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Abstract: This paper introduces a large-scale and facile method for synthesizing low crystalline
MoO3/carbon composite microspheres, in which MoO3 nanocrystals are distributed homogeneously
in the amorphous carbon matrix, directly by a one-step spray pyrolysis. The MoO3/carbon
composite microspheres with mean diameters of 0.7 µm were directly formed from one droplet
by a series of drying, decomposition, and crystalizing inside the hot-wall reactor within six seconds.
The MoO3/carbon composite microspheres had high specific discharge capacities of 811 mA h g−1

after 100 cycles, even at a high current density of 1.0 A g−1 when applied as anode materials for
lithium-ion batteries. The MoO3/carbon composite microspheres had final discharge capacities of
999, 875, 716, and 467 mA h g−1 at current densities of 0.5, 1.5, 3.0, and 5.0 A g−1, respectively.
MoO3/carbon composite microspheres provide better Li-ion storage than do bare MoO3 powders
because of their high structural stability and electrical conductivity.
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1. Introduction

Lithium-ion batteries (LIBs) have been attractive as the most important type of power source for
energy-storage system, electric vehicles, and other electronic devices because of their high specific
capacities and energy densities [1–3]. Transition-metal oxides (TMOs) with high theoretical energy
capacities have been widely applied as replacement anodes for the current graphite of LIBs [4–6].
However, the low intrinsic electric conductivity and the large volume expansion of TMOs during a
charge/discharge cycle result in rapid capacity fading, which hinders the commercial application of
TMOs for anodes in current LIBs [7,8]. To solve these problems, compositing TMOs with carbonaceous
materials has been regarded as a possible solution. Carbon could effectively buffer the stress induced
by the large volume change of TMOs during the fast charging–discharging process and improve
the electrical conductivity of the anodes [9–11]. Additionally, a carbon matrix could prevent the
aggregation of the active materials during repeated cycles by surrounding them, which increases the
structural stability of anode materials [12,13]. Therefore, various synthesis strategies for TMOs/carbon
composites have been introduced [14–18]. Cho et al. [14] prepared multiroom-structured metal–carbon
hybrid microspheres containing empty voids of several tens of nanometers by liquid–liquid phase
segregation because of the incongruent melting of the metal salt and dextrin during the spray pyrolysis.
The discharge capacity of the multiroom-structured Co3O4–C hybrid microspheres for LIBs at a current
density of 3 A g−1 for the 150th cycle was 1243 mA h g−1. Zhang et al. [15] also prepared TiO2–graphene
composite nanofibers by a simple electrospinning process. The cell assembled with TiO2–graphene
composite nanofibers as an anode retained 84% of the reversible capacity after 300 cycles at a current
density of 150 mA g−1, which is 25% higher than bare TiO2 nanofibers did under the same test
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conditions. Bhaskar et al. [16] prepared MoO2/multiwalled carbon nanotubes (MWCNTs) composed of
spherical flowerlike nanostructures of MoO2, interconnected by MWCNTs by a one-step hydrothermal
route. The one-dimensional electron-transport pathways provided by MWCNTs, which are in direct
contact with the MoO2 nanostructures, imparted an improved reversible lithium storage capacity
(1143 mA h g−1 at a current density of 100 mA g−1 after 200 cycles).

Molybdenum oxides are candidate anode materials for LIBs because MoO3 exhibits good
electrochemical properties, has a low cost, and is environmentally friendly [19–21]. Therefore,
MoO3 nanomaterials with diverse morphologies such as nanoparticles, hollow, nanobelts, naowiles,
and porous structures have been prepared. Lee et al. [22] synthesized MoO3 nanoparticles using hot
filament chemical vapor deposition method (HFCVD) under an argon atmosphere. Zhao et al. [23]
also synthesized MoO3 hollow microspheres by a template-free solvothermal route and subsequent
heat treatment in air. The MoO3 hollow microspheres have a relatively high specific surface area.
Chen et al. [24] prepared MoO3 nanobelts by a hydrothermal method, in which the morphology
of MoO3 nanobelts was affected with the addition of PEG. MoO3−x nanowires were prepared by
Sunkara et al. [25] in a hot-filament chemical vapor deposition reactor. Ko et al. [26] prepared
three-dimensional ordered macroporous structured MoO3 by using a polystyrene bead template
via ultrasonic spray pyrolysis.

In this study, low crystalline MoO3/carbon composite microspheres, in which MoO3 nanocrystals
were distributed homogeneously in the amorphous C matrix, were directly prepared by one-step
spray pyrolysis within several seconds. In here, MoO3 was applied as the host material of
carbon microspheres in this process because of its rich chemistry with multiple valence states,
low electrical resistivity, high electrochemical activity toward lithium, and affordable cost. The resulting
MoO3/carbon composite microspheres worked better in terms of cycling and rate as anode materials
for LIBs than did bare MoO3 powders. The simple process introduced in this study is expected to
be useful for the large-scale synthesis of TMOs/carbon composite microspheres as practical anode
materials for LIBs. Furthermore, the synthesis strategy introduced is generally applied to synthesize
various metal TMOs/carbon composites, including NiO, Co3O4, SnO2, and Fe2O3, for a wide variety
of applications including energy storage.

2. Materials and Methods

2.1. Sample Preparation

Low crystalline MoO3/carbon composite microspheres, in which MoO3 nanocrystals were
distributed homogeneously in the amorphous C matrix, were directly prepared by a one-step spray
pyrolysis. The spray pyrolysis system used in this study is shown in Figure S1. In brief, droplets were
generated by a 1.7-MHz ultrasonic spray generator that consisted of six vibrators, and the droplets
were carried to a quartz tube reactor (length = 1200 mm, diameter = 50 mm) by a flow of N2 (flow rate
= 5 L min−1). The reactor temperature was fixed at 900 ◦C. The spray solution was prepared by
dissolving 0.1 M of MoO3 (98%, Sigma Aldrich, St. Louis, MO, USA), 12 g L−1 of polyvinylpyrrolidone
(PVP, Mw 40,000, Daejung Chemicals and Metals, Siheung, Korea), and 0.02 M of sucrose in distilled
water. Subsequently, an appropriate amount of hydrogen peroxide (30% H2O2, Sigma-Aldrich) was
added to the above solution to obtain a clear spray solution. For the bare sample, MoO3 powders
without any carbon content were also prepared by spray pyrolysis. For this, the spray solution was
prepared by dissolving 0.1 M of MoO3 without a carbon precursor in H2O2 contained in distilled
water. Subsequently, the spray pyrolysis was carried out with the prepared solution at a temperature
of 900 ◦C by a flow of air (flow rate = 5 L min−1).

2.2. Characterization Techniques

The microstructures of the resulting powders were observed by scanning electron microscopy
(SEM; JEOL, JSM-6060, JEOL, Tokyo, Japan) and field-emission transmission electron microscopy
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(FE-TEM; JEOL, JEM-2100F, JEOL, Tokyo, Japan). The crystal phases were evaluated by X-ray
diffractometry (XRD; X’Pert PRO MPD, PANalytical, Almelo, The Netherlands) using Cu Kα radiation
(λ = 1.5418 Å). X-ray photoelectron spectroscopy (XPS; K-Alpha, Thermo Fisher Scientific, Waltham,
MA, USA) with a focused monochromatic Al Kα at 12 kV and 20 mA was used to analyze the
composition of the samples. A structural characterization of carbon in the sample was performed
by Raman spectra (Jobin Yvon LabRam HR800, Horiba Jobin Yvon, Paris, France, excited by a
632.8 nm He–Ne laser) at room temperature. The surface areas of the powders were measured
by the Brunauer–Emmett–Teller (BET) method, using N2 as the adsorbate gas. Thermogravimetric
analyses (TGA) were performed using a Pyris 1 TGA (Perkin Elmer, Waltham, MA, USA) within a
temperature range of 25–650 ◦C and at a heating rate of 10 ◦C min−1 under a static air atmosphere.

2.3. Electrochemical Measurements

The electrochemical properties of the samples were analyzed by constructing a 2032-type coin
cell. The lithium cell assembly was made in an Ar-filled glove box at room temperature where water
and the oxygen concentration was kept at less than 1 ppm. The anode slurry was prepared by mixing
the active material, carbon black, and sodium carboxymethyl cellulose (CMC) in a weight ratio of
7:2:1. The working electrodes were formed by coating the slurry onto copper foils and subsequently
dried at 70 ◦C for 3 h. Li metal and a microporous polypropylene film were used as the counter
electrode and the separator, respectively. The electrolyte was composed of 1 M LiPF6 dissolved in a
mixture of fluoroethylene carbonate/dimethyl carbonate (FEC/DMC; 1:1 v/v). The discharge/charge
characteristics of the samples were investigated by cycling over a potential range of 0.001–3.0 V under
CC (constant-current) conditions. Cyclic voltammograms were measured at a scan rate of 0.1 mV s−1.
The negative electrode measured 1.5 cm × 1.5 cm, and the mass loading of the active materials was
kept at approximately 1.5 mg cm−2 in every electrochemical test. The electrochemical impedance
spectra were obtained by performing alternating current electrochemical impedance spectroscopy (EIS;
ZIVE SP1) over a frequency range of 0.01 Hz to 100 kHz.

3. Results and Discussion

Low crystalline MoO3/C composite microspheres, in which MoO3 nanocrystals were distributed
homogeneously in the amorphous C matrix, were directly prepared by a one-step spray pyrolysis
without any further treatment. Figure 1 shows the morphologies of the MoO3/C composite
microspheres obtained after the one-step spray pyrolysis. The powders were spherical and had
diameters on the order of microns because they were formed from one droplet with several tens of
micrometers by drying, decomposition, and crystallization inside the hot-wall reactor, as shown in
Scheme 1. Additionally, there was no aggregation between the powders because the spray pyrolysis
was carried out within a very short residence time of 6 s in a hot-wall reactor maintained at 900 ◦C
under a N2 atmosphere in Figure 1a,b. From a high-resolution TEM image in Figure 1c, it was hard
to confirm the nanocrystal MoO3 grains formed during spray pyrolysis in a microsphere structure
because the amorphous-like, very small MoO3 nanocrystals were formed during the spray pyrolysis at
900 ◦C within a short residence time of 6 s. The XRD result also showed the broad peak intensities of
the β-MoO3 phase in Figure 1d. The mean crystallite size of the MoO3 powders, which was calculated
from the width of the (011) peak using Scherrer’s equation, was 4 nm. Grain growth of the MoO3

nanocrystals was effectively prohibited both by the short residence time of the droplet in the reactor
and by being surrounded by the carbon formed by the decomposition of PVP and sucrose during the
process. The elemental mapping images shown in Figure 1e exhibited a homogeneous distribution of
Mo, O, and C, which implies that the ultrafine MoO3 nanocrystals were homogeneously composited
with C in the microsphere structure.
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Figure 1. The (a) SEM, (b) TEM, (c) high-resolution TEM images, (d) XRD pattern, and (e) elemental 
mapping images of MoO3/C composite microspheres. 

 
Scheme 1. The formation mechanism of the low crystalline MoO3/C composite microspheres by the 
one-step spray pyrolysis process. 

To identify the chemical composition of the MoO3/C composite microspheres, XPS analysis was 
carried out, as shown in Figure 2. The XPS survey spectrum of the composite microspheres confirmed 
the presence of Mo, O, and C, as shown in Figure 2a. In the Mo 3d spectrum of the microspheres 
(Figure 2b), the main peaks occurred at binding energies of 231.7/232.7 eV for Mo 3d5/2 and 
234.7/235.7 eV for Mo 3d3/2; the peaks located at 232.7 and 235.7 eV are characteristic of typical values 
of the 3d orbital doublet Mo6+, and the minor ones centered on 231.7 and 234.7 eV corresponded to 
the 3d orbital doublet Mo5+, which indicated that dangling bond sites where charges could be trapped 
existed in MoO3 [27,28]. The C 1s XPS peak observed at 284.6 eV in Figure 2d corresponds to the 
binding energy of the sp2 C–C bond of the carbon matrix [29–31]. 

The carbon matrix of the MoO3/C composite microspheres was characterized by means of Raman 
spectroscopy. The degree of graphitization of the carbon material can typically be evaluated 
according to the intensity ratio of the D and G bands of carbon at approximately 1350 and 1590 cm−1, 
respectively [32,33]. The peak intensity ratio between the D and G bands (ID/IG) for the MoO3/C 
composite microspheres was approximately 3.2, and the absence of the 2D band at approx. 2685 cm−1 
demonstrated that the carbon formed in the composite was fairly disordered. Thus, a large amount 
of the amorphous carbon was formed by the decomposition of both PVP and sucrose during the spray 

Figure 1. The (a) SEM, (b) TEM, (c) high-resolution TEM images, (d) XRD pattern, and (e) elemental
mapping images of MoO3/C composite microspheres.
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Scheme 1. The formation mechanism of the low crystalline MoO3/C composite microspheres by the
one-step spray pyrolysis process.

To identify the chemical composition of the MoO3/C composite microspheres, XPS analysis
was carried out, as shown in Figure 2. The XPS survey spectrum of the composite microspheres
confirmed the presence of Mo, O, and C, as shown in Figure 2a. In the Mo 3d spectrum of the
microspheres (Figure 2b), the main peaks occurred at binding energies of 231.7/232.7 eV for Mo 3d5/2
and 234.7/235.7 eV for Mo 3d3/2; the peaks located at 232.7 and 235.7 eV are characteristic of typical
values of the 3d orbital doublet Mo6+, and the minor ones centered on 231.7 and 234.7 eV corresponded
to the 3d orbital doublet Mo5+, which indicated that dangling bond sites where charges could be
trapped existed in MoO3 [27,28]. The C 1s XPS peak observed at 284.6 eV in Figure 2d corresponds to
the binding energy of the sp2 C–C bond of the carbon matrix [29–31].

The carbon matrix of the MoO3/C composite microspheres was characterized by means of
Raman spectroscopy. The degree of graphitization of the carbon material can typically be evaluated
according to the intensity ratio of the D and G bands of carbon at approximately 1350 and 1590 cm−1,
respectively [32,33]. The peak intensity ratio between the D and G bands (ID/IG) for the MoO3/C
composite microspheres was approximately 3.2, and the absence of the 2D band at approx. 2685 cm−1

demonstrated that the carbon formed in the composite was fairly disordered. Thus, a large amount
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of the amorphous carbon was formed by the decomposition of both PVP and sucrose during the
spray pyrolysis. In general, amorphous carbon has more capacity as an anode for LIBs than
graphitic carbon, which is mainly contributed by pores and voids in the microcavities of the structure.
The Thermogravimetric (TG) curve of the MoO3/C composite microspheres in Figure 3b revealed
a weight loss between 380 and 460 ◦C because of the degradation of amorphous carbon. Therefore,
the content of amorphous carbon of the MoO3/C composite microspheres estimated from the TG
analysis was 26 wt %.

Nanomaterials 2019, 9, x FOR PEER REVIEW  5 of 12 

 

pyrolysis. In general, amorphous carbon has more capacity as an anode for LIBs than graphitic 
carbon, which is mainly contributed by pores and voids in the microcavities of the structure. The 
Thermogravimetric (TG) curve of the MoO3/C composite microspheres in Figure 3b revealed a weight 
loss between 380 and 460 °C because of the degradation of amorphous carbon. Therefore, the content 
of amorphous carbon of the MoO3/C composite microspheres estimated from the TG analysis was 26 wt 
%. 

 
Figure 2. The XPS spectra of the MoO3/C composite microspheres: (a) the survey XPS spectrum and 
high-resolution XPS spectra of (b) Mo 3d, (c) O 1S, and (d) C 1s. 

 

Figure 2. The XPS spectra of the MoO3/C composite microspheres: (a) the survey XPS spectrum and
high-resolution XPS spectra of (b) Mo 3d, (c) O 1S, and (d) C 1s.

Nanomaterials 2019, 9, x FOR PEER REVIEW  5 of 12 

 

pyrolysis. In general, amorphous carbon has more capacity as an anode for LIBs than graphitic 
carbon, which is mainly contributed by pores and voids in the microcavities of the structure. The 
Thermogravimetric (TG) curve of the MoO3/C composite microspheres in Figure 3b revealed a weight 
loss between 380 and 460 °C because of the degradation of amorphous carbon. Therefore, the content 
of amorphous carbon of the MoO3/C composite microspheres estimated from the TG analysis was 26 wt 
%. 

 
Figure 2. The XPS spectra of the MoO3/C composite microspheres: (a) the survey XPS spectrum and 
high-resolution XPS spectra of (b) Mo 3d, (c) O 1S, and (d) C 1s. 

 
Figure 3. (a) The Raman spectrum and (b) thermogravimetric analysis (TGA) curve of the MoO3/C
composite microspheres.



Nanomaterials 2019, 9, 539 6 of 12

In order to clearly prove the structural merits of MoO3/C composite microspheres as anodes
for Li+ ion storage properties, bare MoO3 powders without C were also prepared from the spray
solution without either PVP and sucrose by spray pyrolysis, as shown in Figure 4. The mean particle
size of the resulting bare MoO3 powders, as measured from the SEM and TEM images in Figure 4a,b,
was 420 nm and had no aggregation between the powders. Additionally, the resulting powders were
angular, which is attributed to the crystal growth of MoO3 particles because there was no carbon
surrounding the particles during spray pyrolysis to prevent the growth of MoO3 crystals during the
short residence reaction time of the droplets. The high-resolution TEM image in Figure 4c shows clear
lattice fringes separated by 0.23 nm, which corresponds to the (011) crystal plane of β-MoO3 (JCPDS
card No. 37–1445) [34]. The XRD pattern of the bare MoO3 powders (Figure 4d) shows that they have
different allotropes of MoO3 structures, with no impurities. The thermodynamically favored α-MoO3

phase was newly formed along with β-MoO3 in the bare MoO3 powders during spray pyrolysis. Bare
MoO3 powders without C were further confirmed by the elemental mapping images in Figure 4e.
The BET surface areas of the MoO3/C composite microspheres and of the bare MoO3 powders were
4.3 and 0.6 m2 g−1, respectively, in Figure S2.
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Figure 4. The (a) SEM, (b) TEM, (c) high-resolution TEM images, (d) XRD pattern, and (e)
elemental-mapping images of the bare MoO3 powders.

The electrochemical properties of the MoO3/C composite microspheres are compared with those
of the bare MoO3 powders in Figure 5. The cyclic voltammogram (CV) curves of the MoO3/C
composite microspheres and bare MoO3 powders performed in the 0.01–3.0 V range at a scanning rate
of 0.01 mV s−1 for the first four cycles are shown in Figure 5a. In the first cathodic scan of the MoO3/C
composite microspheres, the broad peaks located at 1.16 V and 0.21 V are assigned to the interaction
of Li+ ions with the amorphous carbon matrix of the MoO3/C composite and conversion reaction
of LixMoO3 to Mo0 and Li2O [35–37]. The peak at 0.05 V is also observed, caused by the Li+ ion’s
intercalation into the C matrix [38,39]. In the anodic scans of the MoO3/C composite microspheres,
reversible peaks at 1.42 and 1.77 V are attributed to the monoclinic-orthorhombic-monoclinic phase
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transitions in the partially lithiated LixMoO2 [35–37]. In the subsequent cycles, two redox peak pairs
appeared at 0.21/1.3 and 1.42/1.77 V, which corresponded to the redox reaction of MoO3 [35,40,41].
The bare MoO3 powders showed peaks at 2.03 and 1.8 V in the first cathodic scan, which correspond
to the generation of LixMoO3, causing an irreversible structural change from the α-MoO3 additionally
formed in the bare MoO3 powders to an amorphous phase [40–42]. The subsequent peak at 0.17 V
results from the conversion reaction of LixMoO3 to Mo0 and Li2O [35–37,41].
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rate performances.

The initial discharge-charge curves of the two samples at a current density of 1.0 A g−1 are shown
in Figure 5b. The initial discharge capacities of the MoO3/C composite microspheres and the bare
MoO3 powders were 1403 mA h g−1 and 1478 mA h g−1, respectively, and their initial Coulombic
efficiencies were 75% and 72%, respectively. Although the MoO3/C composite microspheres contained
C with a high irreversible capacity loss, the initial Coulombic efficiency of the MoO3/C composite
microspheres was relatively higher than that of the bare MoO3 powders. The high structural damage to
the bare MoO3 powders in the first discharge and charge processes resulted in a low initial Coulombic
efficiency. The discharge capacity and cycling properties of the MoO3/C composite microspheres
and bare MoO3 powders at a current density of 1.0 A g−1 are shown in Figure 5c. Compared with
bare MoO3 powders, the MoO3/C composite microspheres exhibited a satisfactorily stable cycling
performance. The discharge capacity of the MoO3/C composite microspheres decreased slightly
from 1066 mA h g−1 (533 mA h cc−1) to 808 mA h g−1 (404 mA h cc−1) from the 2nd cycle to
the 100th cycle, whereas that of the bare MoO3 powders decreased rapidly from 1090 mA h g−1

(621 mA h cc−1) to 239 mA h g−1 (136 mA h cc−1) in the same cycle range. Additionally, the Coulombic
efficiency of the MoO3/C composite microspheres increased quickly to above 99% after the second
cycle. The amorphous C matrix of MoO3/C composite microspheres more effectively buffered the
large volume change of the MoO3 active material during the fast charging–discharging process. On the
other hand, the structural destruction of the bare MoO3 powders during repeated Li+-ion insertion and
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desertion processes resulted in capacity fading continuously. Therefore, better cycling of the MoO3/C
composite microspheres could be achieved because of the improved structural stability of the MoO3.

In order to evaluate the rate performances of both samples, electrochemical tests were performed
at various current densities, as shown in Figure 5d. As the current densities increased from 0.5 to 1.5, 3.0,
and 5.0 A g−1, the MoO3/C composite microspheres exhibited reversible discharge capacities of 999,
875, 716, and 467 mA h g−1, respectively. However, the bare MoO3 powders delivered a low reversible
discharge capacity of 352 mA h g−1 at 5.0 A g−1 as shown in Figure 5d. The C matrix of the MoO3/C
composite microspheres improved the electrical conductivity of the sample. Additionally, the small,
amorphous MoO3 nanograins imbedded within the C matrix decreased the diffusion distance and
increased the diffusion rate of the Li+ ions, thus synergistically speeding up the rate of the MoO3/C
composite microspheres more than that of the bare MoO3 powders.

The superior Li+-ion storage properties of the MoO3/C composite microspheres were supported
by EIS analysis, as shown in Figure 6 [43–45]. Nyquist plots of the samples before and after cycles were
obtained by deconvolution with a Randle-type equivalent-circuit model (Figure 6d). The MoO3/C
composite microspheres and bare MoO3 powders had similar charge-transfer resistance (Rct) values
before cycling, as shown in Figure 6a. However, the cell with the MoO3/C composite microspheres
obtained after 100 cycles showed a lower Rct value of 42 Ω compared to that of 134 Ω for the bare
MoO3 powders, as shown in Figure 6b,c. The structural destruction of the bare MoO3 powders during
the repeated Li+-ion insertion and desertion processes increased the Rct values significantly. On the
other hand, the MoO3 nanograins embedded within the amorphous C were not pulverized during
the repeated cycles. Moreover, the C matrix served as fast and continuous transport pathways for
electrons upon cycling because of its high electrical conductivity. The high structural stabilities of the
MoO3/C composite microspheres with high lithium-ion storage capacities resulted in low Rct values
during cycling. The MoO3/C composite microspheres with a high structural stability during repeated
lithium insertion and desertion reactions showed excellent cycling and rate performance, as shown in
Figure 5.
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Figure 6. The impedance analysis of the MoO3/C composite microspheres and the bare MoO3

powders: (a) before cycling, (b) bare MoO3 powders, (c) MoO3/C composite microspheres, and (d) the
tquivalent circuit model used for AC impedance fitting: Rct = charge-transfer resistance, Re = electrolyte
resistance, Rf = SEI layer resistance, Q1 = dielectric relaxation capacitance, and Q2 = associated double
layer capacitance.
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The morphologies of the MoO3/C composite microspheres and bare MoO3 powders obtained
after 100 cycles are shown in Figure 7. The bare MoO3 powders were broken into several pieces after
the cycles, as shown by the TEM image in Figure 7a. In contrast, the MoO3/C composite microspheres
maintained their morphologies quite well even after the repeated Li+ insertion and desertion processes
in Figure 7b,c. The excellent Li+-ion storage properties of the MoO3/C composite microspheres are,
therefore, attributed to the improvement of the structural stability and electrical conductivity by the
carbon composite.
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4. Conclusions

In this study, low crystalline MoO3/carbon composite microspheres in which MoO3 nanocrystals
were distributed homogeneously in the amorphous C matrix, were directly prepared by a one-step
spray pyrolysis within several seconds. The MoO3/carbon composite was spherical, with diameters
on the order of microns, because they were formed from one droplet with several tens of micrometers
by a series of drying, decomposition, and crystallization processes inside the hot-wall reactor during
spray pyrolysis. The amorphous C matrix of the MoO3/C composite microspheres effectively buffered
the large volume change of the MoO3 active material during the fast charging–discharging process.
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Therefore, a better cycling of the MoO3/C composite microspheres could be achieved because of
the improved structural stability of the MoO3. Additionally, the small MoO3 nanograins imbedded
within the C matrix decreased the diffusion distance and increased the diffusion rate of Li+ ions,
thus accelerating the rate of the MoO3/C composite microspheres. The superior Li+-ion storage
properties of the MoO3/C composite microspheres compared to those of the bare MoO3 were supported
by an EIS analysis and by observing the morphologies of the samples obtained after 100 cycles.
The simple process introduced in this study is expected to be useful for the large-scale synthesis of
TMOs/carbon composite microspheres for a wide variety of applications including energy storage.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/4/539/s1,
Figure S1: Schematic diagram of spray pyrolysis system applied in the preparation of MoO3/C composite
microspheres, Figure S2: N2 adsorption-desorption isotherms measured at 77 K for the MoO3/C composite
microspheres and bare MoO3 powders, Figure S3: Cycle properties of the MoO3/C composite microspheres and
the bare MoO3 powders, Figure S4: TGA curve of the bare MoO3 powders, Table S1: Fitted data obtained from
the equivalent circuit for Nyquist plots.
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