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Prognostic value of lactate
metabolism-related gene
expression signature in adult
primary gliomas and its impact
on the tumor immune
microenvironment

Zhihao Wang1†, Shuxin Zhang1,2†, Junhong Li1, Yunbo Yuan1,
Siliang Chen1, Mingrong Zuo1, Wenhao Li1, Wentao Feng1,
Mina Chen3* and Yanhui Liu1,3*

1Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, China, 2Department
of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Hospital, School of
Medicine, University of Electronic Science and Technology of China, Chengdu, China, 3Neuroscience &
Metabolism Research, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University,
Chengdu, China
Glioma is one of the most malignant intracerebral tumors, whose treatment

means was limited, and prognosis was unsatisfactory. Lactate metabolism

patterns have been shown to be highly heterogenous among different

tumors and produce diverse impact on the tumor microenvironment. To

understand the characteristics and implications of lactate metabolism gene

expression, we developed a lactate metabolism-related gene expression

signature of gliomas based on RNA-sequencing data of a total of 965 patient

samples from TCGA, CGGA, and our own glioma cohort. Sixty-three lactate

metabolism-related genes (LMGs) were differentially expressed between

glioma and normal brain tissue, and consensus clustering analysis identified

two clusters distinct LMG expression patterns. The consensus clusters differed

in prognosis , molecular character ist ics and est imated immune

microenvironment landscape involving immune checkpoint proteins, T cell

dysfunction and exclusion, as well as tumor purity. Univariate Cox regression

and Least Absolute Shrinkage and Selection Operator (LASSO) Cox hazard

regression was applied in determining of prognosis-related lactate metabolism

genes (PRLMGs), on which prognostic lactate metabolism risk score (PLMRS)

was constructed. The high PLMRS group was associated with significantly

poorer patient outcome. A nomogram containing PLMRS and other

independent prognostic variables was established with remarkable predictive

performance on patient survival. Exploration on the somatic mutations and

copy number variations of the high- and low-PLMRS groups demonstrated

their distinct genetic background. Together, our results indicated that the

expression signature of LMG was associated with the prognosis of glioma

patients and influenced the activity of immune cells in the tumor
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microenvironment, which may serve as a potential biomarker for predicting

response of gliomas to immunotherapy.
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1 https://portal.gdc.cancer.gov/

2 http://www.cgga.org.cn/index.jsp
Introduction

Glioma accounts for over 80% of all primary malignant

intracerebral tumors in adult. Glioblastoma (GBM) accounts for

58.4% of newly diagnosed adult primary gliomas and is the most

aggressive glioma subtype (1). Despite comprehensive anti-

cancer treatment involving surgical resection, followed by

radiotherapy and temozolomide (TMZ) chemotherapy, the 5-

year-survival of GBM remained 6.8%-9.8%, while the relative

survival for patients with astrocytoma and oligodendroglioma

were 43.5% and 77.9%, respectively (1, 2). Warburg effect

describes a metabolic characteristics of cancer cells, whose

energy is mostly provided through high level of glycolysis,

regardless of richness of oxygen supply, which is also named

as “aerobic glycolysis” (3). Lactate, produced by active glycolysis,

has received much attention in cancer research in the past

decades, and lactate metabolism has been identified as a

hallmark of cancer, which contributes to tumorigenesis (4).

Clinical investigations have connected high level of lactate in

the tumor microenvironment (TME) with poor prognosis in

cervical cancer, breast cancer and head and neck squamous cell

carcinomas (5–7). A magnetic resonance spectroscopy (MRS)

study found that lactate concentration was significantly higher in

isocitrate dehydrogenase (IDH) wild-type gliomas than the less

aggressive IDH mutants (8).

Recent studies have revealed the important role of tumor

lactate metabolism in the tumor immune microenvironment (9).

For example, lactate accumulation in TME results in

downregulation of CD4+ T cells, natural killer (NK) and

natural killer T cells and upregulation of T-regular cells

(Tregs) and myeloid-derived suppressor cells (MDSCs),

leading to suppression of immune response (10–13). On the

other hand, elevated serum lactate dehydrogenase (LDH)

predicts shorter survival in melanoma, non-small cell lung

cancer (NSCLC) and esophageal squamous cell carcinoma

patients treated with immune checkpoint inhibitors (ICIs)

(14–16). Additionally, extracellular acidic microenvironment

induced by lactate is more toxic for normal cells compared

with tumor cells (17, 18). Duan et al. reported lactate metabolic

characteristics in glioblastoma and found hypoxia inducible

factor 1a (HIF-1a), monocarboxylate transporters 1 (MCT1)

and 4 (MCT4) indicating poor prognosis (19).
02
Lactate metabolism-related gene (LMG) expression

signatures have been used in prognosis prediction and

microenvironment of breast cancer, lung adenocarcinoma and

hepatocellular carcinoma (20–22). However, such analysis hasn’t

been applied in glioma. In the present study, we aimed to

understand the relationship between lactate metabolism and

glioma TME with bioinformatics methods and attempted to

investigate its clinical implication by constructing a prognostic

LMG expression signature.
Patients and methods

Data acquisition and definition of lactate
metabolism-related genes

RNA-sequencing and clinical data of adult primary gliomas

and normal control samples were collected from The Cancer

Genome Atlas (TCGA)1 database (TCGA-GBM and TCGA-

LGG), the Chinese Glioma Genome Atlas (CGGA)2 together

with glioma patients from West China Hospital (WCH). Sample

collection and sequencing process are available in Supplementary

Materials Data Sheet 2. R package “TCGAbiolinks” was used to

download data from TCGA (23, 24). Patients under 18-years-old

at the time of diagnosis were excluded. The Molecular Signature

Database (MSigDB) was used to search for genes involved in

lactate metabolism with the key word “lactate” (25). To make the

data comparable, genes unavailable or expressed at very low level

(maximum fragment per kilobase million, FPKM under 0.1) in

either of the dataset were excluded. R package “limma”was used to

identify differentially expressed genes (DEG) comparing gliomas

and normal brain tissues in TCGA database. Genes with adjusted

P-values <0.05 were considered significant DEGs. Lactate

metabolism-related genes (LMGs) referred to the overlap

between genes included in the lactate metabolism pathways gene

sets curated in the MSigDB and the differentially expressed genes

between gliomas and normal brain samples in the TCGA dataset.
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Unsupervised clustering analysis
using LMGs

Consensus clustering analysis was applied to divide different

lactate metabolism patterns based on expression of LMGs using

R package “ConsensusClusterPlus” with 100 iterations (26). The

optimal number of clusters was determined based on sample size

of each cluster and the cumulative distribution function (CDF)

curve of consensus index values in the consensus matrix (27).

Briefly, we aimed to maximize sample size of each cluster while

keeping a gradually increasing CDF. Principal component

analysis (PCA) of all DEGs performed to visualize the

difference in the transcriptome between clusters.
Clinical characteristics and biological
function of consensus clusters

DEGs between the two clusters identified in consensus

clustering with |log2FC| >0.5 and adjusted P-values <0.05 were

selected for functional analysis. In the gene sets curated in

MSigDB, Kyoto Encyclopedia of Genes and Genomes (KEGG)

and Hallmark gene sets (HALLMARK) were utilized to conduct

Over-representation (ORA) and Gene set enrichment analysis

(GSEA) using R package “clusterProfiler” (28). To analyze the

differential expressed signaling pathways between the clusters,

we first transformed the logFPKM matrix into pathway

expression matrix using R package “GSVA” and identified

differentially expressed pathways using “limma” (29).
Tumor immune microenvironment
landscape

Cibersortx analysis3 was used to estimate the fraction of

infiltrating immune cells of each tumor based on the RNA-seq

data (30). The Estimation of STromal and Immune cells in

MAlignant Tumor tissues using Expression data (ESTIMATE)

score was also utilized in analyzing the differences of tumor

stromal and immune microenvironment (31).

For tumor purity estimates, we used the ESTIMATE tumor

purity and consensus purity estimation (CPE) data published by

Aran et al. (32). The Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm was used to evaluate T cell dysfunction score

and T cell exclusion score (33).
Identification of prognosis-related
lactate metabolism genes

To further investigate the role of LMGs in glioma prognosis

and construct a prognostic model, prognosis-related lactate
3 https://cibersortx.stanford.edu/
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metabolism genes (PRLMGs) were identified. Data in TCGA

database were randomly split into training set and validation set

at a ratio of 6:4. Genes with adjusted P-value <0.05 in univariate

Cox regression were selected in following analysis. Least

Absolute Shrinkage and Selection Operator (LASSO) Cox

regression was performed in the training set to identify

PRLMGs using R package “glmnet” (34). Genes whose

coefficient was not 0 at lambda.min in 100 random repetition

of LASSO Cox regression were defined as PRLMGs and selected

for further analysis.
Prognostic model and clinical analysis
based on PRLMGs

To better understand the prognostic role of PRLMGs, a

lactate metabolism related prognostic signature was established

with PRLMGs. The formula of prognostic lactate metabolism

risk score (PLMRS) was:

PLMRS   score =o
i=1

Expi*coefið Þ

Patients in training set were stratified into low-risk group

and high-risk group accordingly. The optimal cut-off PLMRS

was determined by function “surv_cutpoint” in R package

“survminer” with a minimum group proportion of 0.3.

Receiver operating characteristic (ROC) curves in validation

sets of 1-year, 2-year and 3-year survival were illustrated and

area under the ROC curve (AUC) were calculated by R package

“timeROC”. Then, the prognostic model was tested in

validation set.
Establishment and validation
of nomogram

R package “rms” was used to construct and evaluate the

nomogram. The nomogram was constructed by training a Cox-

regression model using the cph function in the rms package with

PLMRS and other potentially prognostic clinical factors to

predict patient survival at 1, 2, and 3 years after diagnosis.

Calibration curve was calculated by bootstrapping using

calibrate function in the rms package to compare the actual

survival rate and nomogram-predicted survival probability at

these time points. Corrected concordance index (C-index) was

calculated using validate function from the “rms” package.
Association between PLMRS and genetic
alterations of gliomas

The somatic mutation and copy number variation (CNV)

data of the glioma patients in the TCGA cohort was downloaded
frontiersin.org
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from cBioPortal4 (35). R package “maftools” were used to

visualize most frequently mutated genes as well as PLMRGs

(36). Gistic segment mean CNV values were used to generate the

whole genome CNV profile. Amplification and homozygous

deletion of genes were also reported in the cBioPortal data.
Statistical analysis

R software5 (Version 3.6.1) was used for data analysis and

visualization. For continuous variables student t test was

performed in two groups to compare differences, and one-way

ANOVA was conducted to compare between three or more

groups. Chi-square test was performed to detect the differences

of categorical variables. Survival analysis was performed by R

package “survminer”. The comparison of each Kaplan–Meier

(KM) curve was accomplished using the log-rank test.

Coefficients and their significance in the univariate and

multivariate Cox regression analyses were computed using the

coxph function. As for the statistical results, a two-sided P value

<0.05 was considered a significant statistical difference. In the

figures, a * indicated P < 0.05, while ** P < 0.01, *** P < 0.001,

**** P < 0.0001.
Statement of ethics

Ethical review and approvement of this research were

conducted by the Ethical Committee of Sichuan University.

All principles in the Declaration of Helsinki (Ethic number:

2018.569) were strictly followed. Patients and their authorized

trustees were informed and written informed consents were

obtained before surgery.

Results

Identification of glioma LMGs

Flow chart of the current study was shown in Figure 1. RNA-

seq data of 662 adult primary gliomas and five normal brain

samples were downloaded from TCGA, 226 gliomas from

CGGA, and generated from 77 glioma samples and 16 normal

brain samples from our own patient cohort. The clinical

information of these patients was recorded in Table 1.

A total of 223 genes related to lactate metabolism were found in

MSigDB, of which 205 genes were included (Table S1). In the

TCGA cohort, 7010 genes were differentially expressed in mRNA

level between glioma samples and normal brain sample (Figure 2A;
4 http://cbioportal.org

5 http://www.R-project.org
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Table S2). The 63 genes overlapped between DEGs, and lactate

metabolism gene sets were defined as LMGs (Figure 2B).
Consensus clustering of gliomas using
LMG expression

Unsupervised consensus clustering was performed using

RNA expression of LMGs in TGCA gliomas. Evaluation of the

cluster sizes and CDFs found that the gliomas could be classified

into two consensus clusters (Figure 2C; Figure S1). The two

distinct LMG expression patterns of gliomas were also verified

using two and three dimensional PCA (Figures 2D, E).

To invest igate the strat ificat ion , we combined

clinicopathologic and survival information with consensus

clusters. We found that clustering of gliomas was significantly

related to patients’ age at diagnosis, WHO grade, IDH

mutational status, 1p19 codeletion status, Alpha Thalassemia

Developmental Delay (ATRX) mutational status, O6-

methylguanine-DNA methyltransferase (MGMT) promoter

methylation status, and telomerase reverse transcriptase

(TERT) promoter mutational status, but not gender

(Figures 3A–H). K-M curve also revealed significant difference

in patient outcome between the two clusters (Figure 3I).

Functional analyses of DEGs between the two clusters found

cell adhesion, immune response and epithelial mesenchymal

transition (EMT) were over-represented in the KEGG and

HALLMARK pathway annotation of these genes (Figures 4A,

B). At the same time, in the GSEA, significant enrichment of the

DEGs in cell cycle (normalized enrichment score = 2.564,

adjusted-P value = 0.007) and EMT (normalized enrichment

score = 4.413, adjusted-P value = 0.004) was also observed in

the top 5 enriched gene sets of the KEGG and HALLMARK

databases (Figures 4C, D). GSVA of two clusters showed enhanced

expression of genes involved in the typical anabolic pathways of

malignant tumors in the more aggressive cluster 1 (Figures 4E, F).
Differential TME immune characteristics
between consensus clusters

In silico analysis of immune cell infiltration using Cibersortx

revealed a number of significant differences between the LMG

expression clusters (Figure 5A). More specifically, in the more

aggressive cluster 1 gliomas, the proportion of CD8+ T cells,

which were the main target of ICIs, were higher, while that of

Tregs, which have immunosuppressive properties, was also

higher. In the meantime, higher fraction of resting NK cells was

predicted to reside tumors in cluster 1. Additionally, higher

stromal cell and immune cell contents were also found in the

cluster 1 tumor by the ESTIMATE algorithm (Figure 5B). On the

other hand, tumor purity, which was negatively correlated with

the ESTIMATE scores was lower in cluster 1 (Figure 5C). In
frontiersin.org
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concordance with the TME immune cell content estimations,

prediction of T cell exclusion and functional status using the TIDE

algorithm revealed a higher T cell dysfunction and exclusion score

in cluster 1, which suggests a potentially more complicated

immune background in the cluster 1 gliomas and that these

tumors were less likely to respond to immunotherapy in

contrast to cluster 2 (Figure 5D). To shed light on the possible

immune pathways that may interact with lactate metabolism,

expression of 29 immune checkpoints (ICPs) mRNA was

compared in TCGA database (Figure 5E) (37). The results

indicated that most representative ICPs were significant higher

in cluster 1, which further implied an immunosuppressive

environment in cluster 1.
Prognostic value of LMG expression
signature

To understand if the LMG expression profile of gliomas

could be utilized to evaluate prognosis of glioma patients, we
Frontiers in Oncology 05
attempted to construct an LMG-based prognostic measurement.

We first split the TCGA glioma samples into training and testing

datasets at a ratio of 6:4. In the training set, 63 LMGs were

screened for their significant prognostic value using univariate

Cox regression analysis. Then, 47 LMGs with adjusted P-value <

0.05 in univariate Cox regression were used to build multivariate

LASSO Cox regression models for 100 random repetitions to

select LMGs that showed unconfounded robust correlation with

patient survival. In the end, 14 genes had non-zero coefficients in

100 LASSO Cox regression models and were qualified as

prognostic LMGs (PRLMGs, Figures 6A, B).

Expression of PRLMGs was listed in Figure 6C. Among these

genes, 13 of them had higher expression in tumor tissues, while

MPL was expressed at a lower level in gliomas than the normal

brain tissues (Figure 6C). In univariate cox regression analysis,

12 of PRLMGs were associated with worse prognosis, while the

rest two were associated with prolonged OS (Figure 6D). All the

PRLMGs were used to construct a final Prognostic LMG

expression Risk Score (PLMRS) using multivariate Cox

regression in the TCGA training set. The final calculation
FIGURE 1

Flow chart of study design. MSigDB, Molecular Signature Database; DEG, differentially expressed gene; LMG, lactate metabolism-related gene;
ESTIMATE, Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data; TIDE, Tumor Immune Dysfunction and
Exclusion; LASSO, Least Absolute Shrinkage and Selection Operator; PRLMG, prognosis-related lactate metabolism gene; PLMRS, prognostic
lactate metabolism risk score.
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formula was:

PLMRS = 1:806*MPL + 0:306*ATPAF2 + 0:297*CHEK2

+ 0:204*NGLY1 + 0:104*COQ2 + 0:088*SLC7A7

+ 0:071*MPV17 + 0:048*RARS2 + 0:034*DAG1

+ 0:011*PYGL + 0:008*SLC16A1 − 0:027*TXN2

− 0:181*USB1 − 0:517*TET2:
Frontiers in Oncology 06
Using optimal PLMRS cutoff determined by maximizing

outcome difference in each cohort (1.76 for the TCGA cohort,

8.79 for the CGGA cohort, 0.042 for our own cohort), the gliomas

was divided into low- risk and high-risk groups. An alluvial

diagram demonstrated the gliomas in cluster 1 were more likely

to be at the high-risk group (Figure 6E). ROC analysis found that

the PLMRS showed high predictive performance for 1-, 2-, 3-year

survival in not only the TCGA-validation group, but also the

CGGA and our own patient cohort (Figures 7A–C). In each
TABLE 1 Clinicopathological characteristics of adult primary glioma patients in TCGA, CCGA, and WCH cohort.

Sample size TCGA CGGA WCH

Total Tumor 662 226 77

Normal Brain 5 – 16

Age 46 (18 - 89) 43 (18 - 79) 46 (19 - 77)

Gender

Female 282 87 30

Male 380 139 47

Histology

Astrocytoma 341 82 22

Oligodendroglioma 167 60 21

Glioblastoma 154 84 34

Grade

G2 214 94 29

G3 237 48 14

G4 154 84 34

NA 57 0 0

IDH status

Mutant 421 115 42

WT 236 110 35

NA 5 1 0

1p.19q.codeletion

Codel 167 54 19

Non-codel 488 169 43

NA 7 3 15

TERT promoter status –

Mutant 340 – 30

WT 156 – 23

NA 166 – 24

MGMT promoter status

Methylated 472 97 35

Unmethylated 157 115 13

NA 33 14 29

ATRX status –

Mutant 192 – 22

WT 459 – 53

NA 11 – 2
fro
TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West China Hospital; IDH, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase; MGMT,
O6-methylguanine-DNA methyltransferase; ATRX, Alpha Thalassemia Developmental Delay; WT, wild type; NA, not available.
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cohort, patients in the low-risk group had significantly better

outcome compared to those in the high-risk group (Figures 7D–G).
Development and validation of a PLMRS-
based nomogram

To demonstrate the translational value of PLMRS in clinical

settings, we attempted to construct a nomogram that involved
Frontiers in Oncology 07
the PLMRS and potential prognostic clinical information.

Univariate Cox regression analysis of the TCGA cohort found

that apart from the PLMRS, the age and Karnofsky Performance

Score (KPS) of patients at diagnosis, the WHO grade, codeletion

of chromosome arms 1p and 19q, mutational status of IDH

genes, as well as chemotherapy and radiotherapy were

significantly associated with patient survival (Figure 8A). In

further multivariate analysis (Figure 8B) tumor grade, PLMRS,

IDH mutational status and radiotherapy remained significant
B

C D

E

A

FIGURE 2

Consensus clustering of gliomas using LMG expression. (A) Volcano plot of gene fold change between adult primary glioma samples and
normal brain in TCGA. (B) Overlap between tumor/normal DEGs and lactate metabolism related genes. (C) Consensus matrix of two LMGs
clusters. (D, E) Concordance between two and three dimensional PCA of LMG expression and consensus clusters. LMG, lactate metabolism-
related gene; TCGA, The Cancer Genome Atlas; DEG, differentially expressed gene; PCA, principal component analysis.
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prognostic factors. As a result, we included these factors in the

final nomogram construction (Figure 8C; Figure S2). The

calibration plot of the nomogram for each cohort showed that

the prediction of the nomogram was highly consistent with

observed patient outcome in all three cohorts (Figures 8D–F).
Frontiers in Oncology 08
Compared with PLMRS alone, nomogram combining PLMRS,

and other independent prognostic predictors showed superiority

in their predictive performance of patient prognosis (C-index

0.837 for PLMRS only vs. 0.851 for combined nomogram,

TCGA; 0.771 vs. 0.787, CGGA; 0.627 vs. 0.699, WCH).
B C

D E F

G H I

A

FIGURE 3

Comparison of clinicopathological characteristics between two clusters. Differences between two clusters were compared in age at diagnosis
(A), gender (B), tumor grade (C), IDH mutations (D), 1p19q codeletion (E), ATRX mutation (F), MGMT promoter methylation (G), TERT promoter
mutation (H). (I) K-M survival curves of two clusters. TCGA, The Cancer Genome Atlas; WHO, World Health Organization; IDH, isocitrate
dehydrogenase; ATRX, Alpha Thalassemia Developmental Delay; MGMT, O6-methylguanine-DNA methyltransferase; TERT, telomerase reverse
transcriptase; K-M, Kaplan–Meier; WT, wild type. ****p < 0.0001. ns, not significant.
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B

C D

E F

A

FIGURE 4

Biological function analysis of DEGs between the two consensus clusters. (A, B) Top five over-represented pathways in KEGG (A) and
HALLMARK (B) annotation of the DEGs. (C, D) Top five pathways with the highest normalized enrichment score of GSEA in the KEGG (C) and
the HALLMARK gene sets (D). (E, F) Ten pathways with smallest adjusted p-value of GSVA in KEGG (E) and HALLMARK pathways (F). TCGA, The
Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA, gene set enrichment analysis; UP, upregulation; GSVA, gene
set variation analysis.
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Associations between PLMRS and
characteristics of gliomas
To understand how gliomas from two risk groups differed

from each other, we analyzed the relationships between PLMRS

and the clinicopathological features, as well as genetic background

of gliomas. PLMRS was significantly associated with age at
Frontiers in Oncology 10
diagnosis, tumor grade, IDH mutational status, 1p19q codeletion

status, ATRX mutational status, MGMT promoter methylation

status, TERT promoter status and histology, but not gender

(Figures 9A–H). Inspection at the expression of PRLMGs and

the clinicopathological characteristics revealed apparent difference

in these genes between different glioma subtypes (Figure 9I).

Next, we analyzed the differences in the genetic alterations

between the two risk groups by comparing the top 20 somatic
B C D

E

A

FIGURE 5

Immune microenvironment of two clusters. (A) Fraction of 22 types of immune infiltrating cells in Cibersortx in two clusters. (B) ESTIMATE score
of two clusters. (C) Tumor purity estimation of two clusters using the ESTIMATE and the CPE algorithms (D) T cell dysfunction score and T cell
exclusion score of two clusters. (E) mRNA expression of 29 ICPs in two clusters. TCGA, The Cancer Genome Atlas; NK, natural killer; ESTIMATE,
Estimation of STromal and Immune cells in MAlignant Tumor tissues using Expression data; CPE, consensus measurement of purity estimations.
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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mutations of low-risk group and high-risk group (Figures 10A,

B). While a high rate of TP53 mutations were present in both

groups, IDH1 mutation occurred in 90% of gliomas in low-risk

group, but less than 20% in high-risk group. EGFR was the

second most common mutations in high-risk group. At larger

genomic landscape, (Figure 10C), high-risk gliomas exhibited

evident gain of chromosome 7 and coexisting loss of

chromosome 10.
Frontiers in Oncology 11
Discussion

Glioma is the most common primary malignant

intracerebral tumor in adult (1). Despite the massive research

investment and clinical experiments reported worldwide, the

treatment of glioma has not yet to be revolutionized and the

prognosis of glioma patients is not ideal, causing loss of quality

of life (QOL) and financial stress for patients and their family
B

C

D E

A

FIGURE 6

LASSO Cox regression and identification of PRLMGs. (A) Average of means and 95% confidence intervals of the C-index of LASSO Cox
regression model at each lambda value. (B) Average of coefficients of LMGs in the LASSO Cox regression model at each lambda value.
(C) mRNA expression of each PRLMG in glioma and normal brain tissue. (D) Univariate Cox regression analysis of PRLMGs in glioma prognosis.
(E) Alluvial plot showing relationships between LMGs clusters and PLMRS risk groups. LASSO, Least Absolute Shrinkage and Selection Operator;
C-index, concordance index; LMG, lactate metabolism-related gene; PRLMG, prognosis-related lactate metabolism gene. *P < 0.05; **P < 0.01;
***P < 0.001.
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(38, 39). Lactate is one of the components in the TME, whose

concentration has been associated with the molecular features

and prognosis of gliomas (8). Meanwhile, lactate metabolism has

been considered to regulate tumor immunity through diverse

mechanisms. With the assistance of public resources and our in-

house dataset, we interrogated the relationships between the

expression of lactate metabolism-related genes and

clinicopathological characteristics of gliomas, as well as the

potential impact of LMG expression on the landscape of

glioma immune TME.

For tumor cells, aerobic glycolysis was considered more of a

survival strategy than a compromise to insufficient oxygen

supply. Nicotinamide adenine dinucleotide (NADH), the

intermediate product of glycolysis, was used in synthesis of

other organic molecules, while lactate was released, thus

creating an acidic microenvironment (40). In gliomas, elevated
Frontiers in Oncology 12
lactate was associated with higher blood volume, and lower pH

was connected with higher mitotic index (41, 42). Some

researchers proposed a dynamic equilibrium of lactate in

TME, where a group of tumor cells utilize lactate as energy

source (43). In this study, we discovered that the unsupervised

clustering with LMG expression signature could stratify glioma

samples into two consensus clusters, in which one was associated

with IDH wildtype gliomas and was more likely to have a more

sophisticated and immunosuppressive microenvironment. This

result was consistent with the findings reported by Wenger et al.

that the higher level of glycolysis in the IDH wild type gliomas

was associated with more lactate in TME, which could

potentially disturb the distribution and functionality of

immune cells (8).

Tumor immunotherapy has gained growing attention in the

recent years. Current immunotherapies include cytokine
B C

D E

F G

A

FIGURE 7

Prognostic value of PLMRS. ROC curves and matched AUC of 1-, 2-, 3-year survival in TCGA validation group (A), CGGA (B) and WCH (C). K-M
curves of high-risk and low-risk groups in TCGA training group (D), TCGA validation group (E), CGGA (F) and WCH (G). TCGA, The Cancer
Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West China Hospital; PLMRS, prognostic lactate metabolism risk score; ROC,
receiver operating characteristic curve; AUC, area under the curve.
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therapy, ICIs, chimeric antigen receptor (CAR) T-cell therapy,

oncolytic virus therapy, vaccine therapy and therapies targeting

other immune related molecules or cells. However, none of the

treatment showed promising clinical effect on gliomas so far

(44). Among the numerous factors interfering anti-glioma

immunity, lactate in the TME could play an important role in

suppressing anti-tumor immune, by inducing Tregs and TAM

M2, inhibiting NK and dendritic cells, activating MDSCs and

decreasing cytotoxic T lymphocytes (CTLs) (45). Here, we

investigated the association between lactate metabolism and

the disturbed immune microenvironment of gliomas. In our
Frontiers in Oncology 13
result, both indolamine 2,3-dioxygenase 1(IDO1) and

programmed cell death 1 ligand 1 (PD-L1 or CD 274) mRNA

expression were higher in cluster 1. Overexpression of IDO1

resulted in recruitment of Tregs (46). This finding was consistent

with the higher level of Tregs in cluster 1. PD-L1 expression was

significant higher in TAM of GBM (47). Shan et al. reported that

the expression of PD-L1 protein in TAMM2, which tended to be

pro-tumor, was upregulated when treated with lactate (48). As

expected, a higher fraction of TAM M2 score was observed in

cluster 1. Programmed Cell Death 1 (PDCD-1 or PD-1) and

Cytotoxic T-Lymphocyte Associated Protein 4 (CTLA4) were
B

C

D E F

A

FIGURE 8

Nomogram construction and validation. Univariate (A) and multivariate (B) Cox regression to identify independent prognostic factors.
(C) Nomogram of 1-, 2-, 3-year survival of glioma established in TCGA. Calibration plots of nomogram developed by TCGA (D), CGGA (E) and
WCH (F). TCGA, The Cancer Genome Atlas; CGGA, Chinese Glioma Genome Atlas; WCH, West China Hospital; WHO, World Health
Organization; PLMRS, prognostic lactate metabolism risk score; RT, radiotherapy; CT, chemotherapy; KPS, Karnofsky Performance Score; IDH,
isocitrate dehydrogenase; WT, wild type.
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well-characterized ICPs. Inhibition of PD-1 leading to rescue of

T lymphocyte and NK cell function, and CTLA-4 block resulted

in activation of T cells (44). In our findings, both PD-1 and

CTLA4 mRNA expression were elevated in cluster 1. In the

meantime, NK cells were less activated in cluster 1. Although

CD8+ T cells were higher in cluster 1, they could be inactivated

due to the co-stimulation of PD-1 and CTLA4. In summary, our
Frontiers in Oncology 14
results suggest that the anti-tumor immunity is closely

connected with the expression profile of LMGs.

To understand the clinical implications of LMG expression,

we identified the LMGs exhibiting robust correlation with the

clinical outcome of glioma patients, which we defined as

PRLMGs. Among the PRLMGs, solute carrier family 7

member 7 (SLC7A7) and glycogen phosphorylase, liver form
B C D

E F G H

I

A

FIGURE 9

Comparison of clinicopathological characteristics in two PLMRS risk groups. Differences between the high and low risk groups were compared
in age at diagnosis (A), gender (B), tumor grade (C), IDH mutations (D), 1p19q codeletion (E), ATRX mutation (F), MGMT promoter methylation
(G), TERT promoter mutation (H). (I) Heatmap summarizing the clinicopathological feature and expressing PRLMGs in two risk groups. PLMRS,
prognostic lactate metabolism risk score; TCGA, The Cancer Genome Atlas; WHO, World Health Organization; IDH, isocitrate dehydrogenase;
ATRX, Alpha Thalassemia Developmental Delay; MGMT, O6-methylguanine-DNA methyltransferase; TERT, telomerase reverse transcriptase; WT,
wild type. ****p < 0.0001. ns, not significant.
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(PYGL) has been previously reported to be predictor of poor

survival of GBM (49, 50). Solute carrier family 16 member 1

(SLC16A1), also known as monocarboxylate transporter 1

(MCT1), is responsible for the transmembrane delivery of

lactate. Overexpression of SLC16A1 also predicted poor

survival of high-grade gliomas (51, 52). The therapeutic and

prognostic role of SLC16A1 has also been pointed out (53, 54).

Tet methylcytosine dioxygenase 2 (TET2) catalyzed conversion

of 5-methylcytosine (5mC) to 5-hydroxymethylcytocine
Frontiers in Oncology 15
(5hmC), which is important in homeostasis of hematopoietic

cells (55). Of note, IDH mutation reversibly sabotaged the

demethylation function of TET2 via oncometabolite 2-

hydroxyglutarate (2HG) in acute myeloid leukemia (AML)

( 5 6 ) . S i m i l a r m e c h a n i s m s w e r e r e p o r t e d i n

cholangiocarcinoma, mutation of IDH caused repression of

TET2, which could induce immune suppression (57). In GBM,

loss of TET2 was associated with poor survival, which could be

mediated by sex determining region Y-box transcription factor 2
B

C

A

FIGURE 10

Somatic mutations and CNV of two risk groups. Top 20 somatic mutations in low-risk group (A) and high-risk group (B). (C) Landscape of
autosomal CNV in two risk groups. CNV, copy number variation; TCGA, The Cancer Genome Atlas; PLMRS, prognostic lactate metabolism risk
score; IDH, isocitrate dehydrogenase; TERT, telomerase reverse transcriptase; ATRX, Alpha Thalassemia Developmental Delay; MGMT, O6-
methylguanine-DNA methyltransferase; GISTIC, Genomic Identification of Significant Targets in Cancer.
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(Sox2) (58). Together, our results and previous findings indicate

that, among the PRLMGs, SLC16A1 and TET2 are potentially

important targets for intervention of glioma lactate metabolism

that deserve priority in future investigation.

Despite the correlations between the expression of

PRLMGs and aggressiveness of gliomas, a number of

prognostic factors were also known to produce significant

impact on the outcome of glioma patients. Besides patient

comorbidity status and histological tumor grading, mutation of

IDH genes and codeletion of chromosome arm 1p/19q have

been well-recognized indicators for patient prognosis (59).

Compared to the genetic background of gliomas, adjuvant

treatments appeared to produce less impact on patient

survival, but our results indicate that radiotherapy remained

significant in prolonging patient survival. To translate this

panel of clinical, pathological, and molecular information

into succinct measurement, we combined the PLMRS with

other independent prognostic factors to construct a nomogram

that could accurately predict patient survival. Of note, in both

the TCGA and CGGA cohort, PLMRS contributed most to the

output of the nomogram, which emphasized the potential

clinical value of the LMG expression signature in predicting

outcome of gliomas.

In the present study, we comprehensively explore the

connections of the expression of lactate metabolism-related

genes with the clinical, pathological and immunological aspects

of gliomas. However, there were still some limitations in this

study. First, in spite of the usage of up to three independent

data sets, the sequencing protocols and data preprocessing

steps were different, therefore the PLMRS cutoffs and

nomograms were established separately in each cohort.

Nevertheless, the major trends identified in the study should

not be influenced by the lack of consistency in these

parameters. Secondly, in this study, the interactions between

expression of LMGs and tumor immunity were derived from in

silico analysis. The precise effects of different LMG expression

profiles on the glioma immune TME and the mechanisms

mediating these effects should be elaborated in the future

experimental studies.
Conclusion

In conclusion, we found that the expression signature of

LMGs could stratify gliomas into two consensus clusters which

exhibited differential clinical, pathological, molecular

characteristics, as well as the prognosis of the patients.

Gliomas in two LMG expression clusters displayed distinct
Frontiers in Oncology 16
tumor immune microenvironment landscapes that could

potentially imply their response to immunotherapies.
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13. Angelin A, Gil-de-Gómez L, Dahiya S, Jiao J, Guo L, Levine MH, et al. Foxp3
reprograms T cell metabolism to function in low-glucose, high-lactate
environments. Cell Metab (2017) 25(6):1282–93.e7. doi : 10.1016/
j.cmet.2016.12.018

14. Schouwenburg MG, Suijkerbuijk KPM, Koornstra RHT, Jochems A, van
Zeijl MCT, van den Eertwegh AJM, et al. Switching to immune checkpoint
inhibitors upon response to targeted therapy; the road to long-term survival in
advanced melanoma patients with highly elevated serum LDH? Cancers (Basel)
(2019) 11(12):1940. doi: 10.3390/cancers11121940
15. Zhang Z, Li Y, Yan X, Song Q, Wang G, Hu Y, et al. Pretreatment lactate
dehydrogenase may predict outcome of advanced non small-cell lung cancer
patients treated with immune checkpoint inhibitors: A meta-analysis. Cancer
Med (2019) 8(4):1467–73. doi: 10.1002/cam4.2024

16. Wang X, Zhang B, Chen X, Mo H, Wu D, Lan B, et al. Lactate
dehydrogenase and baseline markers associated with clinical outcomes of
advanced esophageal squamous cell carcinoma patients treated with
camrelizumab (SHR-1210), a novel anti-PD-1 antibody. Thorac Cancer (2019)
10(6):1395–401. doi: 10.1111/1759-7714.13083

17. Zhang X, Lin Y, Gillies RJ. Tumor pH and its measurement. J Nucl Med
(2010) 51(8):1167–70. doi: 10.2967/jnumed.109.068981

18. Webb BA, Chimenti M, Jacobson MP, Barber DL. Dysregulated pH: a
perfect storm for cancer progression. Nat Rev Cancer (2011) 11(9):671–7. doi:
10.1038/nrc3110

19. Duan K, Liu ZJ, Hu SQ, Huo HY, Xu ZR, Ruan JF, et al. Lactic acid induces
lactate transport and glycolysis/OXPHOS interconversion in glioblastoma.
Biochem Biophys Res Commun (2018) 503(2):888–94. doi: 10.1016/
j.bbrc.2018.06.092

20. Yang L, Tan P, Sun H, Zeng Z, Pan Y. Integrative dissection of novel lactate
metabolism-related signature in the tumor immune microenvironment and
prognostic prediction in breast cancer. Front Oncol (2022) 12:874731. doi:
10.3389/fonc.2022.874731

21. Wang Z, Embaye KS, Yang Q, Qin L, Zhang C, Liu L, et al. Establishment
and validation of a prognostic signature for lung adenocarcinoma based on
metabolism-related genes. Cancer Cell Int (2021) 21(1):219. doi: 10.1186/s12935-
021-01915-x

22. Li Y, Mo H, Wu S, Liu X, Tu K. A novel lactate metabolism-related gene
signature for predicting clinical outcome and tumor microenvironment in
hepatocellular carcinoma. Front Cell Dev Biol (2021) 9:801959. doi: 10.3389/
fcell.2021.801959

23. Zhao Z, Zhang KN, Wang Q, Li G, Zeng F, Zhang Y, et al. Chinese Glioma
genome atlas (CGGA): A comprehensive resource with functional genomic data
from Chinese glioma patients. Genomics Proteomics Bioinf (2021) 19(1):1–12. doi:
10.1016/j.gpb.2020.10.005

24. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al.
TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data.
Nucleic Acids Res (2016) 44(8):e71. doi: 10.1093/nar/gkv1507

25. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdóttir H, Tamayo P,
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