
Circulating leukocyte telomere length and
risk of overall and aggressive prostate cancer
B Julin1,2,3, I Shui4, C M Heaphy5, C E Joshu6, A K Meeker5,7,8, E Giovannucci1,4,9, I De Vivo*,1,2,10

and E A Platz6,7,8,10

1Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School,
Boston, MA, USA; 2Department of Epidemiology, Program in Genetic Epidemiology and Statistical Genetics, Harvard School of
Public Health, Boston, MA, USA; 3Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; 4Department of
Epidemiology, Harvard School of Public Health, Boston, MA, USA; 5Department of Pathology, Johns Hopkins University School of
Medicine, Baltimore, MD, USA; 6Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD,
USA; 7Department of Urology and the James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine,
Baltimore, MD, USA; 8Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA and 9Department of
Nutrition, Harvard School of Public Health, Boston, MA, USA

Background: Recent large-scale prospective studies suggest that long telomeres are associated with an increase cancer risk,
counter to conventional wisdom.

Methods: To further clarify the association between leukocyte telomere length (LTL) and prostate cancer, and assess genetic
variability in relation to both LTL and prostate cancer, we performed a nested case–control study (922 cases and 935 controls). The
participants provided blood in 1993–1995 and were followed through August 2004 (prostate cancer incidence) or until 28 February
2013 (lethal or fatal prostate cancer). Relative LTL was measured by quantitative PCR and was calculated as the ratio of telomere
repeat copy number to a single gene (36B4) copy number (T/S). Genotyping was performed using the TaqMan OpenArray SNP
Genotyping Platform. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (CIs) of all prostate
cancer and subtypes defined by Gleason grade, stage and lethality (metastasis or death).

Results: We observed a positive association between each s.d. increase in LTL and all (multivariable-adjusted OR 1.11, 95% CI:
1.01–1.22), low-grade (OR 1.13, 95% CI:1.01–1.27), and localised (OR 1.12, 95% CI:1.01–1.24) prostate cancer. Associations for other
subtypes were similar, but did not reach statistical significance. In subgroup analyses, associations for high grade and advanced
stage (OR¼ 2.04, 95% CI 1.00–4.17; Pinteraction¼ 0.06) or lethal disease (OR¼ 2.37, 95% CI 1.19–4.72; Pinteraction¼ 0.01) were stronger
in men with a family history of the disease compared with those without. The minor allele of SNP, rs7726159, which has previously
been shown to be positively associated with LTL, showed an inverse association with all prostate cancer risk after correction for
multiple testing (P¼ 0.0005).

Conclusion: In this prospective study, longer LTL was modestly associated with higher risk of prostate cancer. A stronger
association for more aggressive cancer in men with a family history of the disease needs to be confirmed in larger studies.

Several studies have examined leukocyte telomere length (LTL) in
relation to cancers, but with contrasting results (Hou et al, 2012).
Initially, shorter telomeres were believed to be associated with an

increase in cancer risk, but recent large-scale prospective studies
have observed null associations (De Vivo et al, 2009; Weischer
et al, 2013) or showed that long telomeres are associated with an
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increased risk in cancer (Shen et al, 2011; Hou et al, 2012; Lan et al,
2013; Lynch et al, 2013). One prospective study on LTL and
colorectal cancer observed a u-shaped association (Cui et al, 2012).
Recently, Gu and Wu (2013) proposed that this inconsistency may
be in part because the effect of LTL varies by specific cancer type.
Another potential explanation is that non-prospective case–control
studies were subject to reverse causation in which tumour
carcinogenesis affected telomere length. In a meta-analysis
stratified by study design, Wentzensen et al (2011) observed that
increased risk in cancer associated with short telomeres was mainly
driven by case–control studies (odds ratio (OR) in pooled
analysis¼ 1.96; OR in case–control studies¼ 2.9; OR in
prospective studies¼ 1.16), suggesting that telomere shortening
occurs mainly after diagnosis, and therefore, might not be of
value in cancer risk prediction (Pooley et al, 2010). Indirect
evidence that both short and long LTL may contribute to the
development of specific cancers comes from a recent genome
wide association study (GWAS) that identified loci associated
with LTL (Codd et al, 2013) and assessed their association with
different cancer types. The authors found that alleles associated
with LTL showed associations with specific cancers in both
directions (Codd et al, 2013).

Currently, only two prospective studies have investigated
circulating LTL and prostate cancer. In a nested case–control
study in the Prostate, Lung, Colon and Ovarian Cancer Screening
Trial (PLCO), men with shorter telomeres appeared to have a
lower risk of advanced prostate cancer (OR¼ 0.81, 95% confidence
interval (CI) 0.64–1.02, comparing the lowest quartile with the
highest) (Mirabello et al, 2009). A Danish population-based cohort
study of 47 102 individuals indicated an inverse association
between shorter telomeres and prostate cancer incidence (hazard
ratio (HR)¼ 0.94, 95% CI 0.85–1.04, cases n¼ 418), but not fatal
prostate cancer (HR¼ 1.04, 95% CI 0.87–1.25; deaths n¼ 157)
(Weischer et al, 2013).

In genetic studies, the telomerase reverse transcriptase (TERT)
and the telomerase RNA component (TERC) genes, together
comprising the most important unit of the telomerase complex,
were identified as risk loci for prostate cancer (Rafnar et al, 2009;
Kote-Jarai et al, 2011; Kote-Jarai et al, 2013). Variants in these
genes have been associated with LTL in recent GWAS (Codd et al,
2010; Bojesen et al, 2013; Codd et al, 2013; Pooley et al, 2013). The
mechanisms that link LTL with cancer is much more complex than
the oversimplified view presented so far. To further clarify the
association between LTL and risk of all prostate cancer as well as
subtypes defined by Gleason grade, stage and progression, we
performed a case–control study of 922 cases and 935 controls
nested within the prospective Health Professionals Follow-up
Study (HPFS). In addition, we evaluated the association of
variation in genes related to telomere length as well as prostate
cancer with both prostate cancer risk and telomere length.

MATERIALS AND METHODS

Study population. We ascertained incident prostate cancer cases
and sampled controls from participants in the HPFS, a prospective
cohort study of 51 529 US men aged 40–75 years who enrolled in
1986 (https://www.hsph.harvard.edu/hpfs). The men filled out
mailed surveys on their demographics, lifestyle, and medical
history at baseline and during follow-up every 2 years, and on their
diet at baseline and every 4 years. Deaths in the participants are
identified through the National Death Index (Stampfer et al, 1984),
reports by family members or the postal system in response to the
mailed surveys. A total of 18 018 of the participants provided a
blood sample between 1993 and 1995, as previously described
(Platz et al, 2008). Of these men, we excluded those who had a

cancer diagnosis (except non-melanoma skin cancer) before the
date that they provided a blood sample. The majority (95%) of the
men are white of European descent; since both telomere length and
prostate cancer incidence differ by race, we restricted the analyses
to white men (n¼ 123 non-whites were excluded).

Prostate cancers were first identified from self-reports on
questionnaires or from death certificates, and then confirmed by
medical record review. Study investigators reviewed medical and
pathology records to extract data on stage (TNM staging system) at
diagnosis and histological grade, assessed using Gleason scores. We
used pathological stage and grade when available and clinical
measures if pathological information was not available. Deaths
were identified via repeated mailings, telephone calls, and searches
of the National Death Index. Causes of deaths were confirmed
through review of medical records and death certificates. Biennial
follow-up surveys were mailed to those who reported prostate
cancer to collect information on disease progression (e.g.,
metastases). We identified 922 eligible prostate cancer cases
between the dates of blood draw through August 2004. Follow-
up for progression to prostate cancer-specific death was complete
through 28 February 2013; 96.1% of the prostate cancer cases were
confirmed by medical record review.

In the original nested case–control design, for each case, we
sampled a control that was alive and had not been diagnosed with
cancer up to the date of the case’s diagnosis. The cases and controls
were matched on year of birth, ever having had a PSA test before
the date of providing the blood sample, and the time of day, season,
and year that the blood sample was provided. To be eligible,
controls were required to have had a PSA test after the date they
provided a blood sample.

The Human Subjects Committee of the Harvard School of
Public Health approved the HPFS, and written informed consent
was obtained from all participants. Both the Human Subjects
Committee of the Harvard School of Public Health and the
Institutional Review Board at the Johns Hopkins Bloomberg
School of Public Health approved the study on telomeres, genetic
variability and prostate cancer.

Telomere length determination. Genomic DNA was extracted
from peripheral blood leukocytes using the QIAmp 96-spin blood
protocol (Qiagen, Chatsworth, CA, USA). Pico-Green quantifica-
tion of genomic DNA was performed using a Molecular Devices
96-well spectrophotometer (Sunnyvale, CA, USA). Relative LTL
was determined using a modified, high-throughput version of the
quantitative PCR (qPCR)-based telomere assay (Cawthon, 2002;
Wang et al, 2008). The qPCR telomere assay was run on Applied
Biosystems 7900HT Sequence Detection System (Foster City, CA,
USA). Laboratory personnel were blinded to participant character-
istics and all assays were processed in triplicates by the same
technician, and under identical conditions. The average relative
LTL was calculated as the ratio of telomere repeat copy number to
a single gene (36B4) copy number (T/S). Relative LTL is reported
as the exponentiated T/S ratio corrected for a reference sample.
The telomere and single-gene assay coefficients of variation (CVs)
for triplicates were o0.8%. The CV for the mean exponential T/S
ratio was 16.0%. Although this assay provides a relative measure-
ment of telomere length, T/S ratios highly correlate with absolute
telomere lengths determined by southern blot (r¼ 0.82; Po0.001)
(Cawthon, 2002).

Covariate assessment. We used information from the 1994
questionnaire or, if not available, the most recent before 1994 to
calculate body mass index (BMI), smoking amount (indicated by
pack-years), alcohol consumption (indicated by grams of ethanol)
and vigorous physical activity (indicated by metabolic equivalent
(MET) per week) as close to time of blood donation (1993–1995,
with the majority donating blood in 1994) as possible.
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Single-nucleotide polymorphism (SNP) selection and genotyping.
The main aim was to evaluate SNPs previously related to telomere
length, but we also included SNPs that have been related to
prostate cancer risk if they were located in or close to telomere
maintenance genes (TERC or TERT). We identified 32 SNPs from
GWA (Rafnar et al, 2009; Codd et al, 2010; Levy et al, 2010; Kote-
Jarai et al, 2011; Prescott et al, 2011; Mangino et al, 2012; Bojesen
et al, 2013; Codd et al, 2013; Pooley et al, 2013) or fine mapping
studies (Kote-Jarai et al, 2013) that had minor allele frequencies
45% in whites. For SNPs that were in linkage disequilibrium with
R240.80, we selected the SNP with the stronger association
from the literature. We were able to genotype 22 SNPs
(see Supplementary Table 1), but 1 failed genotyping (rs6772228).
Blood samples from matched case–control pairs were handled
identically and assayed in the same batch in a blinded fashion.
Genotyping was performed at the Dana Farber/Harvard Cancer
Center High-Throughput Genotyping Core using the TaqMan
OpenArray SNP Genotyping Platform (Applied Biosystems)
according to the manufacturer’s instructions. To validate
genotyping procedures, 10% blinded quality control samples were
inserted. All SNPs had 490% genotype completion, and the
concordance was 100% for blinded quality control samples.

Statistical analysis. The final sample size consisted of 922 cases
and 935 controls, after removal of failed qPCR samples (25%). To
preserve sample size, we included all cases and controls in the
analysis irrespective of whether the matched pair was present. We
used unconditional logistic regression to estimate ORs and 95%
CIs of prostate cancer, adjusting for age at blood draw (continuous,
years) and matching factors (age at selection (continuous, years),
PSA test before blood collection (yes/no/unknown) and year of
blood collection). We did not adjust for the time of day and season
that the blood sample was provided because these factors were not
related to telomere length. In a second model, we additionally
adjusted for smoking (0, 0.1–20, 20.1–40, 440 pack-years), BMI
(o25,X25–29.9, X30–34.9, X35 kg m� 2), and vigorous physical
activity (quartiles, MET-hours per week), since these factors have
been associated with telomere length as well as prostate cancer
(Giovannucci and Michaud, 2007; Mirabello et al, 2009). We also
estimated the ORs of (a) low grade (n¼ 461; Gleason sum o7),
(b) Gleason sum¼ 7 (n¼ 307), (c) high grade (n¼ 90; Gleason
sum 47), (d) lethal disease (n¼ 81; death by prostate cancer or
metastasis in bone or other organs, except lymph nodes),
(e) localised disease (n¼ 774; TNM stage T1b, T2b, T3a,
and N0M0) and (f) advanced stage or lethal disease (n¼ 103)
(XT3b, Nþ , or Mþ at diagnosis or progression to metastasis or
prostate cancer death during follow-up).

We modelled LTL in two ways: (1) using indicator variables for
quartiles of relative LTL with cut points based on the distribution
among the controls and (2) using LTL as a continuous measure
(per s.d.). We assessed effect modification by age at blood draw
(dichotomised by the median; p64 or 464 years), cigarette
smoking status (ever, never) in 1994 and family history of prostate
cancer (yes/no). We present stratified effect estimates by each of
these characteristics. We also assessed whether telomere length was
associated with early-onset prostate cancer (page 65). The
statistical significance of the interaction was assessed using a Wald
test for the multiplicative interaction term of each of the
characteristics and LTL (modelled continuously).

The additive genetic model was used for the SNP analyses,
which assumes that the effect of the heterozygous genotype is
intermediate between the two homozygous genotypes. The
homozygous genotype of the major allele was coded as 0. Age-
adjusted (age at blood draw) unconditional logistic regression
between each individual SNP and prostate cancer or low and high
LTL (dichotomised at the median) was performed and P-values
were Bonferroni corrected, considering 21 independent tests.

All P-values were two sided and analyses were conducted using
SAS release 9.3 (SAS Institute, Cary, NC, USA).

RESULTS

Cases and controls were similar on demographic and lifestyle
factors (Table 1). The mean age at prostate cancer diagnosis was
69.5 years and the mean time between blood draw and diagnosis
was 5.5 years. As expected, a statistically significant inverse
correlation was found between relative telomere length and age at
blood draw (r¼ � 0.19, Po0.0001) in controls.

Leukocyte telomere length was not associated with all prostate
cancer or any of the subtypes when comparing quartiles of LTL;
neither in models adjusting for the matching factors or when
additionally adjusting for BMI, smoking and physical activity
(Table 2). When telomere length was modelled continuously,
however, longer telomeres were modestly positively associated with
all prostate cancer (P¼ 0.03), low-grade (P¼ 0.04) and localised
(P¼ 0.03; Table 2) prostate cancer. Per each s.d. increase in
telomere length, the OR was 1.11 for all prostate cancer, 1.13 for
low-grade disease and 1.12 for localised disease. Results were
similar for intermediate grade, high-grade, advanced and lethal
disease, but the estimates were not statistically significant. Of note,
28 cases were overlapping between the high-grade (n¼ 90) and the
advanced stage or lethal disease (n¼ 103) groups. With that in
mind, these two outcomes should not be considered completely
independent results.

As presented in Table 3, there was some evidence that men
with a family history of prostate cancer had an increase in risk of

Table 1. Characteristics of prostate cancer cases and controls,
Health Professionals Follow-up Study

Characteristics Cases Controls P
N 922 935

Age at blood draw (years), mean (s.d.) 63.6 (7.9) 63.5 (7.8) 0.73

Age at diagnosis (years), mean (s.d.) 69.5 (7.5) —

Year of diagnosis, mean (s.d.) 1999 (2.8) —

Stagea

Localised or limited extraprostatic
extensionb, n (%)

774 (88.3) —

Advanced stage or lethalc, n (%) 103 (11.7) —

Graded

Gleasono7, n (%) 461 (53.7) —
Gleason¼7, n (%) 307 (35.8) —
Gleason47, n (%) 90 (10.5) —
Lethal prostate cancere, n (%) 81 (8.8) —

PSA test before blood draw
Yes, n (%) 669 (72.6) 682 (72.9)
No, n (%) 202 (21.9) 195 (20.9) 0.74
Unknown, n (%) 51 (5.5) 58 (6.2)

Family history of prostate cancer, n (%) 135 (14.6) 120 (12.8) 0.26
Ever smoker, n (%) 467 (50.7) 504 (53.9) 0.16
Diabetes, n (%) 51 (7.2) 44 (6.8) 0.79
Body mass index (kg m�2), mean (s.d.) 25.8 (3.3) 25.8 (3.6) 0.98
Vigorous physical activity (MET-hours
per week), mean (s.d.)

13.0 (21.5) 12.7 (20.9) 0.73

Total energy (kcal per day), mean (s.d.) 2033 (587) 2045 (615) 0.68

Abbreviations: MET¼metabolic equivalent; PSA¼prostate-specific antigen.
aNumber with missing stage¼ 45.
bLocalised or limited extraprostatic extension (T1b, T2b, T3a, and N0M0).
cAdvanced stage (XT3b, Nþ , or Mþ at diagnosis) or lethal (progression to metastasis or
prostate cancer death during follow-up).
dNumber with missing grade¼ 64.
eProgression to metastasis (bone or other organ) or prostate cancer death during follow-up.
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high-grade (OR¼ 2.04, 95% CI 1.00–4.17) as well as advanced
stage or lethal disease (OR¼ 2.37, 95% CI 1.19–4.72) per s.d.
increase in telomere length, with P for interaction 0.06 and 0.01,
respectively. Among men without a family history, telomere length
was not associated with high-grade (OR¼ 1.07, 95% CI 0.84–1.36)
or advanced stage or lethal disease (OR¼ 1.01, 95% CI 0.81–1.25).
Consistent with our family-history-specific findings, the associa-
tion of LTL and early-onset prostate cancer (page 65) for high-
grade (13 cases/236 controls) and advanced stage or lethal disease
(21 cases/236 controls) were stronger in this subgroup compared
with those diagnosed at a later age (465). However, precision of
these estimates lacked due to the small number of cases; OR 1.62
(95% CI: 0.85–3.11) for high-grade tumours and OR 1.37 (95% CI:
0.84–2.25) for advanced stage or lethal tumours.

The minor allele (A) of SNP, rs7726159 (TERT), showed a
statistically significant inverse association with all prostate cancer
risk after correction for multiple testing (per-allele OR 0.78, 95%
CI: 0.68–0.90, P¼ 0.0005; Supplementary Table 1). Association
within subtypes of prostate cancer yielded similar results (data not
shown). None of the SNPs showed corrected significant associa-
tions with telomere length.

DISCUSSION

In this prospective study, we found that longer circulating LTL
may be moderately associated with a higher risk of prostate cancer.
Longer telomere length was associated with a higher risk of

high-grade, advanced stage or lethal disease in men with a family
history of prostate cancer. The minor allele of SNP (rs7726159) in
the TERT gene showed a statistically significant inverse association
with prostate cancer, but there was no evidence that this SNP was
associated with telomere length in our study.

Telomeres are repetitive DNA sequences (TTAGGG) that
protect the ends of linear chromosomes. In adult somatic cells
telomeres shorten over time because standard DNA polymerase
cannot replicate them during cell division, a phenomenon called
the end-replication problem. The epidemiological evidence for
associations between circulating LTL and cancer has been
equivocal. Some studies support the hypothesis that shorter
circulating LTL is associated with higher cancer risk
(Wentzensen et al, 2011; Hou et al, 2012), although the
associations tend to be stronger in retrospective studies and may
differ by cancer type (Gu and Wu, 2013). In prospective studies,
long telomeres have been associated with an increased risk of
several cancers such as melanoma (Han et al, 2009), lung cancer
(Shen et al, 2011), non-Hodgkin lymphoma (Lan et al, 2013) and
pancreatic cancer (Lynch et al, 2013). There are plausible
explanations also for a positive association between LTL and
cancer. As short telomeres may induce cellular senescence, long
telomeres are generally a marker for actively reproducing cells that
are at higher risk of obtaining tumour-causing mutations (Jones
et al, 2012). The importance of balance between elongation (by the
telomerase enzyme) and telomere shortening to maintain a stable,
‘optimal’ length for cell cycle control has also been suggested
(Ducray et al, 1999). For an accurate comparison between studies,

Table 2. Odds ratios (95% confidence intervals) for prostate cancer and subtypes by quartiles of leukocyte telomere length

Leukocyte telomere length

Q1 Q2 Q3 Q4

Outcome Ca/Co OR (95% CI) Ca/Co OR (95% CI) Ca/Co OR (95% CI) Ca/Co OR (95% CI)
OR (95% CI)

per s.d. P

Total prostate cancer
Model 1a 215/228 1.00 (ref.) 205/235 0.93 (0.71, 1.21) 247/242 1.09 (0.84, 1.41) 255/230 1.19 (0.91, 1.54)
Model 2b 1.00 (ref.) 0.92 (0.70, 1.20) 1.09 (0.84, 1.41) 1.18 (0.91, 1.54) 1.11 (1.01, 1.22) 0.03

Low gradec

Model 1a 102/228 1.00 (ref.) 114/235 1.07 (0.77, 1.49) 121/242 1.14 (0.82, 1.57) 124/230 1.23 (0.89, 1.71)
Model 2b 1.00 (ref.) 1.05 (0.75, 1.46) 1.13 (0.82, 1.57) 1.20 (0.86, 1.67) 1.13 (1.01, 1.27) 0.04

Gleason sum 7
Model 1a 70/228 1.00 (ref.) 62/235 0.83 (0.56, 1.23) 91/242 1.17 (0.81, 1.68) 84/230 1.09 (0.75, 1.58)
Model 2b 1.00 (ref.) 0.81 (0.55, 1.21) 1.18 (0.82, 1.70) 1.08 (0.74, 1.57) 1.07 (0.93, 1.22) 0.34

High graded

Model 1a 25/228 1.00 (ref.) 16/235 0.69 (0.35, 1.35) 19/242 0.80 (0.42, 1.51) 30/230 1.36 (0.76, 2.43)
Model 2b 1.00 (ref.) 0.68 (0.34, 1.33) 0.76 (0.40, 1.45) 1.35 (0.75, 2.44) 1.15 (0.92, 1.44) 0.23

Lethale

Model 1a 25/228 1.00 (ref.) 15/235 0.78 (0.40, 1.56) 23/242 1.10 (0.60, 2.03) 18/230 0.98 (0.51, 1.89)
Model 2b 1.00 (ref.) 0.83 (0.41, 1.66) 1.15 (0.62, 2.14) 1.00 (0.52, 1.95) 1.09 (0.86, 1.37) 0.48

Localisedf

Model 1a 170/228 1.00 (ref.) 178/235 1.00 (0.75, 1.32) 209/242 1.13 (0.86, 1.49) 217/230 1.24 (0.94, 1.63)
Model 2b 1.00 (ref.) 0.98 (0.74, 1.30) 1.13 (0.86, 1.50) 1.22 (0.93, 1.62) 1.12 (1.01, 1.24) 0.03

Advanced or lethalg

Model 1a 31/228 1.00 (ref.) 18/235 0.69 (0.37, 1.28) 28/242 1.01 (0.58, 1.75) 26/230 1.05 (0.59, 1.85)
Model 2b 1.00 (ref.) 0.71 (0.38, 1.34) 1.03 (0.59, 1.80) 1.06 (0.60, 1.89) 1.10 (0.89, 1.36) 0.36

Abbreviations: BMI¼body mass index; CI¼ confidence interval; MET¼metabolic equivalent; OR¼odds ratio; PSA¼prostate-specific antigen.
aAdjusted for age at blood collection (continuous, years), age at selection (continuous, years), PSA test before blood collection (yes/no/unknown) and year of blood collection.
bAdditionally adjusted for smoking (0, 0.1–20, 20.1–40, 440 pack-years), BMI (o25, X25–29.9, X30–34.9, X35 kg m� 2), and vigorous physical activity (quartiles, MET-hours per week).
cGleason sumo7.
dGleason sum47.
eDeath by prostate cancer or metastasis in bone or other organs, except lymph nodes.
fLocalised or limited extraprostatic extension (T1b, T2b, T3a, and N0M0).
gAdvanced stage (XT3b, Nþ , or Mþ at diagnosis) or lethal (progression to metastasis or prostate cancer death during follow-up).
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consistent methodologies are needed. Most of the large epidemio-
logical studies have used qPCR to estimate LTL, since this method
enables high-throughput and low amounts of DNA (Cawthon,
2002). The DNA extraction method may also affect telomere
length estimates (Cunningham et al, 2013). Thus, inter-laboratory
variability and measurement error may also explain some of the
inconsistency between studies (Savage et al, 2013).

For prostate cancer, two prior prospective studies indicated that
shorter telomeres were associated with a lower risk of prostate
cancer (Mirabello et al, 2009; Weischer et al, 2013). In a previous
study, derived from a sub-sample of the HPFS cohort, the
association between telomere length and variability in telomere
length (measured by a FISH assay) in prostate cancer cells and
surrounding stromal cells was evaluated (Heaphy et al, 2013). In
this study, men whose prostate cancer cells had higher cell-to-cell
variability in telomere length or who had shorter telomeres in
prostate-cancer-associated stromal cells were more likely to have a
worse prognosis than other men. Although telomere length in
different tissues shows a high correlation (Daniali et al, 2013), there
were several differences between this study and the current
including, the telomere length assessment method (FISH assay),
timing of telomere measurement (after disease diagnosis), and the
study population (a subset of men who had undergone treatment
for disease by radical prostatectomy).

The results from the two prospective studies appear to be
consistent with regard to prostate cancer incidence (aside from a
non-statistically significant association in the PLCO (Mirabello
et al, 2009) study between shorter telomeres and increased risk of
prostate cancer when restricting to men with a family history of
prostate cancer). The PLCO study (Mirabello et al, 2009) focused
on aggressive disease only—defined as advanced stage and Gleason
sum X7. The Danish study (where PSA screening is not routine)
also assessed death in men with prostate cancer, but in this group
the associations were null (HR for each 1-kb decrease in telomere
length 1.04, 95% CI: 0.87–1.25) (Weischer et al, 2013). We
measured telomere length in the same laboratory as the PLCO
study, and the Danish study used assays derived from the same
method. The mean or median age at blood draw in all three studies

was in the early to the mid-60s. The results from the present study
did not show a statistically significant association between longer
telomere length and more aggressive prostate cancer (defined as
high grade, lethal, advanced stage or lethal); however, we cannot
exclude that modest associations exist. We observed a higher risk
of more aggressive prostate cancer among men with longer
telomeres who also had a family history of prostate cancer. These
results are interesting given the finding that paternal age is a
determinant of telomere length in offspring (Prescott et al, 2012).
However, due to a small sample size and several stratifications,
these results should be interpreted with caution.

The minor allele (A) of one individual SNP (rs7726159) in the
TERT gene was modestly associated with a lower risk of prostate
cancer after adjusting for multiple comparisons. Although this SNP
has been shown to be associated with longer LTL in GWAS
(Pooley et al, 2013), we did not observe that association in our
study. Considering this, the present result should be interpreted
with caution since we cannot exclude that the observed association
is due to chance. The strengths of this study include its prospective
design, rich covariate information, a relatively large number of
prostate cases, detailed clinical information on the grade and
stage of the cases, and long-term follow-up for progression.
This study also had some limitations. We had a small number of
high-grade, advanced stage or lethal cases, which reduced the
precision of our estimates for these specific analyses. Our results,
however, did not indicate any major differences in associations
between subtypes.

In summary, our prospective findings suggest that longer
circulating LTL may be associated with a higher risk of overall
prostate cancer, including more aggressive disease, especially in
men who have a family history of prostate cancer.
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