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Abstract: Helicobacter pylori persistently colonizes the human stomach, and is associated with
inflammation-induced gastric cancer. Bacterial crosstalk with the host immune system produces
various inflammatory mediators and subsequent reactions in the host, but not bacterial clearance.
Interleukin-1β (IL-1β) is implicated in gastric cancer development and certain gene polymorphisms
play a role in this scenario. Mature IL-1β production depends on inflammasome activation, and the
NLRP3 inflammasome is a major driver in H. pylori-infected mice, while recent studies demonstrated
the down-regulation of NLRP3 expression in human immune cells, indicating a differential NLRP3
regulation in human vs. mice. In addition to the formation of mature IL-1β or IL-18, inflammasome
activation induces pyroptotic death in cells. We demonstrate that H. pylori infection indeed upregulated
the expression of pro-IL-1β in human immune cells, but secreted only very low amounts of
mature IL-1β. However, application of exogenous control activators such as Nigericin or ATP
to infected cells readily induced NLRP3 inflammasome formation and secretion of high amounts of
mature IL-1β. This suggests that chronic H. pylori infection in humans manipulates inflammasome
activation and pyroptosis for bacterial persistence. This inflammasome deregulation during H. pylori
infection, however, is prone to external stimulation by microbial, environmental or host molecules of
inflammasome activators for the production of high amounts of mature IL-1β and signaling-mediated
gastric tumorigenesis in humans.
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1. Introduction

Helicobacter pylori infection in the global human population is a major health burden in many parts
of the world. The advent of antibiotic therapy and improved hygiene protocols drastically reduced the
burden in several developed countries in recent decades, but lack of diagnosis and poor hygiene in
underdeveloped countries made the condition worse with a high percentage of colonized individuals [1].
A meta-analysis of published data revealed that 44.3% to 60.3% of the global population harbors this
bacterium in their stomach [2]. The country-specific prevalence varies from 18.9% in Switzerland to
87.7% in Nigeria [1]. H. pylori colonization causes mild gastritis in every colonized individual, however,
10–20% of cases are associated with the development of peptic ulcers, 1–2% develop gastric cancer and
<1% cause gastric mucosa-associated lymphoid tissue lymphoma (MALT) [3,4]. H. pylori is a bacterial
carcinogen recognized by the World Health Organization (WHO) due to the association with gastric
cancer and MALT lymphoma [5]. The burden of gastric cancer increases every year and 1,033,701 new
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cases were reported and 782,685 people died worldwide in 2018 as per data of the International Agency
for Research on Cancer (IARC) (http://gco.iarc.fr). Once colonized in childhood, H. pylori infection can
last for the whole life, if not eradicated by prophylactic measures.

H. pylori colonization induces various pattern recognition receptors (PRRs) of the host to produce
robust chemokine and cytokine responses through signal transduction events in different cellular
systems in the gastric tissue [6–8]. This bacterium utilizes many of its virulence factors to overcome the
natural barriers in the host and establish colonization. Highly virulent type-I H. pylori strains harbor the
~40 kb cytotoxicity associated gene pathogenicity island (cagPAI) in their genomes, which codes for a
type IV secretion system (T4SS) and the effector protein CagA. T4SS-dependent delivery of CagA leads
to phosphorylation by c-Src and c-Abl kinases, and both phosphorylated and non-phosphorylated CagA
cause perturbation in signaling, cellular functions, morphology and eventually oncogenesis [9–13].
In contrast, less virulent type-II strains do not encode the cagPAI in their genomes. Moreover,
type-I strains are generally implicated in the development of associated pathologies due to increased
inflammation in the colonized individuals. In addition, H. pylori secretes a toxin called vacuolating
cytotoxin A (VacA), which causes vacuolation of epithelial cells in culture. VacA s1-i1-m1 allele-harboring
strains showed maximum vacuolization in epithelial barrier dysfunction and thereby are associated
with peptic ulcer and gastric cancer [14–16]. Multiple receptors are reported for VacA on epithelial
cells, however, CD18 is the only receptor identified in immune cells like T cells [16,17]. VacA binding to
host receptors induce several signaling events, mitochondrial damage, and apoptotic cell death [18–21].
The H. pylori flagellum helps to travel through the thick gastric mucous layer to interact with the
gastric epithelium. The hostile acidic gastric environment is generally neutralized by the activity
of H. pylori urease and GGT (γ-glutamyl transferase) enzymes. Furthermore, an array of adhesion
molecules helps for specific attachment to the epithelium [22–24]. The establishment of colonization
and PRR responses attract various immune cells, especially a high population of neutrophils to infiltrate
into the site of infection [25–27]. Furthermore, the immune responses through cellular and soluble
mediators lead to the development of adaptive immunity against this bacterium. H. pylori elicits strong
T cellular and B cellular responses to mainly develop Th1 and Th17 effector cell populations and strong
humoral immunity through antibodies, respectively [26,28–31]. Macrophages were reported to be
differentiated into mixed pro-inflammatory M1 and anti-inflammatory M2 populations during H. pylori
infection [32–34]. In addition, H. pylori infection causes anti-inflammatory T-regulatory (Treg) cell
production to favor suppressed inflammatory reactions and dysregulated gastric microbiota [35–38].

Interestingly, persistent infection by H. pylori is also beneficial for the human host through
suppressing other illnesses including asthma, allergies and inflammatory bowel disease [35,37,39,40].
Host gene polymorphisms are known to have a crucial impact in producing different associated
pathologies of H. pylori infection [41–43]. In particular, a specific interleukin-1β (IL-1β) gene
polymorphism has prominence and was implicated in hypochlorhydria and gastric cancer
development [41,44–46]. IL-1β signaling works as an inhibitor of acid secretion and causes gastric
atrophy, which provides a hotbed for metaplasia and gastric cancer development. Furthermore, it
directly induces the proliferation of gastric carcinoma cells [47–50]. The secreted IL-1β levels correlated
with gastric inflammation and gastric carcinogenesis [51–53]. In addition, stomach specific expression
of mature human IL-1β in mice developed the stepwise progression of gastric inflammation, dysplasia
and gastric cancer and Th1 specific immunity promoted this process [54,55]. However, IL-1β deficiency
or IL-1 receptor blockade inhibited these processes [54,55]. In concurrence, lymphocyte-deficient mice
expressing IL-1β in the stomach exhibited atrophic gastritis, metaplasia and dysplasia, which supports
an independent role of IL-1β in gastric carcinogenesis [54]. H. pylori-related MALT lymphomagenesis
was reported to be associated with specific intra-tumoral T cell responses. Moreover, translocated
CagA mediates B-cell proliferation, leading to lymphomagenesis of MALT lymphomas [56]. In general,
the production of mature IL-1β and IL-18 is mediated through the formation of multi-protein scaffolds,
called inflammasome and caspase-1 activation [57–59], whereas there are some other proteases that
can also cleave the pro-forms of these cytokines [60]. Inflammasomes are mainly formed by NLRP1
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(Nod-like receptor family, pyrin domain containing 1), NLRP3, NLRC4 (Nod-like receptor family,
card domain containing 4), AIM2 (absent in melanoma 2) and Pyrin/TRIM20 (tripartite motif 20)
signaling platforms [57–59,61]. The NLRP3 inflammasome is the most studied inflammasome, and
generally requires two major signaling events for activation, signal-1 and signal-2. The first signal
induces the increased expression of components such as NLRP3, ASC (apoptosis associated speck
protein), pro-IL-1β, and caspase-1. Finally, inflammasome scaffold formation and activation requires a
second signal commonly provided by various microbial, environmental and host molecules such as
Nigericin, silica, asbestos, monosodium urate (MSU), ATP or reactive oxygen species (ROS) [62–64].
Mice infected with H. pylori were reported to activate the NLRP3 inflammasome and secreted mature
IL-1β from immune cells through a TLR2/NOD2-dependent mechanism [39,65]. It should be also
noted that most of the inflammasome studies on H. pylori were done in mice or with isolated mouse
dendritic cells (DCs), and identified different virulence factors such as cagPAI, VacA, LPS and urease B
that are involved in this process [39,65,66]. In addition, chronic H. pylori infection in mice regulates
inflammasome activation through a MUC1-dependent mechanism [67]. However, very little data
exists on inflammasome formation in H. pylori-infected human cells and some controversy occurs with
regard to the involvement of different virulence factors in the mechanism of activation when compared
to mice [39,53,65,66]. In addition to this, we recently found that NLRP3 expression regulation occurred
in H. pylori-infected human monocytes/macrophages, which was dependent on miR-223-3p and the
presence of secreted IL-10 [68]. Consequently, the regulation of the inflammasome by H. pylori in
mouse versus human cells is not fully understood. Thus, we aimed here to study in more detail
the NLRP3 inflammasome formation and secretion of mature IL-1β in H. pylori-infected human
monocytes/macrophages and resolve some of the conflicting data. We have also reconstructed the
NLRP3 inflammasome by overexpression of its components in a non-competent HEK293 epithelial cell
line (HEK293-NLRP3-INSOME) and used it for the validation of monocyte/macrophage functions. We
found that NLRP3 inflammasome formation and activation not occurred during H. pylori infection of
human cells, however, which can be surmounted by induction with exogenous second signal activators.
This is an important finding that acute infection by H. pylori creates a partial situation for NLRP3
inflammasome activation, which may be completed by the release of high molar ATP, monosodium
urate (MSU), ROS, exposure to orally passing agents or anything likely to produce high amounts of
oncogenic mature IL-1β. These results can partly explain the clearance of H. pylori in mice versus
chronic infection in humans.

2. Results

2.1. Different Clinical H. pylori Strains Induce Upregulated Pro-IL-1β Expression in Infected THP1 Monocytes

We have previously shown that THP1 monocytes, a commonly used human model cell line for
inflammasome activation, constitutively express NLRP3 and pro-caspase-1. Furthermore, NLRP3
expression increased after 6 h of infection with H. pylori, but downregulated at a later period [68]. Thus,
we used 6 h of infection in the current inflammasome activation experiments unless stated otherwise.
The expression of pro-IL-1β is a prerequisite for mature IL-1β production, and its secretion proceeds
through activation of the inflammasome. H. pylori infection-mediated IL-1β expression and secretion
have important roles in pathogenesis. We infected THP1 monocytes with H. pylori belonging to the
highly virulent type-I (P1 and P12) or less-virulent type-II (UK123, UK097 and Ka148) strains. Both
types of H. pylori induced the profound expression of pro-IL-1β in THP1 monocytes at 6 h of infection
compared to mock-treated control cells (Figure 1A; Supplementary Figure S1). The relative amounts of
pro-IL-1β protein expressions were quantified (Supplementary Figure S1). However, cells infected
with both types of H. pylori secreted very small quantities of mature IL-1β (5–10 pg/mL) as determined
by standard ELISA (Figure 1A). Moreover, THP1 monocytes infected with P12 wild-type and isogenic
mutants in major virulence factors (∆cagL, ∆vacA, ∆flaA, ∆LPS, ∆cagPAI) secreted similar amounts
of mature IL-1β even after 24 h (Figure 1B), which suggests that these factors are not involved in
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this process. By comparison with reported studies in mice, DCs infected with ∆cagPAI and ∆cagL
mutants of P12 strain showed a significant reduction in IL-1β secretion compared to wild-type bacteria
(200–800 pg/mL), and furthermore, priming with E. coli LPS drastically increased (above 2000 pg/mL)
the IL-1β secretion [39,65]. This shows that H. pylori-infected human and mouse cells exhibit significant
differences in cleavage of pro-IL-1β and secretion of the mature form. Therefore, our further studies
aimed to investigate inflammasome activation in H. pylori-infected human cells.
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Figure 1. Induced expression of pro-IL-1β in H. pylori-infected THP1 monocytes. The first signal
of NLRP3 inflammasome activation requires the optimal production of inflammasome components
including pro-IL-1β, which is not generally expressed in immune cells without induction. Different
wild-type strains including type-I and type-II H. pylori were infected for 6 h to analyze the pro-IL-1β
expression and secretion (A). Furthermore, H. pylori P12 wild-type and isogenic mutants were also
used to identify the effect on secretion at 24 h of infection with THP1 monocytes (B). GAPDH protein
immunoblots were used as loading reference. ** p ≤ 0.01.

2.2. Comparison of Canonical NLRP3 Inflammasome Activation with that of H. pylori-Infected Cells

We next analyzed whether differences exist between canonical NLRP3 inflammasome activation
in THP1 monocytes versus H. pylori infection. NLRP3 inflammasome formation and activation was
carried out by treatment with E. coli LPS (as signal-1) followed by addition of 10 µM Nigericin or 5 mM
ATP (as signal-2), and determined mature IL-1β production and secretion by ELISA. As expected, E. coli
LPS-treated cells induced with Nigericin or ATP secreted significantly high amounts of mature IL-1β
(Figure 2A). However, cells treated with E. coli LPS or H. pylori alone secreted no or only small amounts
of mature IL-1β (Figure 2A; data not shown). As above, H. pylori infection of THP1 monocytes secreted
significantly less mature IL-1β, thus we hypothesized that signal-2 for activation is missing upon
infection. In this context, we treated H. pylori-infected cells with signal-2 activators, and surprisingly,
Nigericin or ATP addition significantly increased the secretion of mature IL-1β, which complies with
our hypothesis that H. pylori lacks the signal-2 for activation of NLRP3 inflammasome in THP1 cells
(Figure 2A). This result is also in line with NLRP3 inflammasome activation-mediated secretion in
mouse DCs after infection or treatment with H. pylori and LPS/ATP, respectively [66]. In fact, this
shows interference of this important innate immune response by H. pylori in human cells. Moreover,
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we analyzed H. pylori/Nigericin inflammasome activation for the involvement of caspase-1, as other
caspases and proteases were also implicated in the cleavage of pro-IL-1β [60]. THP1 monocytes were
treated with caspase-1 inhibitor VX-765 (10 µM) 15 min before LPS treatment or infection with H. pylori,
which followed Nigericin-mediated NLRP3 inflammasome activation. The VX-765 pre-treatment
completely abolished caspase-1-dependent mature IL-1β secretion in LPS/Nigericin treated cells
(Figure 2B). However, we noted small amounts of IL-1β secretion from VX-765 treated cells exposed to
H. pylori/Nigericin, which is equivalent to the IL-1β production solely by infection.
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Figure 2. NLRP3 inflammasome activation in THP1 monocytes was compared with H. pylori infection
at 6 h of treatment. E. coli LPS/Nigericin and LPS/ATP were used as signal-1/signal-2 for canonical
activation of the NLRP3 inflammasome in THP1 monocytes as described in the text (A). H. pylori
infection secreted low amounts of IL-1β when compared with canonical NLRP3 inflammasome
activation-mediated mature IL-1β secretion. Moreover, E. coli LPS/H. pylori co-treatment showed
a corresponding increase in IL-1β secretion but this was not comparable with the inflammasome
activation response (B). However, H. pylori-infected cells treated with signal-2 activators Nigericin or
ATP induced the production of a high amount of mature IL-1β secretion (A,B). The caspase-1 inhibitor
VX-765 inhibited all NLRP3 inflammasome driven IL-1β secretion in LPS treated or H. pylori-infected
cells after activation but infected cells maintained basic secretion (B). ** p ≤ 0.01.

2.3. Inflammasome Activation in H. pylori-Infected NLRP3 and Caspase-1 Knockout THP1 Monocytes

To further substantiate our findings, NLRP3 and caspase-1 were knocked-out in THP-1 by
CRISPR/Cas9 technology and named as NLRP3-KO or CASP1-KO cells, respectively. LPS-treated
and H. pylori-infected NLRP3-KO and CASP1-KO THP1 cells were used to investigate inflammasome
activation compared to parental control cells. H. pylori infection of NLRP3-KO and CASP1-KO cells
upregulated pro-IL-1β expression in similar levels observed for parental cells (Figure 3A; Supplementary
Figure S2). Active caspase-1 also targets GAPDH [69], being cleaved in THP1 parental cells after
Nigericin treatment, while not in NLRP3-KO or caspase-1-KO cells, indicating the stimulation of
pyroptotic cell death. Nigericin-induced activation of the NLRP3 inflammasome in LPS-treated
NLRP3-KO or CASP1-KO cells did not yield any significant mature IL-1β secretion at 6 h compared



Cancers 2020, 12, 803 6 of 21

to parental cells (Figure 3B). Although, H. pylori infection of these knockout cells secreted small
amounts of IL-1β as in parental cells, which again confirms that this low secretion is not dependent
on NLRP3 inflammasome and caspase-1 activation (Figure 3B). Furthermore, LPS/Nigericin-treated
parental cells drastically reduced the mature IL-1β secretion at 24 h when compared with early phase
induction, which is implicated for decreased NLRP3 expression in the late phase observed in previous
studies [68,70]. H. pylori/Nigericin-treated cells also exhibited a similar decrease in mature IL-1β
secretion at later periods of infection due to both decreased NLRP3 expression [68] and inflammasome
activation. However, infection-induced small amounts of IL-1β secretion gradually increased at a
later time point, which again suggests an inflammasome/caspase-1 independent mechanism for this in
human THP-1 cells.
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Figure 3. Expression of pro-IL-1β in THP1 parental, THP1 NLRP3-KO and THP1 Caspase-1-KO
monocytes after E. coli LPS treatment, H. pylori infection and NLRP3 inflammasome activation with
Nigericin were shown in Western blots in comparison with control GAPDH as loading reference
(A). GAPDH, a known target for active caspase-1 [69] is also cleaved in THP1 parental cells but not
in NLRP3-KO or caspase-1-KO cells after Nigericin treatment, which suggests pyroptotic death (A).
NLRP3 inflammasome activation is evident with cleavage of pro-IL-1β and secretion of high amount
of mature IL-1β from THP1 parental monocytes but not in NLRP3-KO or caspase-1-KO cells after
Nigericin treatment, however, both knockout cells secreted basic background secretion after H. pylori
infection, which again confirms the inflammasome or caspase-1-independent secretion of IL-1β by H.
pylori (B). * p ≤ 0.05; ** p ≤ 0.01.

2.4. Activation of NLRP3 Inflammasome in Human Primary M1 and M2 Macrophages during
H. pylori Infection

Mixed populations of pro- and anti-inflammatory M1 and M2 macrophages, respectively, were
reported to be present in the gastric mucosa of H. pylori-infected individuals [32–34]. To test their
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importance, peripheral blood monocytes were isolated from three volunteers and differentiated to
M1 and M2 macrophages, which was confirmed by flow cytometric analysis of overexpression of M1
markers (CD40 and CD86) and M2 markers (CD163 and CD204) (Figure 4A). These cells were used for
studying H. pylori-, LPS/H. pylori- and H. pylori/Nigericin-induced IL-1β expression and secretion. As
observed in THP1 cells, H. pylori- and LPS/H. pylori-infected primary M1 and M2 cells secreted IL-1β,
which gradually increased between 6 h to 24 h of infection (Figure 4B). Furthermore, Nigericin-induced
NLRP3 inflammasome activation in H. pylori-infected M1 and M2 macrophages significantly secreted
high amounts of mature IL-1β (Figure 4B). Furthermore, M1 macrophages secreted higher amounts
of mature IL-1β in H. pylori/Nigericin-treated cells at the early phase, but decreased at the later time
point, which again confirms the downregulation of NLRP3 expression in infected primary cells [68].
Moreover, Nigericin-induced NLRP3 activation in infected M2 macrophages significantly increased
mature IL-1β secretion at an early time point (Figure 4B). Whereas, this level was maintained at the later
time point, but it was not highly significant from infected cells without Nigericin treatment. H. pylori
infection of M2 macrophages gradually increased significant IL-1β secretion at the later time point, but
were not highly responsive to Nigericin treatment, which also supports NLRP3 expression regulation
in M2 macrophages Thus, pro- and anti-inflammatory M1 and M2 macrophages, respectively, and the
THP1 cell line, exhibited a similar regulation in NLRP3 inflammasome activation-mediated mature
IL-1β secretion at the later time point (Figure 4B). Together, H. pylori induces the first signal of NLRP3
inflammasome in human primary cells and the THP1 cell line; however, it lacks a proper second signal
activation and mature IL-1β secretion.
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Figure 4. Primary human M1 and M2 macrophages express significantly increased amounts of M1
markers CD40, CD86 and M2 markers CD163, CD204 by flow cytometry (A). These M1 and M2
macrophages were infected with H. pylori, co-treated with LPS and further treated with Nigericin to
analyze NLRP3 inflammasome activation and mature IL-1β secretion (B). M1 and M2 macrophages
showed a response that was similar to the THP1 monocytes. * p ≤ 0.05; ** p ≤ 0.01.
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2.5. NLRP3 Inflammasome Characteristic in H. pylori-Infected Cells

We next infected PMA-differentiated THP1 macrophages with H. pylori for investigating NLRP3
inflammasome formation at 6 h. After infection, THP1 macrophages were fixed and stained using
immuno-fluorescence labelling against NLRP3 and caspase-1 for visualization by widefield fluorescence
microscopy. The careful analysis of H. pylori-infected cells and mock control cells did not reveal typical
NLRP3 inflammasome speck formation, but a homogenous distribution of the protein. However, the
infected cells treated with signal-2 inducer, Nigericin, clearly formed the expected inflammasome speck
(Figure 5A). In addition, the labelling for pro-caspase-1 merged at the corresponding spot of the NLRP3
inflammasome speck in H. pylori/Nigericin-treated THP1 macrophages, which confirms the close
interaction of both of these molecules for active inflammasome formation (Figure 5B,C). The detailed
characteristic of NLRP3 inflammasome formed in these cells was further visualized by super resolution
STED (stimulated emission depletion) microscopy. As seen in the widefield fluorescence microscope,
H. pylori-infected, and mock-treated control cells did not show the organization of the inflammasome
and cells had a normal size and appearance. After induction with Nigericin in H. pylori-infected
cells, NLRP3 inflammasome was visualized at super resolution in the characteristic donut shape
(Figure 5D) [71], which confirmed the need for the exogenous second signal in NLRP3 inflammasome
formation during H. pylori infection.
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Figure 5. The immuno-fluorescence images of NLRP3, caspase-1 and merged in H. pylori-infected, H.
pylori/Nigericin-treated and mock treated control cells of PMA differentiated THP1 macrophages (A–C).
The NLRP3 inflammasome formation is indicated with yellow arrows. The super resolution STED
microscopy of the NLRP3 and inflammasome formation in H. pylori-infected, H. pylori/Nigericin-treated
and mock treated control cells with more clarity showing donut-shaped inflammasome speck (D). The
mature IL-1β secretion from THP1 macrophages and reconstructed HEK293-NLRP3-INSOME secretion
after infection and Nigericin treatment were determined in parallel by ELISA (E,F). ** p ≤ 0.01.
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NLRP3 inflammasome activation in the Nigericin-treated infected (H. pylori/Nigericin) cells was
confirmed by the significantly high secretion of mature IL-1β (Figure 5E). Next, we transfected
inflammasome-deficient HEK293 epithelial cells with eGFP-NLRP3 inflammasome constructs,
generating HEK293-NLRP3-INSOME cells, which was previously described for mouse cells and
NLRs [72,73]. The basic inflammasome response was not drastically changed in these cells upon
infection with H. pylori, but Nigericin treatment significantly increased the secretion of mature IL-1β
(Figure 5F). These data further confirm the inability of H. pylori to establish proper NLRP3 inflammasome
functions in human cells.

2.6. Reconstructed NLRP3 Inflammasome Speck Induction by a Known Bacterial Activator and H. pylori

HEK293-NLRP3-INSOME cells were used for further analysis on understanding the inflammasome
activation dynamics. Activation of NLRP3 inflammasome in HEK293-NLRP3-INSOME cells with the
bacterial activator Staphylococcus aureus and LPS/Nigericin were compared with that of H. pylori infection.
The eGFP-NLRP3 and mCherry-pro-IL-1β were visualized in the mock control, LPS/Nigericin treated,
H. pylori, and S. aureus infected HEK293-NLRP3-INSOME cells by confocal laser scanning fluorescence
microscopy (CLSM) (Figure 6A–D). Interestingly, S. aureus-infected and LPS/Nigericin-treated
cells induced more NLRP3 inflammasome specks merged with the mCherry-pro-IL-1β, while
H. pylori-infected and mock-treated cells maintained similar speck-free features (Figure 6A–D).
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Figure 6. Confocal laser scanning microscopy was used to analyze the reconstructed HEK293-NLRP3-
INSOME cells in mock control (A), H. pylori-infected (B), S. aureus-infected (C) and E. coli
LPS/Nigericin-treated (D). EGFP-NLRP3 and mCherry-pro-IL-1β were visualized using their
characteristic colors and NLRP3 inflammasome in various conditions mentioned above were marked
with yellow arrows. The respective column heading shows the transfection status of each cell before or
after infection or treatment.
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2.7. Impact of Known H. pylori Virulence Factors

As next we asked if major reported H. pylori virulence factors may inhibit inflammasome formation
and mature IL-1β secretion in human target cells. To test this idea, three different type-I H. pylori
wild-type strains (P12, P1 and N6) and their respective isogenic mutants of eleven important virulence
factors, including ∆cagA, ∆cagL, ∆hopQ, ∆hbp, ∆ggt, ∆tg, ∆cgt, ∆vacA, ∆ureA, ∆napA or ∆htrA, were
applied to infect HEK293-NLRP3-INSOME cells. However, the secreted mature IL-1β concentration
from H. pylori wild-type and isogenic mutants were not significantly different to mock-treated control
cells, which ruled out the involvement of these genes in inhibiting NLRP3 inflammasome function
(Figure 7A). As positive controls, S. aureus-infected and LPS/Nigericin-treated cells significantly
upregulated the mature IL-1β secretion in HEK293-NLRP3-INSOME cells when compared to H. pylori
infection (Figure 7A). Furthermore, the expression of all inflammasome components was confirmed in
H. pylori- and S. aureus-infected. LPS/Nigericin-treated HEK293-NLRP3-INSOME cells upon Western
blotting (Figure 7B; Supplementary Figure S3). Finally, S. aureus-infected THP1 monocytes secreted
very high amounts of mature IL-1β in comparison with H. pylori infection, which further proves the
validity of the above results (Figure 8). Thus, we identified here for the first time that H. pylori is
unable to activate the NLRP3 inflammasome in human immune cells and secretes low amounts of
IL-1β through a caspase-1 independent mechanism.

Cancers 2020, 12, x FOR PEER REVIEW 10 of 21 

 

infected and LPS/Nigericin-treated cells induced more NLRP3 inflammasome specks merged with 

the mCherry-pro-IL-1β, while H. pyloi-infected and mock-treated cells maintained similar speck-free 

features (Figure 6A–D). 

2.7. Impact of Known H. pyloi Virulence Factors 

 

Figure 7. HEK293-NLRP3-INSOME cells infected with three different type-I strains and their 

respective isogenic mutants were used to analyse further activation of the NLRP3 inflammasome and 

were compared with LPS/Nigericin-treated or S. aureus-infected cells (A). The inflammasome 

components expression was further confirmed by Western blot in the mock control, H. pyloi-infected, 

E. coli LPS/Nigericin-treated and S. aureus-infected cells (B). GAPDH protein immunoblots were used 

as a loading reference for relative expression. ** p ≤ 0.05 

As next we asked if major reported H. pyloi virulence factors may inhibit inflammasome 

formation and mature IL-1β secretion in human target cells. To test this idea, three different type-I 

H. pyloi wild-type strains (P12, P1 and N6) and their respective isogenic mutants of eleven important 

virulence factors, including ∆cagA, ∆cagL, ∆hopQ, ∆hbp, ∆ggt, ∆tg, ∆cgt, ∆vacA, ∆ureA, ∆napA or 

∆htrA, were applied to infect HEK293-NLRP3-INSOME cells. However, the secreted mature IL-1β 

concentration from H. pyloi wild-type and isogenic mutants were not significantly different to mock-

treated control cells, which ruled out the involvement of these genes in inhibiting NLRP3 

inflammasome function (Figure 7A). As positive controls, S. aureus-infected and LPS/Nigericin-

treated cells significantly upregulated the mature IL-1β secretion in HEK293-NLRP3-INSOME cells 

when compared to H. pyloi infection (Figure 7A). Furthermore, the expression of all inflammasome 

components was confirmed in H. pyloi- and S. aureus-infected. LPS/Nigericin-treated HEK293-

NLRP3-INSOME cells upon Western blotting (Figure 7B/Supplementary Figure 3). Finally, S. aureus-

infected THP1 monocytes secreted very high amounts of mature IL-1β in comparison with H. pyloi 

Figure 7. HEK293-NLRP3-INSOME cells infected with three different type-I strains and their respective
isogenic mutants were used to analyze further activation of the NLRP3 inflammasome and were
compared with LPS/Nigericin-treated or S. aureus-infected cells (A). The inflammasome components
expression was further confirmed by Western blot in the mock control, H. pylori-infected, E. coli
LPS/Nigericin-treated and S. aureus-infected cells (B). GAPDH protein immunoblots were used as a
loading reference. ** p ≤ 0.01.
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Figure 8. THP1 monocytes were infected with S. aureus and the level of mature IL-1β secretion was
compared with LPS/Nigericin treatment and H. pylori infection. S. aureus infection secreted comparable
levels of LPS/Nigericin treatment, which shows canonical NLPR3 inflammasome activation by this
bacterial activator in monocytes and confirms the inability of H. pylori to activate this innate immune
function. ** p ≤ 0.01.

3. Discussion

Inflammasomes are multi-protein scaffolds formed by intracellular innate immune receptors
including NLRs, AIM2 or TRIM20 for the activation of caspase-1 and cleavage of pro-forms of IL-1β
and IL-18 to its mature functional molecules [57–59]. NLRP3 is the most studied inflammasome type
and follows a two-step activation mechanism. The first step starts with the increased production of
required inflammasome components for scaffold formation and activation [64,74]. The second step of
NLRP3 inflammasome activation occurs by different factors discussed above, however, several research
groups concluded that these factors function through key events such as K+ efflux, Ca2+ signaling,
mitochondrial damage, lysosome rupture or ROS [64,74,75]. Furthermore, a new mechanism was
implicated in NLRP3 activation by its recruitment to phosphatidylinositol-4-phosphate regions on
the dispersed trans Golgi network through ionic bonding of conserved basic amino acid residues [76].
Certain phosphorylation events in NLRP3 also keep the molecule inactive, which were reported to be
lost under chronic inflammatory conditions like CAPS (cryopyrin-associated periodic syndromes) and
inflammatory bowel disease [77,78]. H. pylori induces the production of several cytokines including
IL-1β after infection of humans or mice. There are several reports showing that H. pylori activated the
NLRP3 inflammasome during mouse infection [39,65,66]. NLRP3 also showed non-inflammasomal
function in H. pylori infection by maintaining the population of CD11b+ DCs in the gastrointestinal
tissues [79]. H. pylori infection also impacted the NLRP3 inflammasome function in mice through
MUC1, which happened through suppression of NF-κB signaling [67]. In fact, MUC1 expression in
macrophages limits gastritis through regulation of the NLRP3 inflammasome [67]. However, very few
studies are available on the NLRP3 inflammasome activation in human cell systems during H. pylori
infection. In our previous report, we showed that NLRP3 protein expression is downregulated in
human immune cells through miRNA-223-3p and IL-10 upon H. pylori infection [68]. Therefore, the
present study dissected the NLRP3 inflammasome formation upon H. pylori infection of different
human immune cells.

Human immune cells infected with different type-I and type-II H. pylori strains were analyzed
for NLRP3 inflammasome function through the expression level of pro-IL-1β, NLRP3 inflammasome
formation and secretion of mature IL-1β. Both type-I and type-II strains induced the upregulated
expression of pro-IL-1β, but secreted very little mature IL-1β in THP1 monocytes after infection.
In addition to the cagPAI, other specific virulence factors such as CagL, VacA, LPS, and urease B were
also implicated in NLRP3 inflammasome activation by infected mice [39,65,66]. THP1 monocytes
infected with these and other isogenic mutants of H. pylori virulence factors also secreted very little
IL-1β, which suggests a different mechanism in human cells. As the amounts of secreted IL-1β were
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surprisingly very low, we compared the canonical NLRP3 inflammasome activation (E. coli LPS +

Nigericin or ATP) with that during H. pylori infection. Canonical inflammasome activation yielded a
high amount of mature IL-1β in comparison with H. pylori-infected cells. This demonstrates that our
cell system is functionally intact for NLRP3 inflammasome activation, however, H. pylori infection
failed to activate the same. There are two possibilities occurring here: (i) H. pylori infection lacks a
proper second signal activation or (ii) irreversibly inhibits NLRP3 inflammasome formation. To test
these possibilities, we treated H. pylori-infected cells with Nigericin or ATP, which interestingly secreted
very high amounts of IL-1β and ruled out irreversible inhibition of inflammasome formation by this
pathogen. Furthermore, we tried to confirm that mature IL-1β secretion is dependent on caspase-1
activation. Thus, we treated cells with VX-765, a caspase-1 inhibitor, which almost completely inhibited
NLRP3 inflammasome-mediated IL-1β secretion during canonical activation in LPS-treated and H.
pylori-infected THP1 monocytes; however, infected cells secreted very small amounts, even after
caspase-1 inhibition. Conclusively, this shows that H. pylori-infected cells lacked a proper second signal
for inflammasome activation, at least in infected THP1 monocytes, but secreted small amounts of IL-1β
by a caspase-1 independent mechanism.

The very small amounts of IL-1β secretion by H. pylori-infected human cells can also be dependent
on non-canonical NLRP3 inflammasome-mediated activation of other caspases [80–82]. To investigate
this possibility, we infected CRISPR/Cas9 knockout THP1 monocytes for NLRP3 and caspase-1 to
analyze IL-1β secretion. Either of the infected and LPS-treated knockout cell lines induced the
expression of pro-IL-1β. Furthermore, H. pylori-infected cells secreted small amounts of IL-1β as in the
parental THP1 cells. The Nigericin-induced second signal produced high amounts of mature IL-1β
secretion both in infected and LPS-treated parental THP1 cells; however, NLRP3-KO and caspase-1-KO
cells failed to activate NLRP3 inflammasome-mediated mature IL-1β secretion under both conditions
as expected. This confirmed two scenarios: (i) the basic IL-1β secretion in H. pylori-infected cells
is independent both of the NLRP3 inflammasome and caspase-1 activity, and (ii) in Nigericin- or
ATP-treated infected cells, secretion of mature IL-1β is dependent on NLRP3 and caspase-1. Since
THP-1 is an immortal cancer cell line, we next included primary human immune cells in our studies.
Primary M1 and M2 macrophages were prepared from patients followed by infection with H. pylori
for indicated time periods, which also secreted low levels of mature IL-1β as observed in parental
and knockout THP-1 monocytes. However, Nigericin-treatment significantly increased mature IL-1β
secretion. Thus, we speculate that H. pylori infection of humans in vivo might not be different to that
observed in human cell systems in vitro.

The visualization of NLRP3 inflammasome formation and structure is another powerful tool to
confirm the above results. We used PMA-differentiated THP1 macrophages to visualize the NLRP3
inflammasome in H. pylori infection and subsequent Nigericin treatment. Immuno-fluorescence
microscopic pictures showed that H. pylori/Nigericin-treated cells revealed clear NLRP3 inflammasome
speck formation, where both NLRP3 and caspase-1 co-localized in flattened elongated cells,
which suggests inflammasome activation and pyroptosis. However, mock-treated control and
H. pylori-infected THP1 macrophages maintained similar characteristic shapes and no clear signs of
NLRP3 inflammasome specks. The super resolution STED microscopy for NLRP3 inflammasome
speck formation in H. pylori/Nigericin-treated cells showed characteristic donut-shaped specks [71,76]
and also secreted significantly high amounts of mature IL-1β in THP1 macrophages. Furthermore, we
reconstructed the NLRP3 inflammasome by transient expression of all components including pro-IL-1β
in HEK293 epithelial cells and H. pylori infection did not significantly change the basic mature IL-1β
secretion, whereas Nigericin treatment highly increased the secretion. This finally confirmed that
H. pylori infection of human monocytes/macrophages clearly activates the first signal but is unable to
fully activate the NLRP3 inflammasome.

There are bacteria such as S. aureus that are known to activate the NLRP3 inflammasome [83–85]. We
therefore compared S. aureus with H. pylori on induction of the NLRP3 inflammasome in reconstructed
HEK293 cells. In concurrence with our above data, H. pylori infection did not change basic IL-1β



Cancers 2020, 12, 803 13 of 21

secretion levels; however, S. aureus-infected and LPS/Nigericin-treated cells increased the reconstructed
NLRP3 inflammasome activity to significantly enhance the amounts of mature IL-1β secretion.
Moreover, we explored the possibility that major virulence factors of H. pylori could eventually inhibit
the activation of the NLRP3 inflammasome. However, infection of three different wild-type strains and
11 well-known isogenic mutants did not reveal any critical effect on inflammasome function and mature
IL-1β secretion. Moreover, confocal microscopy images showed increased inflammasome specks in
S. aureus-infected and LPS/Nigericin-treated cells when compared to H. pylori-infected and mock control
cells. Altogether, these data confirmed the inability of H. pylori to induce proper NLRP3 inflammasome
formation in human cells. Based on the IL-1β secretion in studied cells and microscopic inflammasome
analysis, it was plausible that no other inflammasome types were activated in H. pylori-infected cells.
The increased expression of pro-IL-1β in monocytes/macrophages or other cells by H. pylori infection,
make them vulnerable to NLRP3 inflammasome activation through increased concentration of ATP,
MSU, ROS or environmental factors or co-infection with other inflammasome activating bacteria. The
regulation of NLRP3 expression and activation during H. pylori infection may control the increased
tissue destruction in the gastric mucosa and ensure bacterial survival and persistence. Together, our
study created a new perspective on inflammasome manipulation by H. pylori and that may support
chronic infection in humans. Therefore, more studies with higher animal models and patients are
needed to understand the clinical perspective and possibilities for therapeutic intervention.

4. Materials and Methods

4.1. Bacterial Strains and Culture

Helicobacter pylori wild-type strains of type I (P1, P12, N6) and type II (UK123, UK097, Ka148)
were used in this study. The P12∆cagA, ∆cagL, ∆cagPAI, ∆flaA, ∆ggt, ∆hbp, ∆hopQ, ∆hp1191 (LPS),
∆cgt, ∆tg and ∆vacA, as well as P1∆napA, ∆ureA and ∆vacA and N6∆htrA isogenic mutants were
created by insertion of a chloramphenicol or kanamycin resistance gene cassette, respectively, and
were used in this study [86–89]. H. pylori were grown on horse serum agar plates supplemented
with vancomycin (10 µg/mL), nystatin (1 µg/mL) and trimethoprim (5 µg/mL), and chloramphenicol
(4 µg/mL) or kanamycin (8 µg/mL) for selection of isogenic mutants. All plates were incubated at 37 ◦C
for 2 days in an anaerobic jar containing a campygen gas mix (Oxoid, Wesel/Germany) [88,90]. H. pylori
grown on plates was harvested and resuspended in BHI (brain heart infusion) broth using a sterile
cotton swab (Carl Roth, Karlsruhe/Germany). The bacterial concentration was measured as the optical
density at 600 nm (OD600nm) using an Eppendorf spectrophotometer. The respective eukaryotic cells
grown in medium without antibiotics and antimycotics were infected with H. pylori at a multiplicity of
infection (MOI) of 100 [68,88]. The mock treated control cells were incubated with equal amounts of
BHI broth. Staphylococcus aureus wild-type strain RN6390 cultured in LB broth until OD600nm = 0.6–0.8
at 37 ◦C and 600 rpm was also used for infection [91].

4.2. Cell Line Cultures

THP-1 (ATCC-TIB-202) monocytic leukemia cells were cultured in RPMI-1640 medium
supplemented with 10% heat-inactivated fetal bovine serum (FBS; Thermo Fisher Scientific,
Dreieich/Germany), and 1% antibiotic and antimycotic solution (Sigma- Aldrich, St. Louis, MO,
USA) in a humidified incubator at 37 ◦C with 5% CO2 [68,88,92]. Before infection, LPS (Sigma-Aldrich,
St. Louis, MO, USA) or VX-765 inhibitor (Invivogen, Toulouse/France) treatment, cells were washed
with PBS at pH 7.4 and the required number of cells were cultured in plates with antibiotic- and
antimycotic-free medium. The CRISPR/Cas9 generated NLRP3 or caspase-1 knockout THP-1 cells
(kind gift from Prof. Veit Hornung, Ludwig-Maximilians University, Munich, Germany) were also
maintained or prepared as parental THP1 monocytes mentioned before. For macrophages, THP-1
monocytes were differentiated with 40 nM of Phorbol 12-Myristate 13-Acetate (PMA; Sigma-Aldrich,
St. Louis, MO, USA) in complete RPMI-1640 medium for 48 h culture with daily replenishment of
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fresh medium and cells were also grown on glass cover slips for microscopy. Differentiated THP1
macrophages were rested in culture medium without PMA for another 48 h to attain the morphological
and functional status of the macrophages [68,93]. Then, the cells were washed with PBS at pH 7.4
before adding antibiotic- and antimycotic-free medium for H. pylori infection or LPS treatment.

Human epithelial HEK293 cells (ATCC-CRL-1573) were cultured in Dulbecco’s modified
Eagle medium (DMEM; Thermo Fisher Scientific, Dreieich/Germany) supplemented with 10% FBS
(Thermo Fisher Scientific, Dreieich/Germany) and 1% antibiotic or antimycotic solution, respectively
(Sigma-Aldrich, St. Louis, MO, USA) at 37 ◦C and 5% CO2 [88]. To increase the adherence of HEK293
cells, the used dishes were pre-coated with 0.01% poly-L-lysine (Sigma-Aldrich, St. Louis, MO, USA)
at 37 ◦C one day prior to seeding. For transfection, 2.0 × 105 cells were seeded in 12-well plates one
day prior to transfection.

4.3. Preparation of M1 and M2 Macrophages Differentiation and Culture

PBMCs (peripheral blood mononuclear cells) were isolated by density gradient centrifugation
of buffy coat preparations from the peripheral blood of volunteers (Deutsches Rotes Kreuz,
Erlangen/Germany). Monocytes were isolated by adherence on plastic and cultured in the presence
of 50 ng/mL GM-CSF (Berlex, USA) to generate M1 macrophages, or in the presence of 50 ng/mL
M-CSF (R&D systems, Minneapolis/USA) to obtain M2 macrophages. Macrophages were detached
with 1 mM EDTA (Sigma-Aldrich, St. Louis, MO, USA) solution after 6 days of culture. The phenotype
was evaluated by expression of surface markers CD86, CD40, CD163 and CD204 by flow cytometry.
The following antibodies were used for flow cytometry: CD163-BV421 (clone: GHI/61, BioLegend,
Fell/Germany), CD40-FITC (clone: 5C3, BioLegend, Fell/Germany), CD86-PE (clone: IT2.2, BioLegend,
Fell/Germany) and CD204-APC (clone: 351615, R&D systems, Minneapolis/USA).

4.4. NLRP3 Inflammasome Reconstruction by Transient Transfection and Expression of Components

The NLRP3 inflammasome was reconstructed in HEK293 cells with some modifications
as described elsewhere [72]. We transfected 200 ng of pmCherry-C1-proIL1B, 200 ng of
pEGFP-C2-NLRP3 (a gift from Christian Stehlik, Addgene plasmid # 73955; http://n2t.net/addgene:
73955; RRID:Addgene_73955) [94], 20 ng of pcDNA3-Myc-ASC (a gift from Christian Stehlik,
Addgene plasmid # 73952; http://n2t.net/addgene:73952; RID:Addgene_73952) [95] and 100 ng of
pCI-caspase1 (a gift from Kate Fitzgerald, Addgene plasmid # 41552; http://n2t.net/addgene:41552;
RRID:Addgene_41552) [96] using Lipofectamine 3000 (Thermo Fisher Scientific, Dreieich/Germany)
following the manufacturer’s protocol. mCherry-pro-IL-1β was constructed by ligating the pro-IL-1β
coding sequence from pCellFree_G03 IL1B (a gift from Kirill Alexandrov, Addgene plasmid # 67066;
http://n2t.net/addgene:67066; RRID: Addgene_67066) [97] in-frame into a pmCherry-C1 vector backbone.
Finally, the sequence was verified by sequencing. The cells were washed twice 16 h post transfection
and grown in medium without antibiotics or antimycotics but supplemented with FBS.

4.5. SDS-PAGE and Immunoblotting

Cell lysates from harvested infected and non-infected immune cells were prepared by adding
equal amounts of 2 x SDS-PAGE lysis buffer and boiling for 5 min. Polyacrylamide gels (6–12%)
were used to resolve the proteins by electrophoresis, which were blotted on Immobilon-P membranes
(Millipore, Massachusetts/USA) after that. The blotted membranes were blocked in TBST buffer
with 5% skimmed milk or BSA for 1 hour at room temperature as described [88,92,98]. Anti-IL-1β
(R&D systems, Minneapolis/USA), anti-NLRP3, anti-ASC (Adipogen, San Diego/USA), anti-caspase-1
and anti-GAPDH (Santa Cruz Biotechnology, Dallas/USA) primary antibodies were used for
detection. As secondary antibodies, horseradish peroxidase-conjugated anti-goat polyvalent rabbit
immunoglobulin, anti-rabbit or anti-mouse polyvalent goat immunoglobulin, respectively, were used
(Thermo Fisher Scientific, Dreieich/Germany). Antibody detection was performed with the Amersham

http://n2t.net/addgene:73955
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ECL Prime chemiluminescence Western blot kit (GE Healthcare, Chicago/USA) as described [88,98,99].
The band intensities were quantified using ImageLab Software 5.0 (BioRad, Hercules/USA).

4.6. Immunofluorescence Microscopy

The mock-treated control and infected cells were fixed with 3.8% PFA, which followed the standard
protocol steps of washes, permeabilization and staining with corresponding fluorescently labelled
antibodies [100]. After fixing, the cells were permeabilized with 0.25% Triton X100 for 1 min and
blocked with 5% BSA in PBS for 1h. Anti-NLRP3 (Adipogen, San Diego, CA, USA) and anti-caspase-1
(Novus Biologicals, Centennial, CO, USA) were used as primary antibodies for staining and mounted
with 50% vectashield (Vector Labs, Peterborough/ United Kingdom) in glycerin. FITC conjugated
anti-mouse and TRITC conjugated anti-rabbit were used as secondary antibodies to visualize under
the fluorescence microscope (Leica DMRE7, Leica Microsystems, Wetzlar/Germany). Separate images
were taken in the corresponding channels and images were obtained by LAS AF computer software
(Leica Microsystems, Wetzlar/Germany). Final images for publication were processed using ImageJ
software (National Institute of Health, Bethesda/USA).

Confocal laser scanning microscopy (CSLM) of HEK293 cells was done by following this method.
The cells were prepared as above and stained with DAPI (4′,6-diamidino-2-phenylindole, Roth,
Germany) before being mounted with vectashield as above. These samples were studied using a
Leica DMI4000B fluorescence microscope and different lasers (Leica Microsystems, Wetzlar/Germany)
for visualizing DNA, eGFP-NLRP3 and mCherry-Pro-IL-1β [101]. Images were acquired by LAS AF
computer software (Leica Microsystems, Wetzlar/Germany) and final images were processed as above.

4.7. STED Super Resolution Microscopy

The cells were processed and fixed as described above and were used for STED super resolution
microscopy. The mounting agent was specially prepared as 86% glycerol consisting of 2.5%
diazabicylco-2-2-2-octan (DABCO) for STED microscopy. Anti-NLRP3 (Santa Cruz, Dallas, TX/USA)
antibody was used as primary antibody and a goat anti-rabbit antibody conjugated with Abberior Star
Red (Abs. max 638 nm and Fluo. max 655 nm) served as the secondary antibody for visualization in the
Abberior Instruments 775 STED microscope (https://www.abberior-instruments.com/products/expert-
line/775-sted/) facility at Optical Imaging Centre Erlangen (OICE), Friedrich Alexander University
Erlangen-Nuremberg. The samples were pulsed with 640 nm laser for initial visualization, followed
by 775 nm wavelength laser for stimulated emission depletion for super resolution images, which
gives the characteristic of cellular structures at nm ranges [102]. The acquired images were processed
as above.

4.8. Quantification of Cytokines

The supernatants of H. pylori infected, and non-infected cells were collected and centrifuged at
12,000× g in a cold centrifuge at 4 ◦C to remove bacteria or debris before storing at −80 ◦C until assayed.
Human IL-1β concentrations in the supernatant were determined by standard ELISA, with commercially
available assay kits, described by the manufacturer (Becton Dickinson, Heidelberg/Germany).

4.9. Statistical Analysis

All experiments were repeated at least three times with similar results. The data were evaluated
using one-way ANOVA followed by Tukey’s post hoc test with GraphPad statistical software. P values
of p ≤ 0.05 (*), p ≤ 0.01 (**), p ≤ 0.001 (***) and p ≤ 0.0001 (****) were considered as statistically significant.

5. Conclusions

Helicobacter pylori is known to be associated with inflammation after colonizing the gastric mucosa.
We found that H. pylori infection with various clinical isolates in human immune cells did not induce
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increased secretion of mature IL-1β secretion but rather low amounts were secreted. In mice models,
H. pylori infection induced NLRP3 inflammasome activation and mature IL-1β secretion. However,
infection in humans or cell cultures are not conclusive as described in the previous studies. We showed
that NLRP3 inflammasome formation is not induced in infected human immune cells and epithelial
cells expressing reconstructed inflammasome, when compared to known chemical and bacterial
activators; LPS with Nigericin or ATP and Staphylococcus aureus, respectively. Upregulated expression
and secretion of IL-1β was one of the causative factors for hyperproliferation of gastric epithelial
cells and oncogenesis. Because H. pylori avoids NLRP3 inflammasome activation despite upregulated
expression of pro-IL-1β and NLRP3 in immune cells, the pathogen slows down the host immunity
through regulating massive production of mature IL-1β. This process may be crucial for bacterial
colonization, survival and persistence. Externally added second signal activators such as Nigericin or
ATP reversed this block, thus this gives novel options for therapeutic eradication of H. pylori.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/4/803/s1.
Table S1: H. pylori strains and mutants used in this study.
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