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The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19)

disease have dumbfounded the entire world on an unprecedented scale. The

multifactorial aspect of the infection has generated interest in understanding the clinical

history of COVID-19, particularly the classification of severity and early prediction

on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures

when profiling parasitic, metabolic, and microbial diseases. This study undertook

a metabolomic approach to identify potential metabolic signatures to discriminate

severe COVID-19 from non-severe COVID-19. The secondary aim was to determine

whether the clinical and laboratory data from the severe and non-severe COVID-19

patients were compatible with the metabolomic findings. Metabolomic analysis of

samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29

metabolites for non-severe and 14 metabolites for severe disease. The metabolites from

porphyrin and purine pathways were significantly elevated in the severe disease group,

suggesting that they could be potential prognostic biomarkers. Elevated levels of the

cholesteryl ester CE (18:3) in non-severe patients matched the significantly different

blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were

detected. Pathway analysis identified 8 metabolomic pathways associated with the

43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19

affected glycerophospholipid and porphyrin metabolism but significantly affected the

glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035,

respectively). Our results indicate that these metabolomics-based markers could have

prognostic and diagnostic potential when managing and understanding the evolution

of COVID-19.
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INTRODUCTION

The new coronavirus 19 disease (COVID-19), which
is caused by the severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) virus, was first reported in
December 2019 in Wuhan, Hubei Province, China (Chan
et al., 2020; Lauer et al., 2020). To date, more than 5
million people have died of the disease (WHO, 2021b).
In most cases, infection with the SARS-CoV-2 virus is
asymptomatic or clinically mild, but severe cases may
occur and can lead to respiratory distress syndrome and
even multiple organ failure (Monteiro et al., 2020; Zhu
et al., 2020). Understanding the molecular events that
underlie different clinical presentations and outcomes
are urgently needed to help improve patient management
(Pang et al., 2021).

Infectious diseases generate biological molecules that
behave as markers for therapeutic and diagnosis/prognosis
targets. Metabolomics analyzes the continuous communication
between cells, tissues, and fluids through the exchange of
metabolites in a given organism to give the precise status
of the organism, organs, or tissues (Wishart et al., 2013;
Dabaja et al., 2018; Chong et al., 2019; Li et al., 2020a). Thus,
this branch of “-omics” is considered a hallmark approach
in understanding disease pathophysiology. As such, the
application of “-omics” sciences may play an essential role
in the analysis of factors associated with gene function,
transcription, mRNA degradation, post-translationmodification,
metabolite concentrations, flows, and other cell activity processes
associated with disease (Goodacre et al., 2007; Borba et al.,
2020).

The strong association among age, obesity, and diabetes
and significant disease outcomes suggests that metabolic
disturbances may play important roles in how the infection
progresses (Haug et al., 2013). Recent studies have revealed
critical metabolic dysregulations occurring in COVID-19
cases (Song et al., 2020; Wu et al., 2020a; Jimenez et al.,
2021). In addition to mass spectrometry, other metabolomics
techniques, such as nuclear magnetic resonance spectroscopy
and liquid chromatography–mass spectrometry lipid profiling,
have been employed (Kimhofer et al., 2020; Gray et al., 2021;
Lorente et al., 2021; Meoni et al., 2021). In this context,
an in-depth evaluation of metabolites, particularly those
associated with different COVID-19 clinical presentations,
is needed (Akarachantachote et al., 2014) and could further
improve disease diagnosis, prognosis, or both, thus, potentially
leading to personalized management strategies in the future
(Blasco et al., 2020).

Due to the limited understanding of the biological
mechanisms involved in a SARS-CoV-2 infection, the
present study evaluated the metabolomic profile of the plasma
of patients infected with SARS-CoV-2 in the Amazonas
state, northern Brazil. The aim was to identify potential
biomarkers of severity and to improve knowledge on the
metabolic disturbances that take place following a SARS-
CoV-2 infection, including the pathways associated with
severe COVID-19.

METHODS

Study Design and Patient Recruitment
Patients were recruited in Manaus, in the Western Brazilian
Amazon, between March 2020 and June 2020 at the Hospital
e Pronto-Socorro Delphina Rinaldi Abdel Aziz, which was the
largest public hospital exclusively dedicated to treating severe
COVID-19 in Manaus, Brazil, at the time.

The clinical trials recruited hospitalized individuals, as well
as outpatients aged 18 years or older who were seeking care. In
this study, patients who were hospitalized comprised the severe
group, and these presented one or more of the following clinical
symptoms: respiratory rate higher than 24 breaths per minute
and/or heart rate higher than 125 beats per minute (in the
absence of fever) and/or peripheral oxygen saturation lower than
90% in ambient air and/or shock (i.e., arterial pressure lower than
65 mmHg, with the need for vasopressor medicines, oliguria, or
a lower level of consciousness in the last 7 days. Patients had to
have had a confirmed laboratory diagnosis for COVID-19 viaRT-
PCR testing of nasopharyngeal swab sample (Huang et al., 2020;
Qin et al., 2020; Zhou et al., 2020a).

Those seeking care, but who were not hospitalized
(mild/moderate symptomatic SARS-CoV-2) and who tested
positive for COVID-19 (RT-PCR) constituted the non-severe
group for the current study. Individuals were considered to have
mild illness if they presented various signs and symptoms of
COVID-19 (such as fever, cough, sore throat, malaise, headache,
muscle pain, nausea, diarrhea, and the loss of smell and taste),
but did not have shortness of breath, dyspnea, or abnormal chest
X-ray results. Patients displaying lower respiratory disease and
having oxygen saturation above 94% in room air at sea level were
considered to have moderate COVID-19 (National Institutes of
Health, 2020a).

Clinical Data Analysis
Clinical data and the patient’s previous medical history were
collected on admission (D0). Data included gender, age, weight,
bodymass index, presence of comorbidities such as hypertension,
chronic cardiovascular diseases, chronic pulmonary diseases,
current tuberculosis or history of tuberculosis (TB), HIV/AIDS,
renal diseases, liver diseases, hematological conditions and
diabetes, smoking history, and current use of medications or
ongoing treatments. The collected data were managed using
REDCap (v. 10.2.1) electronic data capture tools hosted at
Fundação de Medicina Tropical Dr. Heitor Vieira Dourado,
Manaus, Brazil.

Laboratory Analysis
Hematological and biochemical analyses were automated.
Complete blood count, platelets, creatinine, urea, ferritin,
total cholesterol, low-density lipoprotein (LDL), high-density
lipoprotein (HDL), lactate dehydrogenase (LDH), liver function
tests [alanine transaminase (ALT), and aspartate transaminase
(AST)], bilirubin (total, direct and indirect), C-reactive protein,
IL-6, international normalized ratio (INR), creatine kinase (CK),
creatine kinase myocardial band (CK-MB), troponin, sodium,
and potassium analysis were performed.
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Metabolite Analysis
Samples of plasma metabolites from patients were extracted by
mixing a 20 µL aliquot of each plasma sample with 200 µL
of tetrahydrofuran and 780 µL of methanol. The mixture was
homogenized using vortex agitation and centrifuged for 5min,
3,400 rpm at 4◦C. Subsequently, 5 µL of the supernatant was
diluted in 495µL of methanol. In this analysis, positively charged
metabolites were obtained by adding 1 µL of formic acid.

All plasma samples were randomized and directly infused
in a mass spectrometer (HESI-Q-Orbitrap, Thermo Scientific,
Bremen, Germany) with a mass resolution of 140,000 FWHM.
The mass spectrometer parameters were set as follows: positive
mode, m/z range 200–1,700, 10 mass spectral acquisitions per
sample, sheath gas flow rate 5 units, capillary temperature
320◦C, aux gas heater temperature 33◦C, spray voltage
3.70 kV, automatic gain control (AGC) at 1 × 106, S-
lens RF level 50, and injection time <2ms. Full mass
spectra were displayed using XCalibur 3.0 software (Thermo,
Bremen, Germany).

Data were pre-processed and assessed for quality using
an approach established in a previous study (Delafiori et al.,
2021). In summary, as a quality control measure, the acquired
replicates assisted us in discarding inconsistence during sample
acquisition across batches and within patients’ data. Noise peaks
were filtered out when not present in at least 50% of scans
in each acquisition. Additionally, the root-mean-square error
(RMSE) was applied across technical replicates (Delafiori et al.,
2021). Data were further processed by attributing an average
for the 10 spectral acquisitions for each sample, followed by
quantile normalization and logarithmic transformation. For the
volcano plot, a fold-change (FC) threshold of 1.5 (severe/non-
severe) and p < 0.05 were used as criteria for m/z feature
selection using the MetaboAnalyst 4.0 online platform (Chong
et al., 2019). Using the METLIN database (https://metlin.scripps.
edu/landing_page.php?pgcontent=mainPage), metabolites were
annotated with mass accuracy ≤5 ppm. Differential intensities
of metabolites between severe and non-severe cases were
evaluated by ranking log2FC scores and through heat map
analysis/hierarchical clustering using the Ward clustering
algorithm with Euclidean distance. To test the relevance of
the selected metabolites in discriminating the groups, a partial
least square-discriminant analysis (PLS-DA) score plot was
projected and assessed using permutation tests (p < 0.01)
(Blasco et al., 2020). Permuted data performance measures
generally form normal distribution; the performance score of
the original data outside the distribution qualifies the results
as significant.

Databases, such as Human Metabolome Database
(HMDB—www.hmdb.ca), LIPIDMAPS (www.lipidmaps.org),
and Kyoto Gene and Genome Encyclopedia (KEGG—
www.genome.jp/kegg), were used and supported bibliographic
search bookmarks. Pathway analysis of annotated molecules
with an available HMDB ID was evaluated against pre-
established KEGG pathways for the human metabolism using
MetaboAnalyst biomarker pathway analysis.

The potential of the annotated metabolites as biomarkers for
predicting the severity of SARS-CoV-2 infection using the plasma

metabolome profile of COVID-19 patients was explored and
assessed via receiver operating characteristic (ROC) curves with
confidence intervals (CIs) at a level of 95% using MetaboAnalyst
4.0. The ROC curve projected for each set of metabolites was
an average plot of subsampling from 100 cross-validations. The
confusion matrix generated by the selection of the linear-support
vector machine algorithm for the classification of samples is
computed as an average of predicted class probabilities of each
sample across the 100 cross-validations. The algorithm uses a
balanced sub-sampling approach, so the classification boundary
is located at the center (x = 0.5). Additionally, data were
validated by holding out 25% of samples as a test set, which
lead to the evaluation metrics such as sensitivity, specificity,
precision, and accuracy, and aimed to observe the differences in
the performance of sample classification according to the set of
metabolites selected. The process was repeated for 10 different
sets of metabolites based on their relevance for PLS-DA variable
importance in projecting (VIP) scores, log2FC, p, and area under
the curve (AUC).

Statistical Analysis
Comparison of continuous parameters that define the patient’s
characteristics, such as age, BMI, weight, the time between
the onset of symptoms and hospitalization, and laboratory
parameters were assessed using either the Student’s t-test or
Wilcoxon test, depending on the nature of data distribution (after
the Shapiro–Wilk test for normality). Wilcoxon rank-sum test
was used to analyze the differences in continuous variables with
non-normal distribution between the two groups. Differences
in categorical variables, such as gender, ethnicity, comorbidities,
and medications, between the two patient groups were compared
using the Chi-square test, with Fisher’s exact test performed when
variables were n < 5. Univariate logistic regression analysis was
performed to study the associations between clinical variables
and disease severity. Gender was used as a covariable in the
multivariable analysis to for confounders.

Clinical and laboratory variables showing a strong association
(p < 0.2) at the univariate level were included in the multivariate
binary logistic regression to control for confounders while
assessing the relationship between disease severity and clinical
characteristics and/or laboratory parameters (Day 0). We chose
p < 0.2 as an appropriate threshold for including variables in the
multivariate model, as suggested elsewhere (Eskeziya et al., 2020).
Statistical significance was established with a p < 0.05 and CIs at
the 95% level. All statistical analyses were performed using Stata
v.13 software (Stata Corp., TX, United States).

RESULTS

Demographic Characteristics of the
Patients
From the 242 recruited participants, 105 (43.4%) cases were
identified as non-severe cases and 137 (56.6%) as severe cases
(Table 1). Baseline characteristics showed a predominance of
men 162 (66.9%), and the patients had a mean age of 51.0 ±

14.0. The majority of the patients identified themselves as being
of mixed race (74.8%). A statistically significant association was
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TABLE 1 | Demographics of patients at baseline.

Variable Total Non-severe Severe p-value

(N = 242) (N = 105) (N = 137)

Sex, n (%) <0.001

Male 162 (66.9) 50 (47.6) 112 (81.7)

Female 80 (33.1) 55 (52.4) 25 (18.3)

Ethnicity, n (%) 0.053

Mixed race 181 (74.8) 84 (80.0) 97 (70.8)

European 39 (16.1) 14 (13.3) 25 (18.3)

African 14 (5.8) 3 (2.9) 11 (8.0)

Asiatic 5 (2.1) 4 (3.8) 1 (0.7)

Amerindian 3 (1.2) 0 3 (2.2)

Age, years

Mean (SD) 51.0 (14.0) 43.7 (12.4) 56.6 (12.4) <0.001

Weight, Kg

Mean (SD) 81.2 (17.7) 80.7 (18.6) 81.6 (17.00) 0.5377

BMI, kg/m2

Mean (SD) 29.4 (5.7) 29.6 (5.70) 29.3 (5.7) 0.4441

Onset of symptoms

until admission, Days

Mean (SD) 9.5 (5.8) 8.8 (6.0) 10.1 (5.6) <0.001

observed between patient gender and disease severity (p< 0.001).
Additionally, a significant difference was observed between
males and females classified as severe, though no difference was
observed in the non-severe group. The non-severe group had a
mean age of 43.7± 12.4 years, compared to the severe group (56.6
± 12.4 years). There was no significant difference between groups
(p > 0.05) in terms of weight, BMI, and ethnicity. However,
there was a significant difference in the time between onset of
symptoms until hospitalization, with severe cases averaging 10.1
days, while non-severe cases averaging 8.8 days (p > 0.05).

Most of the patients (89.3%) reported having at least one
comorbidity. A total of 85.7 and 92.0% of patients in the
non-severe and severe groups, respectively, reported having
a comorbidity (Table 2). A history of smoking (29.4%) and
comorbidities such as hypertension (44.4%), and diabetes
mellitus (33.3%), were most prevalent among the severe group
patients, while obesity (50.0%), liver disease (10.0%), and chronic
pulmonary disease (8.9%) were the comorbidities most prevalent
among the non-severe group. At p = 0.005, the relationship
between obesity and disease severity (non-severe or severe) was
significant (Table 2). However, a proportion test revealed no
significant difference in the proportions of obese patients in
either of the two groups (p= 0.5139).

Of the 242 participants, 219 (90.5%) were using medications
at the time of hospitalization. Of whom, 83.8% (88) of
the non-severe group, and 95.6% (131) of the severe group
were already using assorted medications. The most commonly
used drugs were antibiotics (67.6%), proton pump inhibitors
(PPI, 28.8%), angiotensin-converting enzyme (ACE) inhibitors
(23.7%), corticosteroids (11.9%), and other types of treatments
(95.9%). Omeprazole and pantoprazole were the main PPIs.
Patients in the severe COVID-19 group were the predominant

users of antibiotics (88.6%), ACE inhibitors (29.8%), PPI (42.7%),
and corticosteroids (14.5%). There was a significant difference
in the two groups regarding the use of medications before
hospitalization (p = 0.001). This difference was particularly
observed concerning antibiotics in general (p ≤ 0.001), other
non-azithromycin antibiotics (p = 0.013), ACE inhibitors
(p= 0.010), hydroxychloroquine (p = 0.04), PPIs (p < 0.001),
and a variety of other medications (p= 0.041) (Table 2).

Correlation of Disease Condition With
Clinical and Laboratory Characteristics
Comorbidities and Use of Medications on Inclusion

Into the Study
Overall, hypertension (40.7%), obesity (38.9%), and diabetes
mellitus (30.6%) were observed to be the most prevalent
comorbidities in the study participants. Univariate analysis
showed no significant association between the presence of
comorbidities and COVID-19 severity (p > 0.05) (Table 2).
However, patients with comorbidities are likely to suffer severe
COVID-19 (OR = 2.1, 95% CI = 0.900–4.880). The frequency
of obesity was significantly higher in non-severe patients than
in severe patients (p = 0.005). In addition, patients who used
medications previously had a 6.7 times higher risk of developing
severe ARDS (p = 0.001). Associations between drug use and
severity were as follows: antibiotics (OR= 13.5, 95% CI= 6.780–
27.016, p < 0.001), PPI (OR = 9.8, 95% CI = 4.233–22.687, p
< 0.001), ACE inhibitors (OR = 2.4, 95% CI = 1.230–4.970,
p = 0.011), HCQ/CQ (OR = 2.4, 95% CI = 1.21–4.76, p =

0.013), and bronchodilators (OR = 2.4, 95% CI = 0.631–8.837,
p= 0.202) (Table 2).

Multivariate analysis suggested that obesity (OR= 0.3, 95%CI
= 0.092–0.875, p = 0.028) was protective against severe disease,
and patients with a history of using PPIs were significantly
predisposed to developing a severe disease (OR = 3.1, 95% CI =
1.020–9.418, p= 0.046) (Table 2). The prior use of corticoids (OR
= 1.6, 95% CI= 0.382–6.949, p= 0.510), bronchodilators (OR=

2.0, 95% CI = 0.287–13.774, p = 0.486), and other medications
(OR = 8.9, 95% CI = 0.380–212.132, p = 0.173) predisposed
patients to an increased risk of developing severe COVID-19,
although not significantly.

Laboratory Parameters
As shown in Table 3, there were significantly higher levels of
leukocytes, neutrophils, ALT, AST, direct and total bilirubin,
HDL, creatinine, urea, LDH, and CKMB in severe compared
to non-severe patients (p < 0.05). In contrast, lymphocyte,
hematocrit, platelet, and total cholesterol levels were lower
in patients in the severe group. Univariate logistic regression
analysis showed that leukocyte counts (OR = 1.3, 95% CI =

1.198–1.446, p < 0.001), neutrophils (OR = 1.1, 95% CI =

1.088–1.159, p < 0.001), direct bilirubin (OR = 556.3, 95%
CI = 36.277–8,530.587, p < 0.001), total bilirubin (OR = 7.2,
95% CI = 2.792–18.602, p < 0.001), and creatinine (OR = 2.9,
95% CI = 1.723–5.076, p < 0.001) were statistically significant
laboratory indicators of severe illness. A univariate analysis
further indicated that a decrease in lymphocyte count (OR =

0.8, 95% CI = 0.773–0.859, p < 0.001) and hematocrit (OR =
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TABLE 2 | Clinical and medical history of patients at baseline, with univariate and multivariate analysis of associations between COVID−19 severity and baseline

characteristics.

Variables Number of patients, n/N (%) p-value Univariate analysis Multivariate analysis

Total Non-severe Severe OR (95% CI) p-value OR (95% CI) p-value

(N, 242) (N, 105) (N, 137)

Comorbidities 216/242 (89.3) 90/105 (85.7) 126/137 (92.0) 0.080 2.1 (0.902–4.887) 0.085

Chronic cardiac disease 14/216 (6.5) 5/90 (5.6) 9/126 (7.1) 0.855 1.2 (0.550–2.930) 0.584

Hypertension 88/216 (40.7) 32/90 (35.6) 56/126 (44.4) 0.228 1.3 (0.750–2.250) 0.337

Chronic pulmonary disease 18/216 (8.3) 8/90 (8.9) 10/126 (7.9) 0.233 0.6 (0.270–1.390) 0.245

Previous tuberculosis 3/216 (1.4) 0 3/126 (2.4) 0.427 1.5 (0.620–3.550) 0.380

Under treatment for tuberculosis 1/216 (0.5) 0 1/126 (0.8) 1.000 1.1 (0.458–2.778) 0.794

Diabetes mellitus 66/216 (30.6) 24/90 (26.7) 42/126 (33.3) 0.301 1.2 (0.686–2.171) 0.498

Obesity 84/216 (38.9) 45/90 (50.0) 39/126 (30.9) 0.005* 0.4 (0.256–0.785) 0.005 0.3 (0.092–0.875) 0.028

HIV/AIDS 6/216 (2.8) 3/90 (3.3) 3/126 (2.4) 0.213 0.6 (2.62–1.146) 0.110 0.3 (0.016–5.775) 0.425

Chronic renal disease 10/216 (4.6) 4/90 (4.4) 6/126 (4.8) 1.000 0.9 (0.415–2.041) 0.838

Liver disease 14/216 (6.5) 9/90 (10.0) 5/126 (4.0) 0.191 0.6 (0.263–1.230) 0.151 0.6 (0.076–4.982) 0.650

Malignant neoplasm 1/216 (0.5) 0 1/126 (0.8) 1.000 0.9 (0.357–2.457) 0.901

Chronic hematological disease 7/216 (3.2) 4/90 (4.4) 3/126 (2.4) 0.624 0.7 (0.312–1.684) 0.454

Chronic neurological disease 10/216 (4.6) 2/90 (2.2) 8/126 (6.4) 0.392 0.6 (0.638–3.261) 0.379

Rheumatic disorder 9/216 (4.2) 4/90 (4.4) 5/126 (4.0) 0.784 0.7 (0.289–1.700) 0.433

Smoking:

Former smoker 58/216 (26.9) 21/90 (23.3) 37/126 (29.4) 0.317 1.5 (0.818–2.872) 0.182 0.9 (0.266–3.242) 0.908

Current smoker 10/216 (4.6) 2/90 (2.2) 8/126 (6.3) 3.5 (0.714–16.961) 0.123

Other relevant factors 8/216 (3.7) 1/90 (1.1) 7/126 (5.6) 0.228 1.4 (0.563–3.366) 0.484

Medications 219/242 (90.5) 88/105 (83.8) 131/137 (95.6) 0.001* 6.7 (2.227–20.404) 0.001

Ibuprofen 2/219 (0.9) 0 2/131 (1.5) 0.711 1

Corticoids 26/219 (11.9) 7/88 (8.0) 19/131 (14.5) 0.228 2.1 (0.878–5.121) 0.095 1.6 (0.382–6.949) 0.510

Antibiotics: 148/219 (67.6) 32/88 (36.4) 116/131 (88.6) <0.001* 13.5 (6.780–27.016) <0.001

Azithromycin 105/219 (47.9) 24/88 (27.3) 81/131 (61.8) 0.182 0.5 (0.175–1.409) 0.188 0.3 (0.086–1.154) 0.081

Other antibiotics 131/219 (59.8) 18/88 (20.5) 113/131 (86.3) 0.013*

Bronchodilators 13/219 (5.9) 3/88 (3.4) 10/131 (7.6) 0.250 2.4 (0.631–8.837) 0.202 2.0 (0.287–13.774) 0.486

ACE Inhibitors 52/219 (23.7) 13/88 (14.8) 39/131 (29.8) 0.010* 2.4 (1.230–4.970) 0.011 0.9 (0.279–3.042) 0.893

Calcium blockers 7/219 (3.2) 3/88 (3.4) 4/131 (3.1) 1.000 1.3 (0.358–4.672) 0.694

ARVs 4/219 (1.8) 3/88 (3.4) 1/131 (0.8) 0.305 0.2 (0.022–2.147) 0.193

HCQ or CQ use in the last 30 days 7/219 (3.2) 0 7/131 (5.3) 0.004* 2.4 (1.21–4.76) 0.013

Proton pump inhibitors 63/219 (28.8) 7/88 (8.0) 56/131 (42.7) <0.001* 9.8 (4.233–22.687) <0.001 3.1 (1.020–9.418) 0.046

Others 210/219 (95.9) 82/88 (93.2) 128/131 (97.7) 0.042* 4.7 (0.923–23.761) 0.062 8.9 (0.380–212.132) 0.173

*Statistically significant. Bold values represents the total values for the total counts of Comorbidities and the Medications.

0.8, 95% CI= 0.812–0.916, p < 0.001) were negatively associated
with disease severity (Table 3), thus suggesting that levels of
lymphocyte count and hematocrit were inversely associated with
disease severity.

Identification of Metabolites Related to
SARS-CoV-2 Infection Severity and
Pathway Analysis
An untargeted metabolomic approach was used to evaluate the
metabolic profile of the COVID-19 patients. Data acquired in
the positive ion mode within the mass range of 200–1,700 m/z
were used to compare severe to non-severe cases via a volcano
plot (log2Fc and p-value) with a fold-change threshold of 1.5
and p < 0.05. The volcano plot allowed us to display any
large magnitude changes that are also statistically significant

for ranking of m/z features (see Supplementary Figure 1).
Selected m/z characteristics that had a large magnitude and
were statistically significant subsequently underwent annotation
using the metabolite databases resulting in a list of 43 annotated
metabolites. Of the 43 metabolites, 29 were increased in
the non-severe condition (but decreased in severe cases),
while 14 metabolites were upregulated in the severe group
(see Supplementary Table 1).

The annotated metabolites are shown in Figure 1. From the
bar graph in Figure 1A, negative values of log2FC indicate
that the metabolite was prevalent in the non-severe COVID-19
patients. In contrast, positive log2FC values were emblematic
of a molecule’s widespread distribution in the severe COVID-
19 group. The heat map chart in Figure 1B illustrates the
distribution of the metabolites across the two groups of patients
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TABLE 3 | Baseline clinical laboratory characteristics of the enrolled subjects: comparison of laboratory parameters between groups and tests of association.

Wilcoxon rank-sum Univariate analysis

(Mann-Whitney) test

Total Non-severe Severe p-value OR (95%CI) p-value

(n) median (IQR) median (IQR)

Parameters

Leukocyte counts,103/mL 235 6.5 (5.3–8.8) 10.7 (7.8–13.7) <0.001 1.3 (1.198–1.446) <0.001

Lymphocyte counts, % 235 22.4 (15.2–31.3) 7.6 (3.9–11.6) <0.001 0.8 (0.773–0.859) <0.001

Neutrophil counts, % 235 68.7 (56.7–78.4) 87 (81.6–91.0) <0.001 1.1 (1.088–1.159) <0.001

Hematocrit, % 235 43.1 (40–46.1) 38.7 (35.3–41.9) <0.001 0.8 (0.812–0.916) <0.001

Platelet counts, 103 /mL 235 248 (211–292) 221 (166.5–304.5) 0.030 1.0 (0.995–1.000) 0.099

INR 61 1.3 (1.1–1.4) 1.2 (1.1–1.3) 0.207 0.1 (0.000–8.914) 0.265

Alanine transaminase U/L 164 45.6 (29.0–66.5) 63.3 (38.1–86.8) 0.005 1.0 (1.000–1.015) 0.030

Aspartate transaminase U/L 163 36.5 (25.4–58.1) 63.6 (44.2–95.3) <0.001 1.0 (1.016–1.041) <0.001

Direct bilirubin, mg/dL 139 0.17 (0.12–0.23) 0.35 (0.2–0.77) <0.001 556.3 (36.277–8530.587) <0.001

Indirect bilirubin, mg/dL 139 0.19 (0.1–0.28) 0.21 (0.13–0.48) 0.112 4.3 (0.881–20.615) 0.072

Total bilirubin, mg/dL 139 0.34 (0.25–0.48) 0.66 (0.31–1.25) <0.001 7.2 (2.792–18.602) <0.001

Glucose, mg/dL 114 140 (127–301) 175 (132–242.5) 0.620 1.0 (0.994–1.009) 0.783

Total cholesterol, mg/dL 108 165.9 (137.7–197.4) 128.4 (109.7–153.6) <0.001 1.0 (0.964–0.990) 0.001

HDL, mg/dL 83 43.4 (34.3–51.8) 27.1 (23.7–36.2) <0.001 1.0 (0.999–1.008) 0.174

LDL, mg/dL 4 175 (n, 1) 93.83 ± 55.73 (n, 3) ND

Triglycerides, mg/dL 107 144.7 (103.6–274.6) 182.0 (137.1–236.4) 0.386 1.0 (0.996–1.002) 0.570

Creatinine, mg/dL 231 0.9 (0.7–1.1) 1.3 (0.9–2.5) <0.001 2.9 (1.723–5.076) <0.001

Urea, mg/dL 229 26.3 (21.9–30.7) 47.1 (31.1–87.9) <0.001 1.0 (1.027–1.065) <0.001

Lactate dehydrogenase U/L 81 665 (504–788) 997 (786–1,205) <0.001 1.0 (1.002–1.007) 0.001

Creatine kinase U/L 174 94.5 (69.5–161.7) 11.1 (65.6–360.5) 0.126 1.0 (1.000–1.002) 0.020

Creatine kinase myocardial band U/L 140 19 (15.2–22.2) 22.9 (18.6–45.7) <0.001 1.0 (1.010–1.065) 0.006

Alkaline phosphatase, U/L 7 84.1 (n, 1) 110.1 ± 47.38 (n, 6) ND 1.0 (0.930–1.135) 0.598

Ferritin, ng/mL 76 ND 1,280 (843.5–1,950) ND

IL−6, pg/mL 70 ND 117,116 (75,772–228,959) ND

C-Reactive protein, mg/L 139 69.1 (38.5–79.3) 75.7 (67–85) 0.149 1.0 (0.996–1.031) 0.134

Sodium, mmol/L 140 139.5 (138.1–142.2) 140.6 (137.3–143.5) 0.423 1.0 (0.942–1.1522) 0.419

Potassium, mmol/L 139 4.1 (3.9–4.5) 4.3 (3.9–4.8) 0.367 1.4 (0.687–2.766) 0.367

OR, odds ratio; IQR, interquartile range; SD, standard deviation; ND, not determined; INR, International normalized ratio; LDL, low-density lipoproteins; HDL, high-density lipoproteins;

IL−6, interleukin 6.

based on the level of signal abundance. The bright red color
indicates a higher/more intense signal abundance of a molecule
within the groups, while a bright green color indicates a lower
intensity of the metabolite.

Metabolites with log2FC > 2 or log2FC < −2 and p ≤ 0.001
were conspicuous: the cholesteryl ester CE (18:3), lysoPC (18:2),
dipeptide, docosahexaenoyl serotonin, dihydroxypalmitic
acid, PS (17:0), deoxyguanosine and/or adenosine,
protoporphyrinogen IX, and lysophosphatidylethanolamine
(lysoPE) (20:3). With the highest FC score (log2FC =

4.10), lysoPE (20:3) certainly stands out as a viable
metabolite marker that is indicative of severe SARS-
CoV-2 infection (Figure 1A). Metabolites CE (18:3) and
lysoPC (18:2) were considerably abundant in the non-
severe COVID-19 patients while deoxyguanosine and/or
adenosine, protoporphyrinogen IX, and lysoPE (20:3) were
conspicuously increased among the severe COVID-19
patients. Using VIP score (Akarachantachote et al., 2014),

deoxyguanosine and/or adenosine was also identified
as being a metabolite of interest and the main
discriminating metabolite between the two groups of patients
(see Supplementary Figure 2).

The annotated metabolites were used for multivariate
statistical analysis using PLS-DA. The PLS-DA score plot
indicated that the 43 selected metabolites were distinctly
distributed between the two sets of patients, discriminating
non-severe from severe groups (Figure 2) with an explained
variation of 23.8% by PC1 and 16.8% by PC2. The model was
validated using permutation tests, which were significant with
a p < 0.001, thus indicating the robustness of the model (see
Supplementary Figure 3).

Subsequent metabolic pathway analysis of the 43 annotated
metabolites revealed that they were part of 8 metabolic
pathways (Figure 3) glycerophospholipid, linoleic acid,
purine, alpha-linolenic acid, glycerolipid, porphyrin and
chlorophyll, arachidonic acid metabolism, and pathways of
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FIGURE 1 | (A) Bar plot reporting the fold-change values of the 43 relevant metabolites selected using a combined evaluation of p and FC (severe/non-severe

comparison). (B) Hierarchical clustering heat map showing the abundance of the top 43 metabolites based on VIP scores of non-severe and severe groups.

steroid biosynthesis. An analysis of the pathways identified
that with higher log2FC impact values, two major pathways,
namely, glycerophospholipid and porphyrin metabolism
pathways, had the largest and most important changes
within the conditions of patients with COVID-19 (Figure 3).
Interestingly, glycerophospholipids were the main metabolite
class predominantly associated with non-severe cases, with
16 out of the 21 representative phospholipid metabolites
(see Supplementary Table 1). A large change was detected
between the two groups in the porphyrin metabolism pathway.
Overall, the glycerophospholipid and linoleic acid pathways
had significant changes in metabolism between the two groups
to assess the severity of COVID-19 (p = 0.025 and p = 0.035,
respectively). Although the porphyrin metabolism pathway
showed a high impact, it was not significant when compared to
the glycerophospholipid metabolism pathway (p > 0.05).

Using the Metabolomic Profile to Discriminate

Non-severe From Severe SARS-CoV-2 Infections
Receiver operating characteristic curves were obtained based
on different sets of metabolites to determine the suitability
of annotated markers for assessing the disease severity
profile and ascertain metabolite placement prediction
in the recruited study cohort. Sensitivity, specificity,
precision, and accuracy values were used to evaluate the
independent performance predictions using 25% holdout
samples. As metabolite selection criteria, we used either
single metabolites or a combination of ranked metabolites
according to AUC, VIP score, p, and log2FC scores
and group (see Supplementary Table 1) as summarized
in Table 4.

Multiple ROC curves were obtained using either a single or
a combination of the AUC marker characteristics, VIP-score,

p, and log2FC for the ROC curve models. Figure 4 represents
the analysis performed for the set of metabolites classified by
log2(HR) > 2.0 and p ≤ 0.01 for the severe and non-severe
groups. In summary, the process comprises the selection of a
set of metabolites (Figure 4A) used for training the ROC curve
(Figure 4B) where the AUC and the 95% CI for the model are
given as a result of the correct classification of the patient in
the confusion matrix (Figure 4C), which leads to the possibility
of calculating performance metrics (Figure 4D). In the case
of Figure 4, nine metabolites (considering the increased and
decreased metabolites during severe COVID-19) provided the
best discrimination performance with an AUC of 0.865 (95%
CI: 0.791–0.927) and performance metrics with a sensitivity of
88.89, 69.23% specificity, 80.00% accuracy, and 79.06% accuracy
for both COVID-19 disease severity categories and metrics.
Comparing the 10 ROC curves designed using sets ofmetabolites,
the assigned AUC–ROC ranged from 0.818 to 0.883, considering
100 cross-validations. The summary of AUC–ROC, CI 95%
values, and performance metrics obtained are shown in Table 4.

Overall performance of all sets tested with 25% holdout
samples was good at discriminating the two conditions with both
a minimum of 5 metabolites and a maximum of 43 (Table 4).
Using only 5 metabolites gives lower sensitivity, specificity,
accuracy, and precision than using 10 or all the metabolites. VIP
scores of ≥1.0 (15 metabolites) offered slightly better specificity,
precision, and accuracy than > 1.5 (5 metabolites) (88.89 vs.
83.33, 84.21 vs. 83.33%, and 82.91 vs. 80.13%, respectively).
Overall, it was observed that the best score for each of the
ROC curve metrics concerning sensitivity, specificity, precision,
and accuracy metrics were 94.44, 80.77, 85.71, and 82.91%,
respectively (demarcated in Table 4), which were obtained under
different selection criteria. When selecting metabolites that
are indicative of severe and non-severe cases together, the
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FIGURE 2 | Supervised dimensionality reduction using partial least square-discriminant analysis (PLS-DA) showing the principal components (PC) score plot for

non-severe (green) and severe (red) COVID-19 patients. Shaded areas show the 95% confidence regions, with 23.8% of variance explained by PC1 and 16.8% by

PC2. Figure generated using MetaboAnalyst 4.0 (www.metaboanalyst.ca).

best parameters were molecules with a p < 0.01, which are
the same parameters chosen when selecting only non-severe
COVID-19 markers; at a p < 0.01, strong metrics for model
performance are maintained. However, this comes at the cost
of not knowing the up-or-down-regulation levels of metabolites
(Log2FC). Log2FC is vital in identifying the order of magnitude
and importance of the most decreased or increased metabolites,
based on the lowest or highest log2FC, respectively. Thus, having
prediction criteria that comprised both severe and non-severe
COVID-19 metabolites, such as those with the top 10 AUC
results, may result in an equilibrated and good performance and
are suitable for further investigation of the disease prognosis
(Table 4).

DISCUSSION

COVID-19 is a multifactorial disease that results in
asymptomatic infection, mild and moderate disease, and
severe and fatal outcomes. Worldwide, its severity has already
been associated with age, comorbidities, and other clinical or

demographic conditions (Huang et al., 2020; Costa et al., 2021).
Two years after the WHO declared COVID-19 a pandemic,
giving a timely prognosis is still a complex challenge. The
capacity to quickly and accurately identify factors associated with
COVID-19 severity is of most importance.

In a systematic review and meta-analysis, Gold et al. (2020)
identified the comorbidities that were most often associated
with COVID-19. The findings provided an opportunity to
further research the interaction between the underlying
diseases and the pathophysiology of SARS-CoV-2 infection.
Subsequently, to advance research on COVID-19 mechanisms,
we aimed to understand the pathophysiology of the disease by
interconnecting several factors, primarily through analyzing
the metabolomic profile involved in COVID-19 severity Our
findings corroborate results from other studies in which factors
such as underlying morbidities like hypertension and diabetes
were more prevalent in patients with severe COVID-19, with a
tendency to progress to severe disease and an increased risk of
death (Dai et al., 2020; Gold et al., 2020; Grasselli et al., 2020; Li
et al., 2020b).
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FIGURE 3 | Pathway impact: pathway analysis based on enrichment analysis

procedures, identifying the most relevant metabolic pathways via pathway

impact and adjusted p. The figures were generated using MetaboAnalyst 4.0

(www.metaboanalyst.ca). Pathway impact here represents a combination of

the centrality and pathway enrichment results; higher impact values represent

the relative importance of the pathway; the size of the circle indicates the

impact of the pathway while the color represents the significance (the more

intense the red color, the lower the p).

Although obesity exacerbates the risk of COVID-19 severity,
the multivariate analysis results herein suggested that obesity had
a protective role against disease severity. However, the perceived
protective effect could be because of the small sample size used
in the univariate and multivariate analysis, and not obesity itself.
On the contrary, from the average BMI of the patients in the
study (Table 1), of which all of them suffered varied severities
of COVID-19, all were classified as being overweight or obese
(WHO, 1995). From our analyses, it was possible to deduce that
obesity was a crucial underlying factor, as demonstrated by other
studies which considered obesity to be a predictor of COVID-19
disease severity (Yu et al., 2021; Zhou et al., 2021). With COVID-
19, obese patients are more susceptible to infections and often
require oxygen support when hospitalized (Liu et al., 2020a; Qiu
et al., 2020; Ryan et al., 2020).

Despite the high frequency of chronic lung disease (8.9%)
among the non-severe cohort of patients, there was no
significant difference in chronic lung diseases between
the two groups. Nonetheless, the absence of a statistically
significant difference could be attributed to the small
sample size. However, other studies have established that
chronic lung disease is directly associated with lung injury
by COVID-19 (Jimenez et al., 2021). While upregulation
of ACE-2 is protective against severe lung injury, the
subsequent high expression of ACE-2 receptors predisposes

lung injury patients to an increased risk of SARS-CoV-
2 infection of which the SARS-CoV-2 virus uses the
ACE receptors to enter epithelial cells that line the lungs
(Jimenez et al., 2021).

Since the declaration that COVID-19 was a pandemic,
numerous studies have conducted therapeutic trials using
unsanctioned WHO or Food and Drug Administration (FDA)
treatments in the search for a cure for COVID-19 (Chen et al.,
2020; Colson et al., 2020; Ghosh et al., 2020; Leung et al., 2020;
Rochwerg et al., 2020). From our analysis, patients previously
on treatment or using medications for other conditions were up
to seven times more likely to develop severe COVID-19. Our
study showed that the use of antibiotics, ACE inhibitors, PPIs,
or HCQ/CQ at the time of hospital admission due to SARS-
CoV-2 infection was more significantly associated with severe
symptoms of COVID-19. In some studies, however, patients
on ACE inhibitors and azithromycin were not at increased risk
of poor outcomes from COVID-19 (Butler et al., 2021; Lopes
et al., 2021; Pettit et al., 2021). Nevertheless, other studies have
shown higher risks of deaths or side effects associated with
complications related to the use of PPIs and HCQ/CQ (Cao
et al., 2020; Ejaz et al., 2020; Ghazy et al., 2020; Jimenez et al.,
2021). From our cohort, patients using corticoids at the time of
recruitment were twice as likely to experience a severe COVID-
19 infection. Although the use of corticosteroids was not helpful
against the SARS and MERS-CoV diseases (Varghese et al., 2020;
Cui et al., 2021), corticosteroids still are recommended as a
treatment for only moderate, severe, and critical SARS-CoV-2
infection (National Institutes of Health, 2020b; Cui et al., 2021;
Patel et al., 2021; Ro et al., 2021). The dose used and duration of
treatment with corticosteroids remains contentious.

Analysis of laboratory parameters revealed an increase in
neutrophil count, LDH, IL-6, AST, ALT, direct and total bilirubin,
leukocyte count, creatinine, urea, ferritin, and CKMBM levels
in severe cases. Based on recent studies, patients classified
as having severe infection had elevated levels of LDH, IL-6,
and leukocytes (Wang et al., 2020; Wu et al., 2020b; Zhou
et al., 2020b). Progressive changes in these hematological and
inflammation parameters, particularly LDH, IL-6, and white
blood cell count, can serve as prognostics for severe disease
capable of evolving to critical or fatal outcomes. Our data
show that IL-6 levels were increased in critically ill patients,
thus corroborating studies demonstrating that IL-6 gradually
increased during hospitalization due to increased inflammation
and worse evolution (Grifoni et al., 2020; Wang et al., 2020;
Zhou et al., 2020b). Our findings support observations that
increased IL-6 levels in patients with COVID-19 may be a
predictor of progression of COVID-19 infection (Witt et al.,
2018; Tang et al., 2020). These findings were followed by an
elevation of neutrophils, significantly associated with the risk
of developing severe ARDS in patients with COVID-19, which
demonstrates an evident inflammatory response due to viral
infection (Narasaraju et al., 2011; Cavalcanti et al., 2020; Fan
et al., 2020; Huang et al., 2020; Mahévas et al., 2020; Nusbaum,
2020; Pagano et al., 2020; Sanders et al., 2020; Sharma et al.,
2020; Struwe et al., 2020; Terpos et al., 2020; Young et al.,
2020).
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TABLE 4 | Summary of receiver operating characteristics (ROC) curve metrics discrimination of non-severe and severe COVID−19 disease condition based on the

metabolic profile.

AUC VIP score Severe Non-severe Non-severe

and severe

Performance All Top 5 Top 10 >1.5 ≥ 1.0 p-value p-value ≤ 0.01 p-value p-value ≤ 0.01 p-value ≤ 0.01

markers <0.01 log2(FC) > |2.0| < 0.01 log2(FC) > |2.0| log2(FC) > |2.0|

Metabolites (n) 43 5 10 5 15 10 7 18 2 9

AUC-ROC (100 CV) 0.877 0.860 0.882 0.866 0.865 0.861 0.859 0.883 0.818 0.865

CI 95% (100 CV) 0.827–0.946 0.805–0.908 0.824–0.932 0.801–0.929 0.803–0.921 0.801–0.926 0.794–0.918 0.824–0.939 0.738–0.897 0.791–0.927

AUC-ROC (25%

holdout sample)

0.894 0.889 0.899 0.875 0.853 0.875 0.850 0.919 0.792 0.870

Sensitivity (%) 86.11 80.56 83.33 83.33 88.89 83.33 80.56 91.67 94.44
†

88.89

Specificity (%) 76.92 73.08 80.77
†

76.92 76.92 80.77
†

76.92 73.08 57.69 69.23

Accuracy (%) 81.52 76.82 82.05 80.13 82.91
†

82.05 78.74 82.37 76.07 79.06

Precision (%) 83.78 80.56 85.71
†

83.33 84.21 85.71
†

82.86 82.50 75.56 80.00

FC, fold change; AUC, area under curve; SEN, sensitivity; SPE, specificity; PRE, precision; ACC, accuracy; CI, confidence interval;
†
Best score in each ROC metric (sensitivity, specificity,

precision and accuracy).

The metrics were obtained using different sets of metabolite biomarkers.

Metabolomic analysis showed a distinct profile of molecules
in patients with severe COVID-19, with an increased presence
of phospholipids, glycerolipids, N-acyl serotonin, porphyrin,
purine, sphingolipids, sterols, unsaturated fatty acids, and
amino acids. These observations corroborate the metabolic
characterization study on COVID-19 patients by Shen et al.
(2020). From the fold-change analysis of severe COVID-
19 metabolites, the positive/higher the log2FC value the
more the metabolite is detected, and the negative/lower
the log2FC value the scarcer the metabolite in the severe
case (or the more the metabolite is elevated in the non-
severe COVID-19 situation). The severe COVID-19 patients
expressed significantly high levels of protoporphyrinogen IX
(porphyrin) and deoxyguanosine and/or adenosine (purine).
Protoporphyrinogen IX and deoxyguanosine (or adenosine)
could potentially serve as biomarkers for COVID-19 prognosis.
The elevated porphyrin levels in the COVID-19 patients
corroborated observations by Bruzzone et al. (2020), in which
elevated porphyrin levels in serum were synonymous with
porphyria arising from thrombocytopenia that implied liver
damage, a key observation in our cohort of severe COVID-
19 patients. Interestingly, lysoPE (20:3) also had the highest
FC but had lower VIP scores than protoporphyrinogen and
deoxyguanosine (and/or adenosine).

The metabolomic analysis of the plasma samples revealed
elevated expression of deoxyguanosine (dG) in the severe
group. This observation matched findings from other studies
which associated the metabolite with an inflammatory immune
reaction (Davenne et al., 2020; Delafiori et al., 2021). Since
it was impossible to separate dG and the adenosine detected
according to the m/z and the methods used, here, it is
plausible that the relative quantity of either metabolite
may have been an influencing factor. Deoxyguanosine (dG)
triggers cytokine production in murine bone marrow–derived
macrophages, plasmacytoid dendritic cells, as well as in human

peripheral blood mononuclear cells, type I interferons, and
pro-inflammatory factors, such as TNF and IL-6 (Davenne et al.,
2020). A “cytokine storm” response to a SARS-CoV-2 virus
infection characterizes severe COVID-19 disease, and excessive
recruitment of macrophages from the peripheral blood results
in acute lung injury (Delafiori et al., 2021). The elevated dG
levels in this group of patients likely triggered the “cytokine
storm” by inducing the production of IL-6 through the increased
leukocyte population and the resulting inflammatory response.
The overproduction of IL-6 mediates other reactions such as the
elevated expression of adhesion molecules and cytokines (e.g.,
IL-1β and TNF-α) in endothelial cells that potentially increase
the inflammatory response (Sprague and Khalil, 2009). This
increased inflammatory response may be the direct role played
by IL-6, which is the metabolite that is predominantly expressed
in the pathology of the SARS-CoV-2 immune response, in
addition to being an endogenous biomarker of oxidative stress.
Oxidative stress and pro-inflammatory cascades are strongly
related. Nevertheless, it remains unclear what triggers increased
dG production during SARS-CoV-2 infection (Shen et al., 2020).

Pathway analysis approaches use available pathway databases
and the given gene expression data to identify the pathways
that are significantly impacted in a given condition (Nguyen
et al., 2019). Pathway analysis revealed that the 43 differentially
expressed metabolites were from 8 main metabolic pathways:
glycerophospholipid, linoleic acid, purine, alpha-linolenic
acid, glycerolipid, porphyrin and chlorophyll, arachidonic
acid metabolism, and biosynthesis pathways of steroids
(Figure 3). The two primary metabolites, lysoPE (20:3) and
protoporphyrinogen IX, suggested that the glycerophospholipid
and the porphyrin metabolic pathways have a role in the
progression of clinical disease. Further analysis demonstrated
that activity in the glycerophospholipid and linoleic acid
pathways significantly differed across the two COVID-19
clinical presentations (Figure 3). The elevated expression of
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FIGURE 4 | An example of the prediction of SARS-CoV-2 infection severity according to the metabolomic profile of the plasma of the COVID-19 patients using the

receiver operating characteristic (ROC) curve; (A) set of metabolites used for training; (B) ROC curve evidenced by the area under the curve (AUC) and CI 95%; (C)

confusion matrix for calculating the proportion of false negatives, false positives, true negatives, and true positives; (D) performance metrics as sensitivity, specificity,

accuracy, and precision. The figures were generated via MetaboAnalyst software v 4.0 (www.metaboanalyst.ca).

phosphatidylcholines and lysophosphatidylcholines in the
non-severe group implied suppressed glycerophospholipid and
linoleic acid pathway activities in severe COVID-19 patients.
It is also highlighted that the porphyrin metabolism pathway
in the severe COVID-19 group was conspicuously impacted,
although not significantly. Considering that patients’ clinical
results suggest liver injury and that the liver is the site of
bilirubin production during red blood cell break down, it
is plausible that clinical hyperbilirubinemia and the large
porphyrin pathway change (from the metabolite pathway
analysis) are linked. Taken together, the significantly low
erythrocyte turnover and a large shift in porphyrin metabolism
in the severe group could be a potential indicator for severe
COVID-19 (Liu et al., 2020b; San Juan et al., 2020). Monitoring
the glycerophospholipids metabolic pathway following SARS-
CoV-2 infection is of paramount importance in tracing the
severity profile. Glycerophospholipids are essential components
of biomembranes. These glycerophospholipids mediate signal
transduction and immune activation processes in the cells.

Sphingolipids regulate several processes, including growth
regulation, cell migration, adhesion, apoptosis, senescence, and
inflammatory responses (Matsuki et al., 2019; Ancajas et al.,
2020). Thus, the differential expression of sphingolipids (see
Supplementary Table 1) may have played a role in host immune
and inflammatory responses to the COVID-19 infection/severity.

Significantly elevated AST, ALT, and bilirubin levels observed
in our study demonstrated evidence of liver damage in the
severe COVID-19 group. Liver damage affects the hepatic
regulation of various lipids, including glycerophospholipids,
sphingolipids, and fatty acids (Nguyen et al., 2008; Guan et al.,
2020). Lipid and metabolite alterations associated with liver
damage can predict COVID-19 progress and severity (Wu et al.,
2020a). Host glycerophospholipid, reported to play a crucial
role in the early development of enveloped viruses (Strating
and van Kuppeveld, 2017; Ni et al., 2021), may be limited
as the virus is actively multiplying. Most of the phospholipid
markers detected in our study were from non-severe cases, which
suggests that the reduced expression of glycerophospholipid
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molecules in severe cases could have resulted from the use
of host phospholipids for SARS-CoV-2 virus multiplication.
The significant activity in the glycerophospholipid metabolic
pathway after SARS-CoV-2 infection is indicative that this
metabolic pathway is crucial and that variations in this pathway
may be applicable in tracking the progression in COVID-
19 severity (Drobnik et al., 2003; Rouzer et al., 2007; Maile
et al., 2018; Shen et al., 2020). Glycerophospholipid and
linoleic acid metabolism pathways thus play an important
role in producing metabolites that are indicative markers
of the severity of SARS-CoV-2 infection. Thus, these two
metabolic pathways potentially play a crucial role in producing
metabolites that are usable as COVID-19 progression and
severity indicators.

The lysoPE (20:3) was another notable metabolite. LysoPE
(20:3) showed a significant relationship with the severity of
SARS-CoV-2 infection. Glycerophospholipid metabolism may
induce a possible remodeling in lipid synthesis as a result of
a reduction in cholesterol and LDL (low-intensity lipoprotein),
as observed in our clinical data in which it was observed that
critically ill patients had lower total cholesterol levels than
moderately ill COVID-19 patients. The observations echo those
by Pang et al. (2021).

Since this was a descriptive observational study that used
samples from two clinical trials, this study had limitations.
These limitations included the low patient sample size and
the study’s cross-sectional and observational nature while
acquiring the plasma samples. The cross-sectional acquisition of
patient samples for analysis influenced the causal relationship
between the identified biomarkers, and the exact internal
mechanisms of metabolite changes in SARS-CoV-2 infection
remain unclear. The analyzed samples were collected before
the widespread detection of coronavirus variants, thus these
findings do not provide any information on the new SARS-
CoV-2 variants considered to have increased transmissibility,
to be more virulent, and to have reduced neutralization by
antibodies (monoclonal, convalescent, or post-vaccination sera)
(Aleem et al., 2021; Otto et al., 2021; WHO, 2021a). There
are also limitations to the role of ethnicity in the cohort,
although statistical analysis revealed no significant difference
in ethnicity between the groups studied. The population in
the region is relatively homogeneous, with the majority being
of mixed race (74.8%). The metabolomic analysis in this
study was not an absolute quantification. If these findings
were to be applied in clinical research and the development
of diagnostic/prognostic tools, rigorous quantification and
extensive validation of these molecules using standards are
necessary. Finally, we acknowledge that plasma studies at
different time points would have been ideal for rigorous temporal
analysis. Thus, study designs involvingmultiple sample collecting
time points need to be factored into future studies. Despite
these limitations, our study presents a systemic metabolic
investigation of patients that suffered non-severe and severe
COVID-19 infections.

In conclusion, our study brings novel information that
corroborates the importance of the metabolomic profile in
patients infected with COVID-19. Incorporating clinical and

laboratory data into the metabolomic analysis provides a
new and indispensable perspective while seeking pragmatic
COVID-19 prognostic biomarkers. We demonstrate the
potential to identify metabolomic markers to predict
disease progression, which may be valuable in diagnostics
and individualized therapeutic interventions in managing
COVID-19. These markers will also significantly increase the
understanding related to the pathophysiology of COVID-19.
More metabolomic studies are required since they are vital in
understanding the metabolic dynamics in COVID-19, which
remain unclear.
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