson have many
hydrogen bonds or hydrophobic interactions with key func-
tional residues involved in 20-O-MTase function, which are
represented in Figure 4. Hesperidin forms hydrogen bonds
with N43, K46, G71, L100, N101, C115, Y132, and K170 and
hydrophobic interactions with Y132, and F149. Osi-027 forms

hydrogen bonds with N43, K46, L100, N101, C115, Y132, and
K170, a salt bridge with D99, and hydrophobic interactions
with L100, D114, M131, and F149. Gs-9667 forms hydrogen
bonds with L100, C115, and Y132 and salt bridges with D99
and D114. Sonedenoson forms hydrogen bonds with N43,
K46, D75, N101, Y132, and K170, salt bridges with D75 and
D99, and hydrophobic interactions with L100, M131, and
F149. Notably, Hesperidin, Osi-027 and Sonedenoson form
hydrogen bonds with two key residues in the KDKE motif:
K46 and K170.

Molecular dynamics simulation of eight
candidate compounds

To gain insight into the dynamic behavior of the compounds
at the active site of 20-O-MTase, a set of 100 ns MD simula-
tions were executed for eight selected hits (top hits and/or

Figure 3. (A) Similarity chart of the 1,380 top-scoring compounds for the SARS-CoV-2 nsp16 using the FragFp descriptors in DataWarrior. Compounds with high
chemical similarity are connected by lines. Stereoisomers of the same drug such as Hesperidin (38 Stereoisomers) are clustered together. Compounds are colored
according to their predicted AutoDock Vina score. (B) Neighbor tree shows seven drugs that have FragFp similarity scores to SAM greater than 0.8. Drugs are col-
ored according to their FragFp similarity score to SAM. (C) Pie charts show target and pathway classes of hit compounds that were queried in the Probes and
Drugs Portal.
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clinically approved drugs, Table 3) by employing the
GROningen MAchine for Chemical Simulations (GROMACS)
package (Van Der Spoel et al., 2005). The obtained results
were read as RMSD, which is essential to quantify the struc-
tural stability of protein-drug complexes within a regular
time frame. RMSD analysis of the free form of 20-O-MTase
revealed that the protein molecule achieves stability at
around 20 ns, and it mostly maintained its stability until
100 ns. Nsp16-SAM and nsp16-Hesperidin complexes attained
stability at around 50 ns and maintained that stability until
the end. Based on average RMSD, all eight drugs were very
comparable to SAM, and the mean values of RMSD in all
compound-protein complexes are lower than those in free
protein (Table 3). The lowest mean value of RMSD is
observed for the Gs-9667 simulation (Table 3).

Root Mean Square Fluctuation (RMSF) is used to estimate
the average atomic mobility of backbone atoms (N, Ca, and
C) during MD simulation. The 20-O-MTase nsp16 of SARS-CoV-
2 has an extensively looped structure, and we observed the
fluctuations throughout the entire nsp16 protein (Figure 5).
Even though the average fluctuations of all eight protein-
drug complexes were very similar, the nsp16-Hersperidin
complex was found to have the highest, while nsp16-

Entrectinib complex had the lowest average RMSF value
(Table 3).

We also calculated additional structural parameters from
the MD simulations, like Radius of Gyration (Rg), Solvent-
Accessible Surface Area (SASA), Inter-molecular Hydrogen
Bonding (H-bonding), and Principal Component Analysis
(PCA) based on essential dynamics (ED) approach (Figures 5
and 6). Based on the Rg analysis that estimates the compact-
ness of protein and protein-drug complexes, the 20-O-MTase
was undergoing some compression in its 3 D conformation
(Figure S4). Among the protein-drug complexes, the most
compressed complex was that of Hesperidin (Table 3). These
results are consistent with the SASA analysis, which deter-
mined that the amount of overall surface area is reduced for
solvent accessibility due to compression in the protein struc-
ture (Figure 5). Additionally, our MD simulation analysis
showed an average of five hydrogen bonds present between
nsp16 protein and two drugs (Hesperidin and Regadenoson),
while others form an average of one to three hydrogen
bonds (Figure 5 and Table 3).

The PCA was employed to reveal relevant motions from
the global trajectories of unbound proteins as well as the
protein-drug complexes using the ED approach. ED projects

Table 2. Seven drugs chemically similar to natural ligand (SAM).

Drug Name 2D Structure AutoDock Vina Score (Energy) Rosetta’s Energy Score (REU) Clinical Stage

Gs-9667 �8.87 �1499.57 Phase 1

Sonedenoson �8.30 �1494.49 Phase 2

Regadenoson �8.33 �1491.72 Approved

Metrifudil �8.20 �1491.61 Phase 0

Binodenoson �8.57 �1490.97 Phase 3

Trabodenoson �8.40 �1489.93 Phase 3

Selodenoson �8.10 �1489.55 Phase 0

S-adenosyl-methionine (SAM) �8.1 �1509.65

Note: For the drugs with multiple stereoisomers in MTiOpenScreen database, only one stereoisomer with the highest AutoDock Vina Score was listed.
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Figure 4. Interaction of four drugs (Hesperidin, Osi-027, Gs-9667 and Sonedenoson) with SAM binding pocket of SARS-CoV-2 nsp16. Left: Surface representation
with charge showing predicted binding of SARS-CoV-2 nsp16 with the four drugs in the SAM binding pocket. The drugs are depicted by sticks. Right: 3 D represen-
tation of 2’-O-MTase active site residues interacting with Hesperidin, Osi-027, Gs-9667 and Sonedenoson.

Table 3. Time averaged structural properties obtained from MD simulation of 20-O-MTase of SARS-CoV-2.

Analysis Blank Hesperidin Entrectinib Osi-027 MK3207 Rimegepant Gs-9667 Sonedenoson Regadenoson SAM

Average RMSD (nm) 0.534 0.514 0.474 0.451 0.493 0.504 0.445 0.496 0.484 0.491
Average RMSF for Chain A (nm) 0.177 0.177 0.144 0.157 0.151 0.165 0.175 0.145 0.163 0.150
Average Rg (nm) 2.156 2.127 2.130 2.149 2.174 2.135 2.150 2.158 2.202 2.145
PCA (Trace of Covariance Matrix nm2) 176.151 219.597 128.648 114.024 123.147 144.829 195.177 132.557 163.854 127.930
Average Intermolecular Hydrogen

Bonds (Protein-Ligand)
N/A 5 3 1 2 2 2 2 5 3

Average SASA (nm2) 176.111 172.096 173.087 177.480 175.793 173.861 176.027 174.493 175.085 170.143
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the combined fluctuations of the most unsteady regions of
protein molecules into two variables, namely Principal
Component 1 (PC1) and Principal Component 2 (PC2). The
projections of trajectories for free protein as well as com-
plexes are illuminated in Figure 6. Among them, the
Hesperidin-protein complex was found to be occupying the
most, while the Osi-027 complex had the least conform-
ational space (Table 3).

MM-PBSA analysis of eight candidate compounds

Next, we performed the MM-PBSA (Molecular Mechanics/
Poisson-Boltzmann Surface Area) analysis to estimate the
protein-drug binding affinity in dynamic state. As shown in
Table 4, we found that three compounds, Hesperidin,
Rimegepant, and Entrectinib, had the highest binding affin-
ities with protein in dynamic state. Among three SAM-like
drugs with MD simulation analysis, Sonedenoson and Gs-
9667 had relatively higher binding affinities, compared to
the SAM with 20-O-MTase in dynamic state. To determine the
energy contributions of individual residues to the total bind-
ing free energy, energy decomposition analysis was con-
ducted on a per-residue basis and the result is presented in
Supplementary Table S3. As illuminated in Figure 7, the cal-
culations of residue-based free energy decomposition identi-
fied the hot interaction spots of 20-O-MTase with four
compounds. For example, four residues (D75, L100, Y132,
and F149) of nsp16 were notable hotspots (< �10.0 kcal/
mol) that contribute favorably to the binding of Hesperidin.
In the Gs-9667 complex, two residues, D130 and Y132, of
nsp16 were dramatically favorable toward binding (-10.6 and
�20.2 kcal/mol). As seen from MM-PBSA results and docking
studies, drugs including Hesperidin, Osi-027, Rimegepant,
Sonedenoson, and Gs-9667 had higher binding affinities than
SAM with the 20-O-MTase of SARS-CoV-2.

Discussion

Methylation of RNA, which occurs in all kingdoms of life,
plays important roles in RNA metabolism, processing, stabil-
ity, nuclear export, translation efficiency, and others
(Kadumuri & Janga, 2018; Li & Mason, 2014; Menachery et al.,
2014; Roundtree et al., 2017; Shi et al., 2019). 20-O-Me is pre-
dominantly found in rRNA and tRNA of bacteria and eukar-
yotes, as well as in the 50 mRNA Cap of higher eukaryotes
(Ayadi et al., 2019; Boccaletto et al., 2018). In humans, five 20-
O-MTases [FtsJ RNA methyltransferase homolog 1 (FTSJ1),
FTSJ2, FTSJ3, CMTR1, and CMTR2] have been reported to
catalyze 20-O-Me of various RNAs. These 20-O-MTases regulate
important cellular functions, and are associated with devel-
opmental disorders and cancer (B€ugl et al., 2000; Hager
et al., 2002; Lee & Bogenhagen, 2014; Li, Wang, et al., 2020;
Ringeard et al., 2019). Mutations of FTSJ1, a tRNA 20-O-
MTase, cause autosomal-recessive intellectual disability
(Freude et al., 2004; Guy et al., 2015; Li, Wang, et al., 2020).
FTSJ2 (also known as MRM2) is a mitochondrial rRNA methyl-
transferase (Lee et al., 2013). Human FTSJ3, which likely cata-
lyzes 20-O-Me of both rRNA and internal sites of mRNA, is a
potential regulator of breast cancer progression (Manning
et al., 2020). Furthermore, FTSJ3 catalyzes 20-O-Me of HIV
RNAs and leads to the inhibition of innate immune sensing
and response (Ringeard et al., 2019). Both CMTR1 and CMTR2
catalyze mRNA cap methylation, CMTR1 for the first tran-
scribed nucleotide and CMTR2 for the second transcribed
nucleotide (Inesta-Vaquera & Cowling, 2017). Notably, CMTR1
has previously been identified as ISG95, a protein implicated
in the response to interferon treatment and viral infection
(Geiss et al., 2003; Su et al., 2002). A very recent study in the
influenza A virus revealed that loss of CMTR1 in host cells
inhibits viral replication and up-regulates anti-viral genes (Li,
Clohisey, et al., 2020). Thus, 20-O-MTases have critical roles in
viral replication and anti-viral immune response.

Figure 5. Plot of MD simulation trajectories of free 2’-O-MTase and drug-protein complexes during 100 ns simulation. RMSD: Root Mean Square Deviation; RMSF:
Root Mean Square Fluctuation; SASA: Solvent Accessible Surface Area; H-Bond: hydrogen bond.
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Many RNA viruses, including CoVs, replicate in the cyto-
plasm using their own viral 20-O-MTases, which catalyze the
formation of cap structures on viral mRNA that mimic those
present on host mRNAs (Hyde & Diamond, 2015; Netzband &
Pager, 2020). Previous studies on SARS-CoV-1 and MERS-CoV
demonstrated that targeting nsp16 20-O-MTases might inter-
fere with viral replication by inhibiting the replication pro-
cess and promoting intracellular recognition/immune

response to viral RNA species (Menachery et al., 2014;
Sevajol et al., 2014; Subissi et al., 2014). Thus, nsp16 is a
promising target for identification of drugs for viral infec-
tions, including SARS-CoV-2.

In this study, we performed virtual screening and ranked
the predicted binding affinities of approximately 1,000 thera-
peutic drugs that have the potential to inhibit nsp16 20-O-
MTase function. We identified top ten candidates and seven
SAM-like compounds. These drugs have been experimentally
and clinically investigated for treatment of various diseases.
For example, Hesperidin is one of the main components of a
Chinese medicine, beniol (Bai et al., 2019). Hesperidin had
demonstrated antiviral properties in in vitro models against
influenza A virus (H1N1) by stimulating cell-autonomous
immunity through interferon gene expression (Ding et al.,
2018). Rimegepant recently received FDA approval for the
acute treatment of migraine in adults (Scott, 2020).
Additionally, Entrectinib and Osi-027 are both anti-cancer
drugs (Drilon, 2019; Mateo et al., 2016; Sartore-Bianchi et al.,
2020). SAM-like compound Gs-9667 was clinically investi-
gated for treating Type 2 diabetes (Staehr et al., 2013). To
additionally compare the features of these candidate com-
pounds in Tables 1 and 2, we also performed pharmaco-
phore analysis using an online PharmaGist server
(Schneidman-Duhovny et al., 2008). The number of features
and spatial feature set for each compound were summarized
in Supplementary Table S4. Multiple aligned structures of the
top ten compounds revealed that the highest PharmaGist
score is 29.7, which resulted from the alignment of six com-
pounds (Supplementary Figure S5). These six compounds
shared four pharmacophoric features: three aromatic rings
and one hydrogen bond acceptor. Furthermore, as expected,
the seven SAM-like compounds have a relatively higher
PharmaGist score. The highest score (50.6) resulted from the
alignment of four compounds (Sonedenoson, Regadenoson,
Metrifudil, Selodenoson) plus SAM. They shared ten features
including two aromatic rings, two hydrogen bond donors,
five hydrogen bond acceptors, and one positive charge
(Supplementary Figure S6). These four compounds and SAM
likely form hydrogen bond with residue N101 of nsp16 pro-
tein. In the future, after determining how some of these
compounds directly bind nsp16 of SARS-CoV-2 with various
biochemical approaches, the pharmacophore model will help
to identify highly potent compounds.

To gain insight into the dynamic behavior of the small
molecules at the active site of 20-O-MTase, we performed MD
simulation analysis for eight top hits including MK3207,
Hesperidin, Osi-027, Entrectinib, Rimegepant, Gs-9667,
Sonedenoson, and Regadenoson. The results suggest that all
eight compound-protein complexes were overall stable with
acceptable deviation (Figure 5). Among the eight complexes,
Gs-9667 had the lowest mean value of RMSD. Additionally,
RMSF analysis revealed the high fluctuations at the looped
regions within the nsp16 structure, particularly around the
amino acids 28, 140, and 260. Even though the average fluc-
tuations of the eight protein-drug complexes were very simi-
lar, the 20-O-MTase-Hesperidin complex showed the most
significant fluctuations. Furthermore, the conserved K-D-K-E

Figure 6. Principal Component Analysis (PCA) of free 2’-O-MTase, along with
eight drug- and SAM-protein complexes. The bottom shows a superimposed
plot of all ten PCA analyses.
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(K46, D130, K170, and E203) motif remained remarkably sta-
ble throughout the MD simulation. Our MD simulation ana-
lysis also found an average of five hydrogen bonds present
between nsp16 protein and Hesperidin. Structural analysis
indicated that Hesperidin might form hydrogen bonds with
K46 and K170 of the KDKE motif, as well as N43 and L100,
which are key residues for SAM binding in nsp16. Recent vir-
tual screening studies also found that Hesperidin may disrupt
the interaction of SARS-CoV-2 Spike protein and its host cel-
lular receptor ACE2 (Angiotensin-converting enzyme 2)
(Haggag et al., 2020; Wu, Liu, et al., 2020). It will be interest-
ing to determine how effectively Hesperidin binds nsp16 of
SARS-CoV-2, and to demonstrate its antiviral activity in cellu-
lar and animal models related to COVID-19.

Conclusion

In summary, we have analyzed structural features and per-
formed functional determination of 20-O-MTase nsp16 of
SARS-CoV-2, which causes the devastating COVID-19. The
nsp16 has a druggable pocket, which is associated with sub-
strate binding and enzymatic activity. Using high-throughput
virtual screening, molecular docking, and MD simulation
approaches, we identified 17 therapeutic drugs, including
several clinically approved drugs that have the potential to
inhibit 20-O-MTase of SARS-COV-2. The identified top candi-
dates, including Hesperidin, Rimegepant, Gs-9667, and
Sonedenoson, merit further testing and repurposing experi-
mentally and/or clinically for COVID-19 treatment.

Material and methods

Sequence and structure analysis

The primary amino acid sequences of seven human CoV
nsp16 proteins and human CMTR1 were retrieved from the
NCBI (National Center for Biotechnology Information)
Database, and Supplementary Table 1 lists the detailed gen-
ome and protein ID for these 20-O-MTases. The protein
sequences were aligned using Clustal Omega (https://www.
ebi.ac.uk/Tools/msa/clustalo/), and was presented with the
ESPript 3.0 program (http://espript.ibcp.fr/ESPript/ESPript/).
Crystal structures of three CoV nsp16s and human CMTR1
were obtained from RCSB Protein Data Bank (Berman et al.,
2000), and analyzed with PyMOL, UCSF Chimera and Protein-
Ligand Interaction Profiler programs (Pettersen et al., 2004;
Salentin et al., 2015). Structural alignment and comparison

were performed using TM-align algorithm and Dali server
(Holm, 2020; Zhang & Skolnick, 2005).

Virtual screening

Crystal structure (PDB: 6W4H) of SARS-CoV-2 nsp16 with
1.8 Å resolution was prepared with UCSF Chimera programs
for virtual screening against a Drugs-lib that contains 7,173
stereoisomers corresponding to 4,574 “approved” drugs in
MTiOpenScreen service (Lagarde et al., 2018, 2019). The
Drugs-lib is generated from four compound databases of the
“drug” subset of the ChEMBL database, the “approved” sub-
set of DrugBank, the DrugCentral database, and the
“approved” SuperDrug2 database (Lagarde et al., 2019). For
the MTiOpenScreen Vina docking, the (x, y, z) grid center
coordinates used for SAM binding pocket of 6W4H are (83.7,
14.8, 27.7), and the size of the search space was set to 20 Å x
20Å x 20Å. The MTiOpenScreen screening was repeated
three times, and the compounds shared across all three runs
were analyzed by DataWarrior, PyMOL, and UCSF Chimera
programs. Fragfp descriptors in the DataWarrior were used
to compute the similarity between each pair of compounds
(Sander et al., 2015). The targets and pathways of identified
candidate compounds were analyzed by querying Probes
and Drugs Portal (Skuta et al., 2017). The interaction of can-
didate drugs with key residues for nsp16 20-O-MTase function
were analyzed by PyMOL, LIGPLOT, and PLIP (protein–ligand
interaction profiler) (Salentin et al., 2015; Wallace
et al., 1995).

Molecular docking simulation using
RosettaLigand program

Ligand flexible docking simulation was performed using the
RosettaLigand program that employs the Monte Carlo
minimization protocol (Davis & Baker, 2009; Lemmon &
Meiler, 2012). In the first, low-resolution stage, the ligand
was placed near the SAM binding pocket of nsp16, where it
was perturbed 50 times and rotated 1,000 times in a random
direction. The best-scoring models were filtered by root-
mean-square deviation to eliminate near-duplicates and one
of the remaining models was selected at random. To ensure
that the ligand did not “walk away” from the protein, the lig-
and was moved towards the protein. The second, high-reso-
lution stage employed the Monte Carlo minimization
protocol in which the ligand position and orientation were
randomly perturbed by a small deviation (0.1 Å and 3�);
receptor side chains were repacked using a rotamer library;

Table 4. MM-PBSA calculations of binding affinity for eight selected drugs and SAM.

Complexes Binding (kj / mol) SASA (kj / mol) Polar Solvation (kj / mol) Electrostatic (kj / mol) Van der Waals (kj / mol)

Hesperidin �166.759 þ/- 2.938 �23.518 þ/- 0.072 327.379 þ/- 2.124 �215.678 þ/- 2.658 �254.942 þ/- 1.784
Entrectinib �171.784 þ/- 1.635 �23.523 þ/- 0.053 180.869 þ/- 1.036 �78.331 þ/- 1.580 �250.800 þ/- 1.155
Osi-027 �110.927 þ/- 1.676 �19.411 þ/- 0.038 183.292 þ/- 1.146 �60.872 þ/- 1.354 �213.936 þ/- 1.025
Mk3207 �134.973 þ/- 1.814 �21.603 þ/- 0.126 158.480 þ/- 2.169 �38.778 þ/- 1.657 �233.071 þ/- 2.064
Rimegepant �209.740 þ/- 1.690 �22.181 þ/- 0.068 99.705 þ/- 0.639 �5.437 þ/- 1.340 �281.828 þ/- 1.373
Gs-9667 �128.897 þ/- 2.006 �18.201 þ/- 0.071 132.429 þ/- 1.512 �62.692 þ/- 1.491 �180.433 þ/- 1.472
Sonedenoson �129.205 þ/- 1.845 �17.312 þ/- 0.057 127.457 þ/- 1.833 �67.639 þ/- 1.670 �171.711 þ/- 1.194
Regadenoson �118.419 þ/- 2.273 �17.685 þ/- 0.045 225.210 þ/- 1.721 �146.241 þ/- 1.896 �179.704 þ/- 1.171
SAM �81.029 þ/- 2.157 �16.564 þ/- 0.067 172.481 þ/- 2.493 �78.414 þ/- 2.029 �158.531 þ/- 1.326
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the ligand position, orientation, and torsions and protein
side-chain torsions were simultaneously optimized using
quasi-Newton minimization; and the end result was accepted
or rejected based on the Metropolis criterion. Scoring used
the full-atom Rosetta energy function with softened van der
Waals repulsion (Davis & Baker, 2009; Lemmon & Meiler,
2012). The full repack made 1,000 random rotamer substitu-
tions at random positions and accepted or rejected each on
the Metropolis criterion. Rotamer trials chose the single best
rotamer at a random position in the context of the current
state of the rest of the system, with the positions visited
once each in random order. Six cycles of rotamer trials and a

full repack after every three cycles were performed. The third
and final stage was a more stringent, gradient-based mini-
mization of the ligand position, orientation, and torsions and
receptor torsions for both side chains and the backbone.
Scoring used the same Rosetta energy function, but with a
hard-repulsive van der Waals potential, which created a
more rugged energy landscape that was better at discrimi-
nating native from non-native binding modes (Davis & Baker,
2009; Lemmon & Meiler, 2012). The entire structure was then
scored using the partial covalent interactions energy func-
tion, which was developed to score H-bonds
more accurately.

Molecular dynamics simulations

To make the docking results mimic the physiological state of
protein molecules, we performed MD simulations on PDB
6W4H, which contained both nsp16 and nsp10, with the
eight selected inhibitors and natural ligand SAM. The MD
simulations were executed by the GROningen MAchine for
Chemical Simulations (GROMACS) version 2020.1 with
GROMOS96 43a1 force field parameters (Chiu et al., 2009).
The topology of the drug molecules was created using
PRODRG webserver (Schuttelkopf & van Aalten, 2004). The
simulation of all the proteins and protein-drug complexes
were run for a period of 100 ns. To make the system electro-
statically neutral, counter ions were added to the protein-
drug complexes. The complexes were solvated within a
10 nm SPC/E (extended simple point charge) water cube
(Khan et al., 2020). The protein-drug complexes were mini-
mized in multiple steps using the steepest descent method,
where minimizations of the whole system, water cube, and
non-heavy atoms of the complexes were accomplished. The
entire systems were then progressively heated up to 300 K
on a time scale of 100 ps. The equilibration steps were per-
formed in two different phases, one with constant pressure
and temperature (NPT) and the other with steady volume
and temperature (NVT). Various structural parameters, like
Root Mean Square Deviation (RMSD), Root Mean Square
Fluctuations (RMSF), Radius of Gyration (Rg), Principal
Component Analysis (PCA) based on essential dynamics (ED)
approach, Inter-molecular Hydrogen Bonding (H-bonding),
and Solvent-Accessible Surface Area (SASA) were calculated
as a function of time to explore the structural behavior of
the proteins and protein-drug complexes.

Binding affinity calculations using MM-PBSA

The binding affinity between the protein and drug molecules
were calculated using molecular mechanics/Poisson-
Boltzmann surface area (MM-PBSA) method [84]. MM-PBSA
utilizes the effects of thermal averaging with a force field/
continuum solvent model to post-process a series of repre-
sentative snapshots from MD trajectories (Poli et al., 2020).
The method expresses the binding affinity (DG bind) as the
difference between the free binding energy of the complex
and the free binding energy of the receptor plus the ligand.
In this study, the binding free energy was calculated as the

Figure 7. The per-residue free energy contribution spectrums of nsp16 in four
compound-protein complexes. Only residues contributing above a± 10 kcal/mol
threshold were colored and labeled.
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average of the MM-PBSA obtained from 400 equally distrib-
uted snapshots of MD trajectory of each protein–ligand com-
plex after removing the water molecules by using GMXPBSA
2.1 tool available in GROMACS (Paissoni et al., 2015). A
g_mmpbsa tool was used calculate the contribution of each
residue to the total binding free energy (Kumari et al., 2014).
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