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Abstract

Recent neurocomputational theories have hypothesized that abnormalities in prior beliefs

and/or the precision-weighting of afferent interoceptive signals may facilitate the transdiag-

nostic emergence of psychopathology. Specifically, it has been suggested that, in certain

psychiatric disorders, interoceptive processing mechanisms either over-weight prior beliefs

or under-weight signals from the viscera (or both), leading to a failure to accurately update

beliefs about the body. However, this has not been directly tested empirically. To evaluate

the potential roles of prior beliefs and interoceptive precision in this context, we fit a Bayes-

ian computational model to behavior in a transdiagnostic patient sample during an intero-

ceptive awareness (heartbeat tapping) task. Modelling revealed that, during an

interoceptive perturbation condition (inspiratory breath-holding during heartbeat tapping),

healthy individuals (N = 52) assigned greater precision to ascending cardiac signals than

individuals with symptoms of anxiety (N = 15), depression (N = 69), co-morbid depression/

anxiety (N = 153), substance use disorders (N = 131), and eating disorders (N = 14)–who

failed to increase their precision estimates from resting levels. In contrast, we did not find

strong evidence for differences in prior beliefs. These results provide the first empirical

computational modeling evidence of a selective dysfunction in adaptive interoceptive pro-

cessing in psychiatric conditions, and lay the groundwork for future studies examining how

reduced interoceptive precision influences visceral regulation and interoceptively-guided

decision-making.

Author summary

Interoception is the process by which the nervous system senses the internal state of the

body. It provides the brain with important information to adaptively guide the regulation
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of both internal body states and behavior. Interoceptive dysfunction is thought to play a

role in multiple psychiatric disorders. Theoretical models propose that the computational

mechanisms of interoceptive dysfunction are caused by overly precise prior beliefs about

body states (“hyperprecise priors”) or underestimates of the reliability of the information

carried by ascending signals from the body (“low sensory precision”). Our empirical

approach tested for evidence of these mechanisms across several psychiatric disorders,

using a computational model of perception during performance of a heartbeat perception

task. We found evidence of low sensory precision within individuals with anxiety, depres-

sion, eating disorders, and/or substance use disorders, relative to healthy individuals. This

difference occurred only during a breath-holding condition designed to enhance heart-

beat signals. We did not find strong evidence for hyperprecise priors in the patient groups.

The data from this study support the argument for computational mechanisms of intero-

ceptive dysfunction across several psychiatric disorders, and suggest that these conditions

may be characterized by an inability to adjust sensory precision when signals from the

body change.

Introduction

Interoception plays an important role in a number of psychiatric disorders. Interoceptive dys-

function has been observed in depression, anxiety, eating, and substance use disorders, among

others (reviewed in [1]). For example, depressed patients exhibit reduced accuracy when asked

to count their own heartbeats [2–4], and counting accuracy is negatively correlated with

depressive symptoms [5]. Several studies have also shown heightened interoceptive sensations

in panic disorder under high arousal states (reviewed in [6]). Other studies have reported evi-

dence of blunted neural responses during interoceptive processing in substance users [7], and

that patients with eating disorders show stronger expectation effects on interoception during

modulations of arousal [8]. However, the mechanisms underlying these potential interoceptive

dysfunctions in psychiatric disorders have not yet been demonstrated in empirical work.

In recent years, a growing body of theoretical work within neuroscience and psychiatry has

begun to highlight plausible neurocomputational accounts of interoceptive processing [9–15],

as well as accounts of exteroceptive [16, 17], cognitive [18–26], emotional [27, 28], and motor

control [29–31] functions that plausibly interact with interoception. In some cases, empirical

studies have also found support for computational models and computational abnormalities in

relation to specific psychiatric symptoms/disorders [26, 32–34]. With respect to sensory pro-

cessing, which has focused to a large degree on neural models of approximate probabilistic

(Bayesian) inference, empirical results in this area have come almost exclusively from the

exteroceptive domain. And while recent work has begun to test qualitative predictions of

Bayesian models of interoception [35], no study to our knowledge has yet explicitly fit compu-

tational models to brain or behavioral responses during experimental modulations of intero-

ception in individuals with psychiatric disorders.

Drawing on this theoretical literature, we and others [9, 13–15, 36–38] have previously pro-

posed that symptoms of multiple psychiatric conditions could be explained by faulty intero-

ceptive computational processes (and associated visceromotor control processes), due to an

inappropriate weighting of prior beliefs and sensory evidence. Although these models of

computational dysfunction in interoception could have broad explanatory power, the putative

mechanisms they propose have yet to be empirically tested using formal computational mod-

els. In this paper, we use a formal Bayesian computational model of perception to examine
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whether there is evidence for the transdiagnostic dysfunction of interoceptive processing sug-

gested in these previous proposals within the cardiovascular system.

Historically, the most common empirical paradigms for studying interoception have

focused on the perception of cardiac signals. Common heartbeat perception tasks include

those involving heartbeat counting [39], heartbeat tapping [40], and other means of assessing

cardiac interoception [41–45]. While each approach has certain limitations [46–50], one con-

sistent finding is that cardiac interoceptive awareness is quite poor in the majority of partici-

pants tested during resting conditions—where only roughly 35% of individuals appear to

accurately perceive their own heartbeats [6]. In contrast, when visceral states are perturbed,

cardiac perception becomes more accurate. This is particularly true for interoceptive accuracy

under conditions of heightened cardiorespiratory arousal [51–53].

Active inference models, and Bayesian predictive processing models more generally, have

been the main computational framework within which interoceptive dysfunction has been dis-

cussed [13, 38, 54–56]. Several authors have suggested that one important transdiagnostic fac-

tor within mental disorders may be an inability of the brain to update its model of the body in

the face of interoceptive prediction errors (i.e., mismatches between expected and received

afferent interoceptive signals from the body). In predictive coding and active inference models,

this kind of aberrant belief updating is thought to come about through a dysfunctional “preci-

sion weighting” mechanism, which governs the relative influence of prior beliefs and afferent

bodily signals in determining perception (and informing visceral regulation). Simply put, it is

suggested that, across multiple mental health conditions, the brain may treat afferent bodily

signals (and associated prediction errors) as though they are not reliable indicators of bodily

states during interoceptive inference—leading perception to be insufficiently constrained by

true visceral states and primarily determined by (in many cases maladaptive) prior beliefs.

Misestimating the state of the body could in turn promote a number of transdiagnostic symp-

toms. For example, interoceptive feelings are intimately tied to emotions [57–59]; poor body

perception (e.g., high uncertainty about internal physiological conditions and a resulting

inability to efficiently regulate them) could thus maintain unpleasant emotional states. Chronic

underestimates of available metabolic resources may contribute to apathy and anhedonia [56],

and overestimates of the evidence that uncomfortable bodily sensations provide for physical

threat (e.g., a heart attack) may contribute to anxiety and panic [60, 61].

It’s important to emphasize, however, that computational models often include several

additional parameters. Aside from the precision-weighting of sensory signals, individuals can

also have differences in (for example) prior beliefs about what they will perceive (assumed in

any Bayesian model of perception; e.g., predictive coding [62]), and differences in how quickly

they update those prior beliefs over repeated observations (i.e., “learning rate”; i.e., which can

be dependent upon the relative precisions of sensory signals and prior beliefs). Formal compu-

tational models are often necessary to distinguish which parameters show differences between

individuals and best explain differences in perception. Thus, there are multiple computational

mechanisms that could account for individual differences in interoception in clinical popula-

tions. One major goal in computational psychiatry is to “computationally phenotype” patients

by identifying which sets of a parameter values best account for their neural and behavioral

responses (including self-reported perceptual experience) and use this information to guide

treatment [20, 22, 25].

In the present study, we apply a novel computational phenotyping approach, using a Bayes-

ian model of perception, to identify the computational parameters that best explain behavior

on a cardiac perception (heartbeat tapping) task performed by a transdiagnostic clinical sam-

ple of individuals with psychiatric disorders as well as a healthy comparison (HC) sample.

Given previous findings that performance on cardiac perception tasks can be significantly
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altered by different task instructions ([63]; i.e., potentially by adjusting prior beliefs), we chose

to assess task performance under two resting conditions in which participants were instructed

to apply different confidence thresholds: 1) a condition where guessing was allowed, and 2) a

condition in which they should not guess (i.e., they should only tap a key if they were sure they

actually felt a heartbeat). Given the notably poorer cardiac perception of most human beings at

rest compared to during altered arousal states [6], in addition to the resting conditions we also

chose to assess individual differences in cardiac perception during a non-invasive interoceptive

perturbation (a breath-hold) condition (which also included the no-guessing instruction) that

was expected to increase the precision of the afferent cardiac signal and improve cardiac per-

ception above floor values in a greater number of individuals (i.e., we expected that cardiac

perception would be generally poor during resting conditions, and that the breath-hold condi-

tion would result in improved performance on average). Thus, comparing the guessing and

no-guessing conditions allowed assessment of the effects of altering prior beliefs with different

task instructions, and comparison of the no-guessing a breath-hold conditions allowed assess-

ment of changes in afferent signal precision under identical (i.e., no-guessing) task instruc-

tions. Our primary aims were to 1) demonstrate the sensitivity of our novel computational

approach in measuring the condition-specific precision-weighting of interoceptive signals and

prior beliefs across a transdiagnostic sample of individuals with depression, anxiety, substance

use disorders, and/or eating disorders, 2) test the hypothesis (as previously proposed; e.g., [10,

38, 56]) that these patient groups would show lower interoceptive precision weightings than

HCs, more precise prior beliefs than HCs, or both, and 3) establish whether prior beliefs and/

or interoceptive precision is abnormal in general (relative to healthy participants) or selectively

within resting or interoceptive perturbation conditions.

Methods

Ethics statement

This study was approved by the Western Institutional Review Board. All participants provided

written informed consent prior to completion of the study protocol, in accordance with the

Declaration of Helsinki, and were compensated for participation. ClinicalTrials.gov identifier:

#NCT02450240.

Participants

Data were collected from 500 participants (153 male) as a part of the Tulsa 1000 (T1000) proj-

ect, a naturalistic longitudinal study that recruited subjects based on the dimensional NIMH

Research Domain Criteria framework (a full description of this pre-planned project can be

found in [64]). Individuals aged 18–55 years were screened on the basis of dimensional psy-

chopathology scores. Inclusion was based on the following measures: Patient Health Question-

naire (PHQ-9; [65])� 10, Overall Anxiety Severity and Impairment Scale (OASIS; [66])� 8,

Drug Abuse Screening Test (DAST-10; [67]) score > 2, and/or Eating Disorder Screen

(SCOFF; [68]) score� 2 (for screening measure scores, see Table 1). HCs who did not show

elevated symptoms or psychiatric diagnoses were also included. Participants were excluded if

they (i) tested positive for drugs of abuse, (ii) met criteria for psychotic, bipolar, or obsessive-

compulsive disorders, or reported (iii) history of moderate-to-severe traumatic brain injury,

neurological disorders, or severe or unstable medical conditions, (iv) active suicidal intent or

plan, or (v) change in psychotropic medication status within 6 weeks. Full inclusion/exclusion

criteria are described in [64].

Similar to previous studies of the T1000 cohort [69], participants were grouped based on

DSM-IV or DSM-5 diagnosis using the Mini International Neuropsychiatric Inventory 6 or 7
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(MINI; [70]), and included those with major depressive disorder only (DEP), an anxiety disor-

der only (ANX; social anxiety, generalized anxiety, panic, or posttraumatic stress disorder),

comorbid MDD and anxiety disorder (DEP+ANX), substance use disorders (SUDs; recrea-

tional drugs excluding alcohol and nicotine; with or without anxiety and/or depression), eating

disorders (EDs; with or without anxiety and/or depression), and HCs with no mental health

diagnoses. In this study we examined all groups from the first 500 participants of the T1000

project (recruited from January 5, 2015 to February 22, 2017).

Heartbeat perception task

As part of the T1000 project, participants completed a large number of assessments, self-report

measures, and behavioral tasks (detailed in [64]). Here we focus on data from a cardiac percep-

tion task on which we have previously reported (i.e., on a subset of the participants reported

here, with analyses unrelated to computational modeling [71, 72]), wherein participants were

asked to behaviorally indicate the times at which they felt their heartbeat. The utilization of the

heartbeat tapping measure as an index of perception was based on a previously developed

heartbeat tapping task [40]; for a more recent example, see [73]). The task was repeated under

multiple conditions designed to assess the influence of cognitive strategy and physiological

perturbation on performance. In the initial task condition, participants were simply instructed

to close their eyes and press down on a key when they felt their heartbeat, to try to mirror their

heartbeat as closely as possible, and even if they weren’t sure they should take their best guess

(the “guessing” condition). Participants completed this (and each other) task condition over a

period of 60 seconds. In the second task condition, all instructions were identical except that

they were told to only press the key when they actually feel their heartbeat, and if they do not

feel their heartbeat then they should not press the key (the “no-guessing” condition). In other

words, unlike the first time they completed the task, they were specifically instructed not to

guess if they didn’t feel anything, which could be understood as altering prior beliefs associated

with confidence thresholds (i.e., higher confidence was required to choose to tap than in the

guessing condition, where this change in prior confidence thresholds could differ between

individuals). Finally, in the perturbation condition, participants were again instructed not to

guess but were also asked to first empty their lungs of all air and then inhale as deeply as possi-

ble and hold it for as long as they could tolerate (up to the length of the one-minute trial) while

reporting their perceived heartbeat sensations. This third condition (the “breath-hold” condi-

tion) was used in an attempt to putatively increase the strength of the afferent cardiac signal by

increasing physiological arousal. We expected that cardiac perception would be poor in the

Table 1. Mean (and standard deviation) for clinical and demographic variables.

Individual difference

variable�
Healthy Comparisons

(N = 52)

Anxiety

(N = 15)

Depression

(N = 69)

Depression + Anxiety

(N = 153)

Eating Disorder

(N = 14)

Substance Use Disorder

(N = 131)

p-value

Age 32.04 (11.08) 36.42 (10.01) 37.12 (11.83) 35.28 (11.23) 27.40 (9.83) 34.03 (8.88) 0.012

Sex 50% male 33% male 30% male 26% male 14% male 45% male 0.001

PHQ-9 0.83 (1.29) 7.47 (5.80) 13.48 (4.73) 13.10 (5.21) 12.93 (7.98) 6.68 (5.91) <0.001

OASIS 1.37 (1.89) 10.60 (2.16) 7.55 (3.34) 10.51 (3.12) 9.50 (4.93) 5.94 (4.77) <0.001

DAST-10 0.10 (0.30) 0.33 (0.49) 0.72 (1.66) 0.58 (1.13) 1.23 (2.62) 7.55 (2.05) <0.001

PTT 0.20 (0.02) 0.20 (0.01) 0.19 (0.01) 0.20 (0.02) 0.20 (0.02) 0.20 (0.02) 0.261

BMI 27.59 (5.54) 27.05 (6.02) 28.51 (5.47) 28.77 (5.49) 22.25 (4.43) 28.23 (4.56) 0.001

�PHQ-9 = Patient Health Questionnaire 9; OASIS = Overall Anxiety Sensitivity and Impairment Scale; DAST-10 = Drug Abuse Screening Test; PTT = median pulse

transit time; BMI = Body Mass Index; p-values correspond to the results of ANOVAs comparing the groups.

https://doi.org/10.1371/journal.pcbi.1008484.t001
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guessing condition, that tapping would be more conservative in the no-guessing condition,

and that the breath-hold condition would result in improved performance on average. As a

control condition, we also included an identical task where participants were instructed to tap

every time they heard a 1000Hz auditory tone presented for 100ms (78 tones, randomly jit-

tered by +/- 10% and presented in a pattern following a sine curve with a frequency of 13

cycles/minute, mimicking the range of respiratory sinus arrhythmia during a normal breath-

ing range of 13 breaths per minute). This was completed between the first (guessing) and sec-

ond (no-guessing) heartbeat tapping conditions.

Directly after completing each task condition, individuals were asked the following using a

visual analogue scale:

“How accurate was your performance?”

“How difficult was the previous task?”

“How intensely did you feel your heartbeat?”

Each scale had anchors of “not at all” and “extremely” on the two ends. Numerical scores

could range from 0 to 100.

Computational model

To model behavior on the heartbeat tapping task, we first divided each task time series into

intervals corresponding to the periods of time directly before and after each heartbeat. Poten-

tially perceivable heartbeats were based on the timing of the peak of the electrocardiogram

(EKG) R-wave (signaling electrical depolarization of the atrioventricular neurons of the heart)

+ 200 milliseconds (ms). This 200 ms interval was considered a reasonable estimate of partici-

pants’ pulse transit time (PTT) according to previous estimates for the ear PTT [74]. We also

measured the average PTT of each participant during a separate resting-state period, defined

as the distance between the peak of the EKG R-wave and the onset of the peak of the pulse

plethysmography (PPG) waveform (signaling mechanical transmission of the systolic pressure

wave to the earlobe). These average PTT values were used as covariates in some analyses

(described below), and the group-level average PTT value was imputed for individuals where

PPG data quality was poor. The length of each heartbeat interval (i.e., the “before-beat interval”

and “after-beat interval”) depended on the heart rate. For example, if two heartbeats were 1

second apart, the “after-beat interval” would include the first 500 ms after the initial beat and

the “before-beat interval” would correspond to the 2nd 500 ms. The after-beat intervals were

considered the time periods in which the systole (heart muscle contraction) signal was present

and in which a tap should be chosen if it was felt. The before-beat intervals were treated as the

time periods where the diastole (heart muscle relaxation) signal was present and in which tap-

ping should not occur (i.e., assuming taps are chosen in response to detecting a systole; e.g., as

supported by [75]). This allowed us to formulate each interval as a “trial” in which either a tap

or no tap could be chosen and whether a systole or diastole signal was present (see Fig 1).

To model interoception and task behavior, we used a Bayesian model of perception derived

from a Markov decision process (MDP) formulation of active inference that has been used in

previous work; for more details about the structure and mathematics of this class of (discrete

state space) models, see [77, 79, 80]. See Fig 1 for a graphical depiction of our model and the

associated vectors and matrices; and see Table 2 for a detailed description of all model ele-

ments. Observations (o) in the model were categorical and included systole, diastole, and a

“start” observation. Hidden states (s) in the model, which were inferred based on observations,

were also categorical and included a heartbeat state, a no heartbeat state, and a “start” state.
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Each trial in the model corresponded to a window in the EKG time series in which either a sys-

tole or diastole signal was present. Each trial formally had two timesteps (t = 1 and t = 2). At

t = 1, the participant always formally began in the “start” state and made the associated “start”

observation. At t = 2, the participant either observed a systole or a diastole and inferred

whether they had transitioned from the “start” state into the heartbeat state or the no heartbeat

state. In other words, they inferred a posterior distribution over states Pð�st¼2Þ that assigned a

probability to the heartbeat state and to the no heartbeat state, where this posterior distribution

was informed by 1) prior beliefs about the probability of transitioning from the “start” state to

Fig 1. Bayesian approach used to model interoceptive awareness on the heartbeat tapping task. The generative model is here depicted graphically, such that arrows

indicate dependencies between variables. Associated vectors/matrices are also shown. At each time point (t), observations (o) depend on hidden states (s), where this

relationship is specified by the A matrix, and those states depend on previous states (as specified by the B matrix, or the initial states specified by the D vector). This model

represents a simplified version of a commonly used active inference formulation of partially observable Markov decision processes (for more details regarding the

structure and mathematics describing these models, see [76–78]). In this model, the observations were systole/diastole, and the hidden states included beliefs about the

presence or absence of a heartbeat. Selection of the tap vs. no tap actions were sampled from the posterior distribution over states (�s)—that is, a higher posterior

probability of a heartbeat state (P(HB)) corresponded to a higher probability of choosing to tap, and a higher posterior probability of the no heartbeat state (P(nHB))

corresponded to a higher probability of choosing not to tap. The model parameters we estimated corresponded to: 1) interoceptive precision (IP)—the precision of the

mapping from systole/diastole to beliefs about heartbeat/no heartbeat in the A matrix, which can be associated with the weight assigned to sensory prediction errors; and

2) prior beliefs favoring the presence of a heartbeat (pHB). Because minimal precision corresponds to an IP value of 0.5, and both higher and lower values indicate that

taps will more reliably track systoles (albeit in an anticipatory vs. reactive manner), our ultimate measure of precision subtracted 0.5 from raw IP values and then took their

absolute value. The raw IP values were then used to assess for group differences in the tendency to tap before vs. after each systole. We also compared this model to an

analogous model that included learning (see main text). On each trial, beliefs about the probability of a heartbeat (corresponding to the probability of choosing to tap)

relied on Bayesian inference as implemented in the “heartbeat perception” equations shown at the bottom of the figure. Note that, by convention in the active inference

models from which our model was derived, the dot product (�) applied to matrices here indicates transposed matrix multiplication. Observed diastoles and systoles were

taken from EKG traces, after dividing the time series into periods before and after each systole (exemplified in the upper left portion of the figure; see text for details). Each

time period in which a diastole or systole could be present was treated as a separate trial, in which the participant started in the “start” state and then updated beliefs about

hidden states based on observation of a diastole or systole. For this reason, the pHB parameter in the transition matrix (B) only specifies the probability of transitioning

from the “start” state to the heartbeat vs. no heartbeat states, and the heartbeat vs. no heartbeat states simply have identity mappings (i.e., a given trial cannot transition

between these two states).

https://doi.org/10.1371/journal.pcbi.1008484.g001
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the heartbeat state vs. the no heartbeat state, P(st = 2|st = 1), and 2) beliefs about the likelihood

of observing a systole or diastole given a heartbeat or no heartbeat state, P(ot|st).
A vector D encoded prior beliefs over initial states, P(st = 1), which specified that the partici-

pant always started the trial in the “start” state with a probability of 1 (see vector in upper left

portion of the model depiction in Fig 1). A matrix B encoded the probability that each state

would transition into any other state:

B ¼ Pðst¼2jst¼1Þ ¼

0 0 0

1 � pHB 1 0

pHB 0 1

2

6
4

3

7
5

Here, columns indicate (from left to right) the “start” state, the no heartbeat state, and the

heartbeat state at time t = 1, and rows (from top to bottom) indicate the “start” state, the no

heartbeat state, and the heartbeat state at time t = 2. The probability of transitioning from the

“start” state to a heartbeat state vs. a no heartbeat state was encoded by a parameter pHB,

where values above 0.5 indicate prior beliefs that transitions from the “start” state to the heart-

beat state are more likely (e.g., expecting a faster heart rate), and values below 0.5 indicate

prior beliefs that transitions from the “start” state to the heartbeat state are less likely (e.g.,

expecting a slower heart rate). Note that the second and third columns simply indicate that,

Table 2. Description of computational model elements.

Model

variable

General Definition Model-specific specification

t Timepoint within a trial There were 2 timepoints in each trial (i.e., for each

EKG time window). At t = 1, the participant was

modelled as waiting to infer the presence or

absence of a heartbeat. At t = 2, either a systole or

diastole observation was presented (depending on

whether the EKG time window for that trial

contained a systole or diastole), and a posterior

probability of the presence vs. absence of a

heartbeat was inferred.

ot Observable outcomes at time t Outcomes:

1. Start

2. Systole

3. Diastole

st Hidden states at time t Hidden states:

1. Start

2. Heartbeat

3. No Heartbeat

A matrix

p(ot|st)
A matrix encoding beliefs about the relationship

between hidden states and observable outcomes

(i.e., the probability that specific outcomes will be

observed given specific hidden states).

Encodes beliefs about the relationship between

heartbeat vs. no heartbeat states and diastole vs.

systole observations. The precision of the

relationship between heartbeat/no heartbeat states

and diastole/systole observations is controlled by a

parameter IP, which specifies how much evidence

a systole provides for a heartbeat state and how

much evidence a diastole provides for a no

heartbeat state.

B matrix

p(st+1|st)
A matrix encoding beliefs about how hidden states

will evolve over time (transition probabilities).

Encodes the prior belief that either a heartbeat or

no heartbeat state would occur on each trial, as

controlled by a parameter pHB.

D vector

p(st = 1)

A matrix encoding beliefs about (a probability

distribution over) initial hidden states.

Ensures the individual always begins in an initial

starting state.

https://doi.org/10.1371/journal.pcbi.1008484.t002
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once entering a heartbeat or no heartbeat state, this does not subsequently change within the

trial (i.e., as subsequent systole/diastole observations are modelled as subsequent trials).

A matrix A encoded the probability of observations given states:

A ¼ PðotjstÞ ¼

1 0 0

0 IP 1 � IP

0 1 � IP IP

2

6
4

3

7
5

Here, columns indicate (from left to right) the “start” state, the no heartbeat state, and the

heartbeat state, and rows (from top to bottom) indicate the “start” observation, the diastole

observation, and the systole observation. The probability of observing a systole or diastole if a

heartbeat or no heartbeat state were present was encoded by an “interoceptive precision”

parameter (IP). A value of 0.5 for IP indicates minimal precision–that is, that the probability of

observing a systole or diastole is 0.5 when in either the heartbeat or no heartbeat state. In con-

trast, a value approaching 1 indicates high precision–that is, that the probability of observing a

systole is high when in a heartbeat state and low when in a no heartbeat state (and vice-versa

when observing a diastole). Importantly, however, IP values approaching 0 also indicate high

precision, in that observing a systole vs. diastole still provides strong evidence for a heartbeat

vs. a no heartbeat state (but where the probabilistic relationships are reversed). Behaviorally,

IP values approaching 0 would indicate that a participant consistently tapped the button dur-

ing the task in a way that reliably anticipated each upcoming systole.

Belief updating in the perception model was based on the following equations at times t = 1

and t = 2, respectively:

�st¼1 ¼ σ
1

2
ðln Dþ ln B � stþ1Þ þ ln A � ot

� �

�st¼2 ¼ σðlnB st� 1 þ lnA � otÞ

Because time t = 1 in each trial always included the “start” observation with a fully precise

prior belief in D for being in the “start” state, the posterior belief �st¼1 always corresponded to a

fully precise belief of being in the “start” state. The equation for time t = 2 corresponds to

Bayesian inference, in which prior beliefs (lnBst−1) are integrated with the likelihood distribu-

tion and the systole or diastole observation at the second timepoint (ln A�ot), and then con-

verted into a proper probability distribution via a softmax (normalized exponential) function

σ(�)—leading to a posterior distribution over heartbeat states (�st¼2). Note that, by convention

in the active inference literature, the dot notation (�) here indicates a matrix transpose, mean-

ing that A�ot = ATot.
Our response model formally included two actions, the choice to tap or not tap. This model

made the assumption that the probability of choosing to tap vs. not tap corresponded to the

posterior probability assigned to the heartbeat vs. no heartbeat state at time t = 2 in each trial:

PðtapÞ ¼ Pð�st¼2 ¼ heartbeatÞ:

In other words, tapping behaviors were sampled from the posterior distribution over heart-

beat vs. no heartbeat states, such that choices to tap became more likely as the posterior proba-

bility of a heartbeat state approached 1 and choices not to tap became more likely as the

posterior probability of a heartbeat state approached 0. No further parameters were included

in the response model to account for behavioral stochasticity. This is because, in the context of

the present task, parameters encoding randomness in behavior cannot be distinguished from
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IP, as both effectively control the precision of the posterior distribution from which tapping

actions are sampled in response to the systole/diastole signal. As described further below, we

instead took further analysis steps at the group level to account for the potential influence of

individual differences in motor stochasticity on IP and pHB estimates.

In this task, it is unclear whether or not learning over time (e.g., from paying attention to

one’s heartbeat) contributes to task performance. To assess this using Bayesian model compar-

ison, we compared evidence for the “perception only” model described above with evidence

for a model that included learning to update prior beliefs over time. Learning within this

model involves updating beliefs about the probability of feeling a heartbeat vs. no heartbeat at

each time point, based on how frequently one believes they have felt their heartbeat in the past.

Essentially, every time a heartbeat is felt, prior beliefs favoring feeling a heartbeat go up, and

every time no heartbeat is felt this (relative) belief goes back down. Formally, this corresponds

to updating the concentration parameters of Dirichlet (Dir) priors associated with the B matrix

(b) that specify beliefs about state transitions:

PðBÞ ¼ DirðbÞ

bðheartbeatsÞ ¼ Pðstþ1jstÞ ¼

0 0 0

1 � pHB 1 0

pHB 0 1

2

6
4

3

7
5� b0

btrial ¼ btrial� 1 þ
X

t

st � st� 1

Here� indicates the cross-product, and b0 is a scalar on the prior value for concentration

parameters, where its value prior to learning encodes (inverse) sensitivity to information, such

that higher values will reduce the rate at which prior beliefs are updated over time with new

observations. In the learning model, b0 was also estimated for each individual to capture the

possibility of different learning rates for updating prior beliefs (this could also be thought of as

differences in a kind of interoceptive “belief rigidity”).

Thus, the final parameters estimated for each participant included the IP, pHB, and b0

parameters. Our approach to parameter estimation used Bayesian inference at two levels [81].

First, each participant’s responses were modeled using the Bayesian model of perception

described above. We then used a commonly used Bayesian optimization algorithm (called

Variational Bayes) to estimate each participant’s parameter values that maximized the likeli-

hood of their responses (under the assumption that a higher/lower probability assigned to feel-

ing a heartbeat corresponded to a higher/lower probability of choosing to tap), as described in

[25]. We optimized these parameters for each model using this likelihood and variational

Laplace [82], implemented within the spm_nlsi_Newton.m parameter estimation routine

available within the freely available SPM12 software package (Wellcome Trust Centre for Neu-

roimaging, London, UK, http://www.fil.ion.ucl.ac.uk/spm). This estimation approach has the

advantage of preventing overfitting, due to the greater cost it assigns to moving parameters far-

ther from their prior values. Estimating parameters required setting prior means and prior var-

iances for each parameter. The prior variance was set to a high precision value of 1/2 for each

parameter (i.e., deterring overfitting), and the prior means were set as follows: IP = .5, pHB =

.5, and b0 = 1. Our decision for selecting these priors was motivated in part by initial simula-

tions confirming that parameter values were recoverable under these prior values (see S1

Text). The IP and pHB prior values were further chosen to minimize estimate bias, as pHB =

.5 assumes flat prior beliefs, and IP = .5 does not bias estimates in favor of values assuming

PLOS COMPUTATIONAL BIOLOGY A Bayesian model reveals dysfunctional interoceptive precision in psychopathology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008484 December 14, 2020 10 / 31

http://www.fil.ion.ucl.ac.uk/spm
https://doi.org/10.1371/journal.pcbi.1008484


anticipatory vs. reactive strategies. The b0 prior of 1 is equivalent to this parameter having no

effect on the model. All model simulations were implemented using standard routines

(spm_MDP_VB_X.m) that are available as MATLAB code in the latest version of SPM aca-

demic software: http://www.fil.ion.ucl.ac.uk/spm/. The specific code used for our model can

be found in S1 Modelling Code.

After fitting parameters for each model, we performed Bayesian model comparison (based

on [83, 84]) to determine the best model. We then used both classical inference and Bayes fac-

tor analyses to test for the effects of group differences in parameter estimates (i.e., posterior

mean estimates) for the best model.

Before using these parameters in further analyses, however, the “raw” IP parameter values

(IPraw) were transformed to correctly capture 2 distinct constructs of interest. First, because

IPraw values both above and below .5 indicate higher precision (i.e., values approaching 0 indi-

cate reliable anticipatory tapping, whereas values approaching 1 indicate reliable tapping after

a systole), our ultimate measure of precision was recalculated by centering IPraw on 0 and tak-

ing its absolute value as follows:

IP ¼ jIPraw � 0:5j

This means that IP has a minimum value of 0 and a maximum value of 0.5. The IPraw values

were then instead used to assess individual differences in the tendency to tap in an anticipatory

or reactive (AvR) fashion:

AvR ¼ IPraw

Higher AvR values (> 0.5) thus indicated a stronger tendency to reactively tap in response

to a heartbeat as opposed to tapping in an anticipatory fashion (< 0.5).

Physiological measurements

Electrocardiography was used to assess the objective timing of participants’ heartbeats

throughout the task. A BIOPAC MP150 was used to collect a three-lead EKG signal and the

pulse oximeter signal, using a pulse plethysmography (PPG) device attached to the ear lobe.

Response times were collected using a task implemented in PsychoPy, with data collection syn-

chronized via a parallel port interface.

EKG and response data were scored using in-house developed MATLAB code. As

described above in relation to our modelling approach, each participant’s pulse transit time

(PTT) was estimated as the median delay between the R-wave and the corresponding inflec-

tion in the PPG signal. S1 Fig displays an example participant’s EKG and PPG trace to illus-

trate how this was calculated (also supporting the 200ms delay assumption used in modelling

and in individuals without usable PPG).

Quality control and final sample sizes

Prior to performing our analyses, several participants were removed due to quality control

checks: 19 individuals were removed due to “cheating” (i.e., video revealed they were taking

their pulse while performing the task); 3 individuals didn’t complete the task; and 13 individu-

als had poor EKG across all trials that didn’t allow reliable identification of heartbeat timing.

An additional 31 individuals were removed due to being outliers when performing the tone

task (using Iterative Grubb’s with p< 0.01)—assumed to reflect inappropriate engagement

during the task (e.g., being inattentive, tapping rapidly without listening to the tones, etc.).

This resulted in 434 participants, including 52 HCs, 15 ANX, 69 DEP, 153 co-morbid DEP

+ANX, 131 SUDs, and 14 EDs. In the three heartbeat tapping conditions, a few other
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participants were removed due to poor EKG, leading to the following participant numbers in

each condition: 433 (guessing), 431 (no-guessing), and 427 (breath-hold). Table 3 reports the

final number of participants included for model-based analyses in each condition as well as

descriptive statistics for all task-related measures.

Statistical analysis

Correlational analyses were first conducted to examine the relationships between parameters

across conditions. For purposes of parameter validation, we ran further correlational analyses

to examine the relationships between each parameter and task-specific measures, including

the self-report ratings of difficulty, confidence, and heartbeat intensity collected after each

trial.

Linear mixed effects models (LMEs; described further below) were conducted (using the

lme4 package in R) to identify possible group differences (i.e., between HCs and the five

patient groups) for each parameter, and how they differed between conditions (i.e., guessing,

no-guessing, breath-hold), while accounting for individual differences in age, sex, BMI,

median PTT, number of heartbeats (and its interaction with group and condition), and medi-

cation status (i.e., one analysis per parameter). Inclusion of the peripheral physiological vari-

ables was done to rule out the possibility that differences in parameters between groups/

conditions were due to differences in peripheral physiology between groups/conditions. We

also included sensory precision estimates for the tone condition in the models in order to

account for any variability in tapping behavior due to motor stochasticity (e.g., differences in

reaction times). This was based on the assumption that, because the sensory signal in the tone

condition is highly precise, any variability in precision would be better explained by random

influences on behavior as opposed to perception. Because the first half of the T1000 sample

was pre-specified as an exploratory sample, we report relationships at p< .05 as a potential

basis for a priori hypothesis verification in the second (confirmatory) half of the T1000 dataset

in subsequent work. Although our analyses are exploratory, we note that a Bonferroni cor-

rected threshold for multiple comparisons with three parameters is p< .017 (α = 0.05).

For each parameter we ran LMEs (with the covariates mentioned above) that compared the

three task conditions by group. Given our transdiagnostic focus, we first divided participants

into two groups comprised of healthy participants and those diagnosed with one or more psy-

chiatric disorders (transdiagnostic group). We subsequently divided those with psychiatric

diagnoses into the 5 distinct diagnostic groups to assess the potential for diagnosis-specific

differences.

To test the relative evidence for models with vs. without group and condition effects, we

ran JZS Bayes factor analyses with default prior scales in R [85, 86] comparing null models

(with only an effect of subject) to the space of models including all combinations of main

effects and interactions for group and condition. We also compared evidence for models with

transdiagnostic vs. condition-specific effects.

Results

Participant characteristics

Complete information on sample size, demographics, and symptom screening measures is

provided in Table 1. Separate ANOVAs showed significant differences between groups in age

(F(5,428) = 2.98, p = .01) and body mass index (BMI; F(5,413) = 4.04, p = .001). A chi-squared

analysis also showed significant differences in the proportion of males to females between

groups (chi-squared = 19.43, df = 5, p = .002). Therefore, in our analyses of model parameters,

we also confirm our results after controlling for these other factors.
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Table 3. Summary statistics for all task-related variables.

Guessing

Condition

Healthy Comparisons

(N = 52)

Anxiety

(N = 15)

Depression

(N = 69)

Depression + Anxiety

(N = 153)

Eating Disorder

(N = 14)

Substance Use Disorder

(N = 130)

p-

value�

Number of taps 67.92 (29.58) 58.40 (28.40) 67.65 (31.97) 62.02 (32.58) 65.86 (27.86) 65.50 (30.82) 0.701

Number of

heartbeats

66.67 (9.48) 67.13 (9.55) 70.23 (10.90) 70.34 (10.86) 67.21 (8.71) 71.23 (10.47) 0.1

Self-reported

difficulty

56.87 (22.70) 53.20 (26.69) 57.55 (28.12) 53.18 (25.84) 71.57 (17.78) 48.24 (24.65) 0.009

Self-reported

confidence

32.67 (19.27) 41.27 (21.54) 39.52 (22.67) 39.29 (21.20) 25.14 (21.36) 42.20 (22.39) 0.022

Self-reported

intensity

20.71 (16.72) 26.73 (21.51) 26.26 (21.52) 28.27 (23.25) 15.36 (18.64) 35.94 (24.65) <0.001

Counting accuracy 0.69 (0.33) 0.67 (0.30) 0.65 (0.29) 0.63 (0.30) 0.68 (0.30) 0.67 (0.29) 0.755

No-Guessing

Condition

Healthy Comparisons

(N = 52)

Anxiety

(N = 15)

Depression

(N = 68)

Depression + Anxiety

(N = 153)

Eating Disorder

(N = 14)

Substance Use Disorder

(N = 129)

p-value

Number of taps 18.73 (22.69) 22.13 (24.04) 23.43 (24.22) 24.10 (24.26) 18.29 (21.74) 31.47 (25.46) 0.015

Number of

heartbeats

65.88 (10.22) 66.73 (11.07) 69.97 (10.45) 69.78 (11.10) 66.14 (8.43) 70.69 (10.14) 0.066

Self-reported

difficulty

67.83 (27.94) 59.73 (35.14) 68.00 (32.72) 62.88 (31.35) 69.86 (26.68) 55.14 (30.75) 0.039

Self-reported

confidence

39.94 (30.32) 36.80 (35.54) 41.15 (31.36) 41.41 (29.49) 31.93 (32.16) 42.29 (28.27) 0.858

Self-reported

intensity

18.15 (19.63) 16.80 (22.11) 25.82 (26.38) 25.31 (25.67) 13.50 (13.51) 33.64 (27.53) 0.001

Counting accuracy 0.28 (0.29) 0.31 (0.33) 0.32 (0.31) 0.33 (0.31) 0.28 (0.32) 0.43 (0.32) 0.028

Breath Hold

Condition

Healthy Comparisons

(N = 52)

Anxiety

(N = 15)

Depression

(N = 68)

Depression + Anxiety

(N = 151)

Eating Disorder

(N = 14)

Substance Use Disorder

(N = 127)

p-value

Number of taps 27.12 (21.47) 30.60 (42.93) 24.75 (21.07) 26.46 (23.58) 17.71 (16.80) 34.17 (25.05) 0.027

Number of

heartbeats

69.40 (9.80) 66.87 (12.01) 71.26 (10.48) 70.59 (11.20) 66.29 (6.29) 72.96 (10.75) 0.061

Self-reported

difficulty

46.44 (27.08) 54.20 (23.24) 56.53 (25.74) 53.50 (28.32) 55.64 (25.67) 45.86 (29.08) 0.07

Self-reported

confidence

47.79 (26.20) 41.27 (26.06) 50.78 (26.49) 52.42 (27.42) 36.50 (33.37) 53.04 (25.55) 0.158

Self-reported

intensity

38.19 (28.40) 26.40 (23.61) 41.85 (29.60) 41.09 (29.99) 32.71 (30.63) 46.81 (28.88) 0.074

Counting accuracy 0.39 (0.29) 0.28 (0.26) 0.34 (0.27) 0.35 (0.29) 0.28 (0.29) 0.44 (0.30) 0.03

Tone Condition Healthy Comparisons

(N = 52)

Anxiety

(N = 15)

Depression

(N = 69)

Depression + Anxiety

(N = 153)

Eating Disorder

(N = 14)

Substance Use Disorder

(N = 131)

p-value

Number of taps 77.90 (1.00) 77.40 (1.12) 77.71 (1.03) 77.82 (1.17) 77.57 (0.94) 78.06 (0.97) 0.072

Number of

heartbeats

65.63 (11.10) 67.27 (9.81) 70.74 (9.94) 71.37 (11.14) 66.86 (8.16) 71.30 (10.62) 0.01

Self-reported

difficulty

18.04 (15.84) 29.20 (21.12) 22.14 (19.52) 24.15 (22.00) 35.21 (22.33) 25.77 (22.40) 0.065

Self-reported

confidence

77.56 (14.26) 73.93 (17.84) 78.84 (16.60) 74.22 (19.59) 59.79 (24.84) 75.16 (18.56) 0.017

Self-reported

intensity

85.58 (13.76) 75.67 (15.19) 86.20 (15.09) 82.86 (17.83) 87.79 (12.46) 81.47 (16.51) 0.102

Counting accuracy 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.99 (0.01) 0.922

�p-values correspond to the results of ANOVAs comparing the groups (i.e., not including all task conditions within the analysis as reported in the main text).

https://doi.org/10.1371/journal.pcbi.1008484.t003
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Interoceptive perturbation validation

As expected, across all participants self-reported heartbeat intensity, confidence in task perfor-

mance, and task difficulty differed significantly between the three heartbeat tapping conditions

in separate LMEs (intensity: F(2,858) = 79.09, p< .001; confidence: F(2,858) = 36.23, p< .001;

difficulty: F(2,858) = 31.8, p< .001), reflecting a greater perceived intensity of heartbeat sensa-

tions and greater confidence during the breath-hold perturbation than in the other two condi-

tions, as well as lower difficulty in the breath-hold condition than the no-guessing condition

(and greater difficulty in the no-guessing than guessing condition; p< .001 for all post-hoc

comparisons). An LME analysis of heart rate revealed a significant difference in the number

of heartbeats between conditions (F(2,856) = 15.08, p< .001), reflecting a faster heart rate in

the breath-hold condition than in the no-guessing condition (p< .001) and guessing condition

(p = .001)

Bayesian model comparison

When comparing models (based on [83, 84]), there was more evidence for the “perception

only” model than for the model that included learning prior beliefs for the no-guessing and

breath-hold conditions (protected exceedance probability = 1), whereas there was not clear

evidence favoring a single model for the guessing condition (protected exceedance probabili-

ties = .46 vs. .54, slightly favoring the learning model). The learning model was favored in the

tone condition (protected exceedance probability = 1). No group differences were observed

when comparing model fits between groups.

For consistency/comparability, we use the “perception only” model parameters to compare

conditions in our analyses below, as this model best explained heartbeat tapping behavior

overall. The accuracy of this model—defined as the percentage of choices to tap/not tap that

matched the highest probability action in the model (e.g., a tap occurring when the highest

probability percept in the model was a heartbeat)—was 74% across all conditions; by condi-

tion, model accuracy was: guessing condition = 67% (SD = 12%); tone condition = 67%

(SD = 12%); no-guessing condition = 85% (SD = 14%); breath-hold condition = 84%

(SD = 13%).

Relationship between parameters

Parameter values for each group and condition are listed in Table 4. Across conditions, all

parameters were normally distributed (skew < 2). As shown in Fig 2, correlations between IP

across task conditions were generally low. Correlations between pHB estimates across condi-

tions were moderate, most notably between the no-guessing and breath-hold condition

(which also included the no-guessing instruction). The tendency to tap in an anticipatory vs.

reactionary manner (AvR) showed no relationships across conditions. Correlations between

IP and pHB (or pTone) within each condition were also low (0� r� .27), as were correlations

between these parameters and AvR (-.28< r< .01; see S2 Fig).

Parameter face validity

Fig 3 shows the correlations, including some significant relationships (p� .001, uncorrected),

across all participants between model parameters in each condition and several task-relevant

variables. IP showed positive relationships with self-reported heartbeat intensity ratings in

both the no-guessing and breath hold conditions. Additionally, pHB was lower in those self-

reporting greater difficulty in the no-guessing condition, and higher in those self-reporting

higher confidence and higher heartbeat intensity in both the no-guessing and breath hold
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Table 4. Mean (and standard deviation) for model parameters by group and condition.

Individual difference variable Healthy comparisons Anxiety Depression Depression + Anxiety Eating disorder Substance use disorder p-value�

Sensory precision

Guessing 0.04 (0.05) 0.04 (0.02) 0.04 (0.03) 0.04 (0.04) 0.05 (0.05) 0.04 (0.04) 0.815

No-Guessing 0.04 (0.05) 0.04 (0.04) 0.03 (0.04) 0.03 (0.03) 0.06 (0.06) 0.04 (0.05) 0.09

Breath-hold 0.07 (0.07) 0.03 (0.03) 0.04 (0.04) 0.04 (0.04) 0.03 (0.03) 0.04 (0.04) <0.001

Tone 0.18 (0.12) 0.12 (0.11) 0.18 (0.12) 0.14 (0.11) 0.21 (0.10) 0.16 (0.11) 0.052

Prior beliefs

Guessing 0.44 (0.16) 0.37 (0.16) 0.41 (0.17) 0.38 (0.18) 0.43 (0.18) 0.40 (0.16) 0.331

No-Guessing 0.15 (0.13) 0.15 (0.12) 0.17 (0.13) 0.17 (0.14) 0.14 (0.12) 0.21 (0.14) 0.05

Breath-hold 0.18 (0.11) 0.19 (0.19) 0.17 (0.11) 0.18 (0.13) 0.14 (0.11) 0.22 (0.13) 0.056

Tone 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.50 (0.01) 0.139

Anticipate vs. React

Guessing 0.49 (0.06) 0.50 (0.04) 0.49 (0.05) 0.49 (0.06) 0.54 (0.07) 0.50 (0.06) 0.042

No-Guessing 0.50 (0.07) 0.52 (0.06) 0.49 (0.05) 0.50 (0.05) 0.50 (0.08) 0.50 (0.06) 0.683

Breath-hold 0.49 (0.10) 0.49 (0.04) 0.51 (0.06) 0.50 (0.06) 0.48 (0.04) 0.50 (0.05) 0.529

Tone 0.50 (0.22) 0.45 (0.16) 0.52 (0.21) 0.49 (0.18) 0.37 (0.20) 0.46 (0.19) 0.088

�p-values correspond to the results of exploratory ANOVAs comparing the groups (i.e., not including all task conditions within the analysis as reported in the main

text).

https://doi.org/10.1371/journal.pcbi.1008484.t004

Fig 2. Pearson correlations between model parameters across task conditions across all participants. For reference, correlations at p< .001 (uncorrected) are marked

with red asterisks.

https://doi.org/10.1371/journal.pcbi.1008484.g002
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conditions. Across heartbeat tapping conditions, model parameters were also weakly (IP) to

strongly (pHB) related to the traditional counting accuracy measure (39).

In the breath-hold condition, t-tests revealed significantly greater IP in males than females

(t(251) = 2.30, p = .02).

Group by condition interactions in model parameters

In this section, we present LME analyses assessing the main effects of task condition for each

parameter, and then subsequent LMEs that exclude the tone condition, in which we assess the

main effects of group and task condition, and their interaction, while accounting for several

covariates that account for potential confounding effects of other demographic, behavioral,

and peripheral physiological variables (see methods). In LMEs including BMI as a covariate,

15 participants were removed due to lack of available data (2 HCs, 1 ANX, 3 DEP, 1 DEP

+ANX, 7 SUDs, and 1 ED).

Due to our transdiagnostic focus, we examined the transdiagnostic vs. condition-specific

nature of these effects both when dividing participants into two groups (healthy comparisons

vs. patients transdiagnostically) and six groups (healthy comparisons and each of the five

patient groups separately). We then performed Bayes factor analyses to compare evidence for

the space of possible models with vs. without group or task effects, including models with

transdiagnostic effects and models with condition-specific effects (see methods). As this is a

Fig 3. Exploratory Pearson correlations between model parameters and self-report and other task-relevant variables for each task condition across all participants.

IP = interoceptive precision parameter, pHB = prior belief for heartbeat parameter, pT = prior belief for tone parameter, AvR = anticipate vs. react strategy parameter,

PTT = median pulse transit time, #HBs = number of heartbeats during the task condition, BMI = body mass index. For reference, correlations at p< .001 (uncorrected)

are marked with red asterisks.

https://doi.org/10.1371/journal.pcbi.1008484.g003
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pre-defined exploratory sample, we report post-hoc comparisons as significant with an uncor-

rected threshold of p< .05.

Interoceptive precision. An initial LME revealed that sensory precision (IP or auditory

precision in the tone condition) was significantly different between conditions (F(3,1292) =

339.4, p< .001; see Fig 4), reflecting greater values in the tone condition than in the three

heartbeat tapping conditions (post-hoc comparisons indicated p< .001 in all cases). Subse-

quently focusing only on IP (excluding the tone condition), and grouping participants trans-

diagnostically (i.e., based on the presence vs. absence of a diagnosis), a further LME revealed a

significant group by condition interaction (F(2,839) = 10.30, p< .001), but no main effects of

group (F(1,607) = 0..54, p = .46) or condition (F(2,885) = 1.35, p = .26). Post-hoc comparisons

indicated that the interaction was driven by: 1) the fact that IP significantly increased in HCs

in the breath-hold condition when compared to the two resting conditions (p< .001 for each),

2) that IP in HCs during breath-hold was significantly greater than IP in all three conditions in

the transdiagnostic patient sample (p< .001 in all cases), and 3) that there were no significant

differences between conditions in the patient sample. This LME also revealed no significant

effect of age, sex, precision within the tone condition, BMI, median PTT, medication status,

number of heartbeats, and the interaction between number of heartbeats and both group and

condition (Fs between .02 and 1.7, ps between .19 and .88).

Fig 4. Bottom: Bar plots illustrating means and standard errors for model parameters by task condition across all participants. Prior beliefs for heartbeats were lower in the

no-guessing and breath-hold conditions. Sensory precision (i.e., interoceptive precision for the heartbeat conditions or auditory precision for the tone condition) was

much greater in the tone condition. This was expected given the unambiguous nature of this signal relative to the heartbeat signal. There were no significant differences in

sensory precision between the heartbeat conditions. The Anticipate vs. React values revealed no mean differences between conditions. Top: For more complete data

characterization, we also show raincloud plots depicting the same results in terms of individual datapoints, boxplots (median and upper/lower quartiles), and probability

densities. These illustrate that, for the Anticipate vs. React parameter, nearly equally sized clusters of participants appeared to adopt more anticipatory (< .5) vs. reactive

(>.5) strategies in the tone condition, and that prior beliefs remained unbiased (.5; with little variance) in the tone condition relative to the heartbeat tapping conditions.

https://doi.org/10.1371/journal.pcbi.1008484.g004
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A further LME including each diagnostic group separately confirmed the same group by

condition interaction (F(10,821) = 3.21, p< .001). Here, post-hoc comparisons showed that IP

in the breath-hold condition was significantly greater in HCs when compared to each clinical

group (ANX, p = .002; DEP, p< .001; DEP+ANX, p< .001, EDs, p = .007, SUDs, p< .001).

No other clinical group showed a significant difference between conditions, with the exception

of DEP+ANX, which showed lower IP in the no-guessing condition than in the guessing con-

dition (p = .03). DEP also showed lower IP than EDs in the no-guessing condition (p = .03).

In the Bayesian analyses, the transdiagnostic model (HCs vs. all patients) that included

main effects of group, condition, and their interaction, was most strongly favored over the null

model (Bayes factor = 142.5), while the disorder-specific model was not favored over the null

model (Bayes factor = .18). The transdiagnostic model was also strongly favored over the diag-

nosis-specific model (Bayes factor = 796.7). See Fig 5 for plots of IP values by group and

condition.

Prior expectations. An LME revealed that prior expectations (pHB or priors in the tone

condition) were significantly different between conditions (F(3,1291) = 861.5, p< .001; see Fig

4), reflecting greater values in the tone condition than in the three heartbeat tapping condi-

tions, and greater values in the guessing condition than in the other two heartbeat tapping con-

ditions (post-hoc comparisons indicated p< .001 in all cases). Subsequently focusing only on

pHB (excluding the tone condition), and grouping participants transdiagnostically, a further

LME revealed a main effect of condition (F(2,863) = 27.09, p< .001), and a group by condition

Fig 5. Bottom: Mean and standard error for interoceptive precision estimates by condition and clinical group. Interoceptive precision (IP) was significantly greater in

healthy comparisons than all other groups in the breath-hold condition, and healthy comparisons showed a significant increase in IP from the guessing and no-guessing

condition to the breath-hold condition that was absent in the other groups. Top: For more complete data characterization, we also show raincloud plots depicting the same

results in terms of individual datapoints, boxplots (median and upper/lower quartiles), and probability densities.

https://doi.org/10.1371/journal.pcbi.1008484.g005
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interaction (F(2,842) = 4.38, p = .01), but no main effect of group (F(1,722) = .03, p = .86).

Post-hoc comparisons again indicated greater pHB in the guessing condition than in the other

two conditions (p< .001). However, post-hoc comparisons did not show any significant dif-

ferences between groups by condition to account for the interaction. This LME also revealed a

negative association between pHB and age (F(1,408) = 8.84, p = .003) and a heart rate by condi-

tion interaction (F(2,865) = 3.56, p = .03), but no significant effect of sex, tone precision, BMI,

median PTT, medication status, number of heartbeats, or the interaction between number of

heartbeats and group (Fs between .02 and 3.49, ps between .06 and .90). The heart rate by con-

dition interaction reflected a stronger negative correlation between heart rate and pHB in the

guessing condition (r = -.13) than in the no-guessing and breath-hold conditions (r = -.04 and

.03, respectively).

A further LME with diagnosis-specific groups confirmed the same group by condition

interaction (F(10,821) = 2.21, p = .02). Here, post-hoc comparisons suggested this interaction

was driven primarily by the SUD group, who showed higher pHB values in the breath-hold

condition than the DEP, DEP+ANX, and ED groups (p = .048, .03, and .04, respectively), and

also showed higher pHB values in the no-guessing condition than the DEP+ANX, ED, and

HC groups (p = .03, .046, and .01, respectively). HCs also showed higher pHB values in the

guessing condition than the DEP+ANX group (p = .03).

In the Bayesian analyses, the most strongly favored model over the null model only

included a main effect of condition (Bayes factor = 1.07E+135). This model was also favored

over 1) a model including both main effects and the transdiagnostic group by condition inter-

action (Bayes factor = 4.8), and 2) an analogous model with the diagnosis-specific group by

condition interaction (Bayes factor = 63.21). See S3 Fig for plots of pHB values by group and

condition.

Anticipating vs. reacting. An initial LME showed no significant differences in AvR

between task conditions (F(3,1292) = 2.01, p = .11; see Fig 4). Detailed results of further LMEs

and Bayes factor analyses for AvR are presented in S1 Text. No clear evidence was found for

differences between HCs and the clinical groups by condition, although some potential rela-

tionships with heart rate and medication status were noted. Bayesian analyses strongly favored

the null model over all other models. See S4 Fig for plots of AvR values by group and

condition.

Comparison to existing measures

To examine the ability of traditional measures to capture similar group differences, we ran

analogous LMEs using the traditional heartbeat counting task formula for interoceptive accu-

racy (39). When using the transdiagnostic grouping, analyses did not find a main effect of

group (F(1,688) = .01, p = .92) or condition (F(2,868) = 2.4, p = .09), but did detect an interac-

tion between group and condition (F(2,842) = 3.37, p = .03). There was a negative association

with age (F(1,408) = 4.59, p = .03) and PTT (F(1,412) = 4.83, p = .03), and no effect of any

other covariate (Fs between .0003 and 1.09, ps between .30 and .99). Post-hoc comparisons

suggested the group by condition interaction was driven by greater counting accuracy in the

guessing condition than the other two conditions in both groups (p < .001 in all cases), and

greater counting accuracy in the breath-hold condition than the no-guessing condition in HCs

but not in the transdiagnostic group (p = .045 and p = .55, respectively). When using the diag-

nosis-specific grouping, there was no main effect of group (F(5,620) = .23, p = .95) or group by

condition interaction (F(10,821) = 1.46, p = .15). A Bayes factor analysis showed that the most

highly favored model (relative to a null model) only included an effect of condition (Bayes

factor = 1.7E+62), reflecting higher counting accuracy in the guessing condition than in the
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other two heartbeat tapping conditions (p< .001; also see Table 3). It was also strongly favored

relative to the second-best model including an effect of group and condition (Bayes

factor = 7.4).

To assess potential group differences in the effect of task condition on self-reported experi-

ence and physiology, we also carried out analogous LMEs assessing confidence, intensity, and

difficulty, as well as heart rate. These results are reported in S1 Text. No group by condition

interactions in these variables were observed mirroring our IP results.

Associations with symptom severity measures and interoceptive awareness

scales

Given the heterogeneity in our clinical sample, we ran subsequent exploratory correlational

analyses with continuous scores on the clinical measures gathered, excluding HCs, to assess

whether model parameters might provide additional information about symptom severity. We

note a few weak relationships at uncorrected levels in S1 Text, but none survive correction for

multiple comparisons.

The T1000 dataset also includes self-report measures commonly used in interoception

research, including the Multidimensional Assessment of Interoceptive Awareness (MAIA;

[87]), the Toronto Alexithymia Scale (TAS-20; [88]), and the Anxiety Sensitivity Index (ASI;

[89]). For the interested reader, we also show exploratory correlation matrices between model

parameters and these common measures within S5 Fig. While a couple of relationships were

significant at uncorrected levels, the strength of these relationships was low.

Discussion

This investigation aimed to examine whether a novel Bayesian computational model of per-

ception could provide a principled approach to empirically characterizing interoceptive pro-

cessing dysfunctions that have previously been proposed. Specifically, we used behavior

during a heartbeat perception task in conjunction with this model to estimate quantitative dif-

ferences in the prior beliefs and sensory precision estimates that individuals implicitly apply to

afferent interoceptive (cardiac) signals—in both healthy individuals and a transdiagnostic sam-

ple of individuals with depression, anxiety, substance use, and/or eating disorder symptoms.

We observed several relationships in the expected directions between model parameters and

other task-related variables that supported the construct validity of our model parameters.

Of greatest interest, we found evidence, using both frequentist and Bayesian analyses, that

an interoceptive (breath-hold) perturbation increased the precision estimates assigned to car-

diac signals in healthy individuals, but that this perturbation had no effect on interoceptive

precision in individuals with a range of psychiatric disorders, including depression, anxiety,

substance use, and/or eating disorders (Fig 5). Notably, Bayesian analyses found evidence

against differences in interoceptive precision between the different clinical groups, suggesting

that low precision during perturbation represents a transdiagnostic feature across these psychi-

atric conditions. Bayesian analyses also found evidence against differences in prior expecta-

tions between healthy participants and psychiatric patients, suggesting that differences in

sensory precision, and not prior beliefs, best account for interoceptive differences in the clini-

cal groups (although frequentist analyses suggested that substance users may show less attenu-

ated prior expectations than some other groups in the no-guessing and breath-hold

conditions). Model comparison further suggested that individuals did not update prior beliefs

over time during the task, which is perhaps unsurprising given the low cardiac awareness com-

monly seen in previous studies [6]. That is, individuals may not have had sufficient signal to
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learn from (note that, in contrast, model comparison supported the presence of learning in

our auditory control condition with a clear signal). We expand on these points below.

Parameter validity/sensitivity

IP showed positive relationships with self-reported heartbeat intensity ratings (no-guessing

and breath-hold conditions)—as would be expected in the context of more precise cardiac sig-

nals. In the no-guessing and breath-hold conditions, pHB was lower than in the guessing con-

dition. In other words, participants appear to have successfully adjusted their prior beliefs to

comply with the no-guessing instructions. Further, consistent with the role of prior beliefs in

perception, pHB was also lower in those reporting greater difficulty (no-guessing condition)

and higher in those reporting greater confidence and higher heartbeat intensity (no-guessing

and breath-hold conditions). Each of these results support the notion that our parameters

tracked theoretically meaningful individual differences in perception/behavior and that our

approach can disentangle the effects of sensory precision from those of prior beliefs and antici-

patory vs. reactive strategies.

Further, while model parameters had some shared variance with traditional accuracy mea-

sures (e.g., higher counting accuracy was weakly associated with higher interoceptive preci-

sion), they mainly captured unique variance that was not tracked by standard measures.

Further, no group differences analogous to those seen with model parameters were found

using the traditional interoceptive accuracy measure (i.e., across all participants, counting

accuracy showed an opposite pattern, being highest in the guessing condition). This highlights

the unique ability of this computational method to uncover differences in perceptual decision

making across different psychiatric subtypes.

It is also worth noting the strong positive correlation we observed between pHB and count-

ing accuracy in the no-guessing and breath-hold conditions, suggesting that heartbeat count-

ing accuracy primarily reflects prior beliefs (as previously proposed in [38]). In the present

task this is explained by the fact that higher pHB values led to a greater number of taps and the

fact that the average number of taps in these conditions was low (i.e., because of the no-guess-

ing instruction). Thus, those who tapped more often (i.e., due to stronger priors, independent

of precision) approached the actual number of heartbeats and therefore had higher counting

accuracy scores. This highlights one specific way in which, in the context of restrictions on

guessing, counting accuracy may be most closely associated with prior beliefs.

Differences in interoceptive precision

Our primary results were that: 1) IP was significantly higher in the breath-hold condition in

healthy comparisons than in each of the clinical groups; and 2) there was a group by condition

interaction, demonstrating that the interoceptive perturbation (breath-hold) increased IP (rel-

ative to resting conditions) in the healthy participants, whereas this perturbation had no effect

in any of the clinical groups. These group differences were not diagnosis-specific and were not

accounted for by any other demographic (e.g., age, sex) or physiological variables (e.g., pulse

transit time, changes in heart rate), suggesting it was not a result of group-specific changes in

peripheral physiology between conditions. Thus, as the clinical groups had comparable IP to

healthy participants during resting conditions, it appears that interoceptive processing differ-

ences in psychiatric populations may not be present across all physiological contexts. Instead,

interoceptive processing differences may manifest selectively when in altered physiological

states (e.g., such as the high arousal states linked with anxiety).

The finding that IP was reduced during the breath-hold across psychiatric groups included

in this study may be of clinical interest. First, multiple neurocognitive [55, 90, 91] and
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computational [11, 12, 15, 27, 28] theories of emotion, and associated empirical findings (e.g.,

[42, 92–96]), suggest that interoceptive awareness may be an important transdiagnostic factor

in promoting emotional awareness. As low emotional awareness has been linked to multiple

psychiatric and systemic medical conditions (reviewed in [97, 98]), reduced IP during altered

interoceptive states (e.g., affective arousal) could contribute to low emotional awareness and

its maladaptive consequences irrespective of diagnostic category. Second, visceral regulation

might be expected to be less effective in the absence of precise feedback signals from the body,

which could relate to visceral dysregulation in psychiatric conditions (e.g., see [56]). For exam-

ple, to adaptively regulate visceral states, visceromotor control regions plausibly require reli-

able feedback signals from the body to determine whether descending visceromotor

commands have successfully led to the intended adjustments in internal bodily states [10, 13,

36]. Thus, the low IP observed across multiple psychiatric conditions during the breath-hold

could potentially contribute to visceral dysregulation in other contexts in which interoceptive

perturbations occur, such as highly arousing, negatively valenced states (e.g., panic, anxiety,

irritability/anger, etc.).

These results build on previous work suggesting associations between psychiatric disorders

and interoceptive processing deficits [38, 56, 99–102]. For example, previous cardiac percep-

tion studies have shown that depressed patients exhibit reduced accuracy on a heartbeat count-

ing task [2–4], and that performance is negatively correlated with depressive symptoms [5] as

well as associated with both lower positivity and poorer decision-making [2]; although, the

limitations of heartbeat counting tasks should be kept in mind when interpreting such findings

[47, 49, 63, 103]. While the literature on interoceptive dysfunction is mixed for anxiety disor-

ders broadly, it is well-stablished in panic disorder (reviewed in [6]). A couple recent studies

have also reported evidence of differences in interoceptive processing in both SUDs (e.g.,

blunted brain responses [7]) and eating disorders (e.g., stronger effects of prior beliefs on per-

ception during low arousal [8]). The computational framework within which our findings

were observed is also in line with several recent proposals about the role of interoceptive infer-

ence in guiding (predictive) autonomic control and the potential breakdown of this mecha-

nism within different psychiatric conditions [10–15, 36, 38]; however, in contrast to previous

emphasis on altered prior beliefs in these proposals, our results more selectively support the

existence of deficits in adjusting precision estimates for afferent interoceptive signals–and do

not provide strong support for the presence of altered priors.

That said, the neurobiological mechanisms promoting reduced IP in mental disorders dur-

ing interoceptive perturbation remains unclear. As IP increased during the interoceptive per-

turbation in HCs, but not in the clinical groups, it could be that altered brain processes in

individuals with certain psychiatric disorders fail to update IP estimates during states of acute

bodily arousal. The neural process theory associated with active inference and related Bayesian

models suggests that an inability to adjust IP estimates would correspond to reductions in syn-

aptic plasticity in response to changes in patterns of interoceptive prediction-errors [10, 24, 77,

79, 104], most plausibly within neural networks supporting interoception and visceromotor

control (e.g., insula and anterior cingulate [15, 105]). This could be tested using our model/

task in conjunction with neuroimaging. Alternatively, IP estimates could be accurate, and

afferent interoceptive signals may in fact be conveyed with less fidelity (i.e., greater noise) to

the brain in the context of psychiatric conditions. For example, such differences could be due

to altered signaling in interoceptive sensory neurons, which could in principle be affected by

many factors (genetic/epigenetic influences, early adversity and related socio-environmental

factors, and/or effects of disease-related chronic stress, among others). Future research will

need to investigate these different possibilities.
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Prior expectations and task strategy

Unlike the results for sensory precision described above, our results did not provide strong

support for group differences in prior expectations or the tendency to tap in an anticipatory

vs. reactive manner. While frequentist analyses suggested a few potential group differences in

prior beliefs in the no-guessing and breath-hold conditions, Bayesian analyses found strong

evidence favoring a model without group differences over a model with transdiagnostic or

diagnosis-specific effects. This suggests that baseline expectations for heart rate do not differ in

the psychiatric populations examined here, and that these priors can be adjusted in response

to instructions in the same manner as in healthy participants. The lack of group differences

with respect to strategy might also be seen as supporting a similar conclusion in that one

might expect greater tendencies to tap in an anticipatory manner if basing behavior on prior

expectations. Thus, further study of differences in the ability to adjust precision estimates may

be more promising for improving our understanding of interoceptive dysfunction in psychiat-

ric populations. However, the finding in frequentist analyses that pHB in substance users was

less attenuated relative to some other groups in the no-guessing and breath-hold conditions

could suggest that less sensory evidence is required to generate changes in interoceptive feel-

ings within these individuals (consistent with the greater self-reported heartbeat intensity and

lower self-reported difficulty in this group relative to the other groups suggested by our supple-

mentary analyses in S1 Text; also see Table 3). This possibility is worth further investigation

in future studies.

Strengths, limitations, and conclusion

This study has several major strengths. First is the novel application of a computational model

to behavior on an interoceptive awareness task, which allowed for model comparison (e.g.,

allowing us to rule out learning effects) and for parameter estimates that can disentangle dis-

tinct computational mechanisms (e.g., the role of prior beliefs vs. interoceptive precision). A

second strength is the application of this model to interoceptive processing in individuals with

psychiatric disorders, which to our knowledge, has never been reported. While accounting for

other influences, this approach allowed us to test a theoretical prediction—that afferent intero-

ceptive signals (and resulting prediction-errors) are assigned low precision estimates in those

with psychiatric disorders, leading those signals to be under-weighted during interoceptive

inference (although, as discussed above, other interpretations are possible). While an impor-

tant first step, a further test of this hypothesis would require replication in a confirmatory sam-

ple, something we plan to investigate in the second cohort of participants in the Tulsa 1000

project (for some confirmatory work in an independent sample of healthy individuals, see

[106]). Additionally, combining this approach with neuroimaging measures would help to

establish the expected relationship between IP and neural activity within interoceptive cortices.

Computational approaches derived from Active inference models may be especially useful in

this regard, as they allow for simulation of predicted neuronal responses [79].

Some limitations of our modeling approach are also important to keep in mind. First, we

were required to make specific choices about model structure. For example, while priors dur-

ing estimation were fixed at plausible values (justification explained within the methods sec-

tion), other values might have been chosen. Also, we chose not to include a temperature

parameter in our action model. While this was possible, in simple perceptual tasks like ours

that lack reward feedback, any variability in the precision of action selection would be corre-

lated with sensory precision. Therefore, we chose a simpler model that treated behavior as a

direct readout of posterior beliefs in perception. To account for potential differences in motor

stochasticity, we then controlled for sensory precision in the tone condition, where, because

PLOS COMPUTATIONAL BIOLOGY A Bayesian model reveals dysfunctional interoceptive precision in psychopathology

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008484 December 14, 2020 23 / 31

https://doi.org/10.1371/journal.pcbi.1008484


the sensory signal is highly precise, between-subject differences in precision would most plau-

sibly reflect between-subject differences in variability of motor responses. Here it is also worth

highlighting that, if motor effects (such as reaction time) were stable within-subjects but varied

between subjects, this would not influence precision estimates because the temporal relation-

ship between systoles and taps would still be clear. However, the novelty of our approach

entails that it should be replicated in future studies.

Another limitation is that, while we did compare models with vs. without learning, we did

not compare our model to other existing approaches. The heartbeat tapping task was not well-

suited for several alternatives we considered. For example, it did not have a sufficient number

of trials to be suited for traditional signal detection approaches, which would be most compa-

rable to our model-based precision measure [107]. Computational models based on reinforce-

ment learning were also inappropriate as the task did not include planning or learning from

reward, and instead dealt mainly with uncertainty in perception. One alternative approach we

might have taken would have been to model the task with a hierarchical Gaussian filter [108],

which has similar Bayesian foundations and can estimate the relative precisions of sensory

input and prior beliefs (i.e., as opposed to the separate estimates of each in our model), which

could be useful to examine in future work.

Our modelling approach also required making choices about how to include EKG signals

as observations and relate them to behavior. Here this involved discretizing timepoints where

responses were considered co-occurrent (or not) with diastole vs. systole; but other such dis-

cretizations could have been chosen. That said, given the relationships we observed between

parameters and other task measures, our choices appear to have led to estimates that track

meaningful individual differences in task behavior. The task measurement conditions also had

certain limitations. For example, many individuals had low IP values—reflecting the low car-

diac awareness commonly seen at rest in previous studies [6]—which may have limited the

variability necessary to assess relationships with other variables. Finally, there were relatively

lower sample sizes in the eating disorders and anxiety disorders groups. Thus, studies with

larger sample sizes will be necessary to afford stronger confidence in our results for these

groups.

In summary, this study 1) demonstrated the sensitivity of individual difference measures

(parameter estimates) derived from a novel Bayesian computational model, with a focus on

estimating the precision weighting of interoceptive signals across a transdiagnostic sample of

individuals with psychiatric disorders, and 2) tested—and found evidence supporting—the

hypothesis that individuals with psychiatric disorders fail to update the precision-weighting of

afferent interoceptive signals during homeostatic perturbations. While the underlying neuro-

physiological mechanisms leading to this difference remain unidentified, these results point to

a potential origin of visceral dysregulation (and perhaps its influence on maladaptive behavior)

across multiple psychiatric conditions. This represents an important step towards a primary

goal of computational psychiatry—computationally phenotyping individuals with psychiatric

disorders with the tools of computational neuroscience in hopes of using this information to

guide the development of precision medicine interventions.
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S1 Text. This file includes results of supplementary analyses referred to in the main text.

(DOCX)

S1 Fig. Top: Example EKG trace segment from one participant (red). Bottom: Simultaneous

PPG trace from the same participant. Each vertical black line denotes the upswing in the PPG

signal after each EKG R-spike. Each cyan line indicates the length of the delay (i.e., the pulse
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transit time; PTT) between each R-spike and each subsequent upswing in PPG, the median of

which was calculated for each participant. These showed that a delay of 200ms was a good esti-

mate of PTT, which is what was assumed for computational modelling.

(TIF)

S2 Fig. Correlations between model parameters by condition across all participants. For

reference, correlations at p< .05 are marked with red asterisks.

(TIF)

S3 Fig. Bottom: Mean and standard error for prior expectation estimates by condition and

clinical group. Prior expectations (pHB) were significantly higher in the guessing condition,

but were not significantly different between groups in the analyses reported in the main text

(although marginally greater pHB in the no-guessing and breath-hold conditions can be seen

in the substance use group relative to some of the other groups). Top: Raincloud plots showing

the same results in terms of individual datapoints, boxplots, and probability densities.

(TIF)

S4 Fig. Bottom: Mean and standard error for Anticipate vs. React (AvR) parameter estimates

by condition and clinical group. AvR was not significantly different between groups in the

analyses reported in the main text. Top: Raincloud plots showing the same results in terms of

individual datapoints, boxplots, and probability densities.

(TIF)

S5 Fig. Correlations between model parameters by condition across all participants. For

reference, correlations at p< .05 (uncorrected) are marked with red asterisks.

IP = interoceptive precision, pHB = prior expectation for heartbeat, AvR = anticipatory vs.

reactive tapping strategy parameter.

(TIF)

S1 Modelling Code. This file contains the MATLAB code used for modelling task behavior.

(ZIP)

S1 Data. This file includes all data used in the analyses reported in the manuscript.

(CSV)
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