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Summary  47 

The current study demonstrates that an individual's resting-state functional connectivity (RSFC) 48 

is a dependable biomarker for identifying differential patterns of cognitive and emotional 49 

functioning during late childhood. Using baseline RSFC data from the Adolescent Brain 50 

Cognitive Development (ABCD) study, which includes children aged 9-11, we identified four 51 

distinct RSFC subtypes We introduce an integrated methodological pipeline for testing the 52 

reliability and importance of these subtypes. In the Identification phase, Leiden Community 53 

Detection defined RSFC subtypes, with their reproducibility confirmed through a split-sample 54 

technique in the Validation stage. The Evaluation phase showed that distinct cognitive and 55 

mental health profiles are associated with each subtype, with the Predictive phase indicating that 56 

subtypes better predict various cognitive and mental health characteristics than individual RSFC 57 

connections. The Replication stage employed bootstrapping and down-sampling methods to 58 

substantiate the reproducibility of these subtypes further. This work allows future explorations of 59 

developmental trajectories of these RSFC subtypes. 60 

 61 

1. Introduction 62 

The study of neurodevelopment is essential for elucidating the intricate processes and 63 

mechanisms underpinning children's cognitive abilities, emotions, and social growth. The 64 

Adolescent Brain Cognitive Development (ABCD) study is an extensive longitudinal effort to 65 

identify the underlying relationships among biological, environmental, and social factors 66 

influencing brain development and cognitive functioning during late childhood and adolescence 67 

(Volkow et al., 2018). The ABCD study is designed to identify critical determinants of substance 68 

use, mental health, and cognitive functioning, all important facets of adolescent development 69 

(Casey et al., 2018). However, achieving accurate predictions of brain-behavior relationships 70 

remains a considerable challenge (Rosenberg et al., 2018). A possible obstacle is the inherent 71 

heterogeneity of neurodevelopment, which does not follow similar patterns across all children. 72 

Machine learning-based subtyping methods, such as clustering, have gained traction to address 73 

challenges associated with assessing heterogeneity in neurodevelopment by identifying distinct 74 

profiles and revealing associations with cognitive functioning and characteristics linked to 75 

psychopathology (DeRosa, Rosch, et al., 2023; Gupta et al., 2017; Nikolaidis et al., 2022). If 76 

different subgroups of children/adolescents have distinct brain profiles, pronounced variability in 77 

brain-behavior relationships may be observed (Bathelt et al., 2018; Crone & Elzinga, 2015).   78 

 79 

Identifying different subgroups in neurodevelopmental studies exemplifies the concept of nested 80 

heterogeneity, which can be studied through the lens of precision medicine and individualized 81 

treatment strategies (DeRosa, Rosch, et al., 2023; Fair et al., 2012; Fekson et al., 2023). This 82 

approach acknowledges the diverse pathways of brain development and the variation in cognitive 83 

and mental health outcomes, aiming to tailor interventions and understandings to the unique 84 

profiles of individuals. In contrast to non-nested heterogeneity, nested heterogeneity refers to the 85 

presence of multiple layers of variability within a system. While non-nested heterogeneity 86 

implies a singular level of diversity, nested heterogeneity indicates that further distinct variations 87 

exist within each subgroup or category. In neurodevelopment, nested heterogeneity underscores 88 

that variations in brain development are not uniform; instead, they manifest across multiple 89 

levels (the nested layers). These levels range from individual differences to distinct subgroup 90 

characteristics shaped by biological, environmental, and social factors.  91 

 92 
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Given nested heterogeneity's potential contribution to the limitations in predicting brain-behavior 93 

relationships, researchers are increasingly interested in exploring it in the field of child 94 

development (Feczko & Fair, 2020). A thorough analysis of the intricate variations in 95 

neurodevelopmental profiles within the ABCD dataset provides an opportunity for improving our 96 

understanding and predictive ability concerning the complex relationship between brain 97 

development and behavior. The current paper aims to provide an empirical investigation and 98 

framework of the degree to which identifying subgroups of individuals based on their pattern of 99 

resting-state functional connectivity (RSFC) at the initial time point of the ABCD study might 100 

aid in revealing brain-behavior relationships. The ABCD study offers an unprecedented dataset 101 

of over 11,000 individuals on whom brain measures of anatomy (grey and white matter) and 102 

functional activation (resting-state, task-based) have been obtained, along with multiple 103 

behavioral measures of cognitive and emotional function. As such, it is an ideal sample to pursue 104 

this issue. 105 

 106 

1.1. Resting State Functional Connectivity  107 

We propose leveraging RSFC to address the inherent heterogeneity in connectivity across brain 108 

networks. Numerous previous studies have emphasized the usefulness of RSFC in identifying 109 

connectivity patterns between brain regions (Cohen et al., 2008; Dosenbach et al., 2007; Fair et 110 

al., 2009; Power et al., 2011; Yeo et al., 2011). A compelling resemblance between resting-state 111 

and task-evoked networks has been observed, indicating a tight relationship between the brain's 112 

intrinsic network architecture in a resting state and its functional organization during task 113 

execution (Cole et al., 2014). Notably, RSFC yields consistent stability over time and maintains 114 

its robustness irrespective of changes in task performance or state for a given individual, 115 

establishing it as a dependable form of functional neuroimaging data for longitudinal research on 116 

individual differences (Reineberg & Banich, 2016). This characteristic of RSFC, paired with the 117 

large-consortia data from ABCD, provides an excellent dataset to extract RSFC subtype profiles. 118 

Furthermore, applying multivariate methodologies to the ABCD RSFC data has demonstrated 119 

that some aspects of RSFC connectivity are associated with cognitive abilities (Byington et al., 120 

2023; Pat et al., 2022). 121 

 122 

1.2. Whole-Brain Profiles as Neuro-markers of Cognitive-Emotional Subtypes  123 

The current work is motivated by the proposition that an individual's whole-brain RSFC profile 124 

can be a reliable neuro-marker for characterizing distinct development patterns. We aim to 125 

identify RSFC subtypes that may help elucidate the spectrum of cognitive functioning and 126 

mental health patterns during late childhood. This endeavor seeks to reveal nested heterogeneity 127 

in the ABCD baseline sample, where multiple unique functional connectivity patterns may 128 

coexist to varying degrees within the same population, each distinctly associated with various 129 

cognitive functioning and mental health outcomes (Ohashi & Ostry, 2021; Peverill et al., 2019). 130 

Nested heterogeneity here would be characterized not by a hierarchical structure but by the 131 

coexistence of diverse, unique functional connectivity patterns within the baseline sample. Each 132 

RSFC subtype would then be assessed to evaluate if it is linked to specific demographic, 133 

cognitive, and mental health indicators.  134 

 135 

Notably, these RSFC subtypes differ from "neuroimaging fingerprinting" analyses, which 136 

identify unique individual-level patterns of brain connectivity (Finn et al., 2015). These RSFC 137 

subtype profiles enable the characterization and comparison of distinct connectivity patterns, 138 
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providing a valuable method to categorize and analyze common connectivity patterns at the 139 

(sub)group level. They capture the heterogeneity of RSFC within a population and offer insights 140 

into the diversity of functional brain organization and its relationship to individual differences in 141 

experiences or traits. Therefore, rather than replacing individual-level analyses, such as 142 

fingerprinting, these subtypes complement and enhance our understanding of individual 143 

differences in brain organization (Fu, Liu, et al., 2022; Fu, Sui, et al., 2022). 144 

 145 

1.3. The IVEPR Framework: A Standardized Subtyping Evaluation Approach 146 

To optimally identify subtypes based on RSFC profiles, it is critical to ensure the robustness and 147 

reliability of such subtypes. Such assurance is crucial if these subtypes are to be regarded as 148 

meaningful. To maximize the rigor of the present work, we introduce the Identification, 149 

Validation, Evaluation, Prediction, and Replication (IVEPR) framework (Figure 1 contains a 150 

detailed outline of the steps in this framework). The IVEPR framework is a strategic combination 151 

of existing methodologies (Byington et al., 2023; DeRosa, Rosch, et al., 2023; Nikolaidis et al., 152 

2021; Pat et al., 2022, 2023) that provides a cohesive, standardized procedure for rigorous 153 

subtype identification. This unique integration fosters reliable identification and validation of the 154 

RSFC subtypes, providing a solid foundation for assessing their utilization as neuro-markers. 155 

The framework's comprehensive design addresses robustness and reproducibility issues 156 

commonly seen in data-driven clustering research (Arbabshirani et al., 2017; Bzdok, 2017; 157 

Demirci et al., 2008; Varoquaux et al., 2017) thereby enhancing the credibility of the findings. 158 

The IVEPR framework sets a high standard for analytical precision that robustly evaluates and 159 

validates the RSFC subtypes, bolstering our ability to leverage these potentially impactful neuro-160 

markers in neurodevelopmental research and applications and paving the way for their 161 

longitudinal tracking. 162 

 163 

 164 

 165 

 166 

 167 

 168 

 169 

 170 

 171 

 172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 
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 185 

 186 

Figure 1.  187 

Figure 1. The IVEPR Framework - An Integrated Solution for Data-Driven Clustering in188 

Neuroimaging Subtyping. Note: We use the term “subtype” to refer to the clusters of individuals189 

identified as the outputs of the data-driven Leiden Community Detection analyses.  190 

 191 

1.4. Present Applications 192 

This study identifies RSFC subtypes and then investigates their associations with cognitive193 

functioning, mental health, and demographic attributes in a cohort of 9-11-year-old children194 

using data from the baseline scan of the ABCD study. First, we seek to identify and validate195 

distinct RSFC subtypes using multivariate techniques. Next, we explore whether these subtypes196 

differ in their ability to predict cognitive abilities and mental health. Finally, we evaluate the197 

reproducibility and reliability of the identified subtypes and their predictive abilities through198 

rigorous statistical analyses. In the context of the present report, the following terms are defined199 

as follows: 1) Reproducibility refers to the ability to obtain the same results using the same200 

dataset and analytical methods. Here, it means that the identified RSFC subtypes and their201 
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behavioral differences and predictive abilities for cognitive abilities and mental health should be 202 

able to be re-identified or re-predicted across two ABCD Reproducible Matched Samples 203 

(Feczko et al., 2021). 2) Reliability refers to the consistency of the results obtained from our 204 

approach; that is, the identified RSFC subtypes consistently yield similar relationships to 205 

behavior across different observations or assessments. 3) Robustness refers to the ability of the 206 

identified RSFC subtypes to remain stable and accurate across analytic variations, such as 207 

changes in sample size or composition or slight deviations in analysis methodology. Figure 2 208 

contains a schematic representation of our analysis pipeline. 209 

 210 

We begin by investigating whether subtyping can help to shed light on differences in cognitive 211 

and emotional profiles in our sample. Answering whether distinct subtypes exist can improve our 212 

understanding of the underlying neural mechanisms contributing to behavior (Insel & Cuthbert, 213 

2015). To answer this question, a range of tools and techniques drawn from previous studies will 214 

be employed, such as bootstrap-enhanced Leiden community detection for data-driven subtyping 215 

(DeRosa et al., 2023), multiple group confirmatory factor analysis (CFA) for cognitive and 216 

mental health factor extraction (Freis et al., 2022) and invariance testing, gradient-boosted 217 

decision trees and SHAPley additive explanations for subtype classification and feature 218 

importance, chi-square tests and odds ratios for subtype demographic diagnostics, and split-219 

sample validation for ensuring the reproducibility (Byington et al., 2023; Lichenstein et al., 220 

2022), reliability, and robustness of the identified subtypes. Employing these methods allows us 221 

to identify distinct subgroups of individuals (Gordon et al., 2016; Marek et al., 2019), classify 222 

them based on their neurobiological profiles (Fernández-Delgado et al., 2014; Woo et al., 2017) 223 

and validate our findings using split-sample and down-sampling techniques. Note that evaluating 224 

subtype invariance with regards to profiles of cognitive and emotional function is necessary for a 225 

more comprehensive understanding of the underlying neurobiological relationships between 226 

brain and behavior. If invariance is established, it will support the premise that distinct 227 

neurobiological profiles are associated with distinct patterns of cognitive and mental health 228 

processing, underscoring the broad applicability of these subtypes.  229 

 230 

In our subtyping analysis, the key objective is to evaluate whether the RSFC subtypes provide 231 

additional predictive value for cognitive abilities and mental health problems beyond the 232 

capabilities of individual RSFC connections. In this context, individual connections are defined 233 

as the singular RSFC features that constitute features of the subtype profiles. Our focus is to 234 

determine if the RSFC subtype profiles, as integrated collections of these individual connectivity 235 

features, offer a more significant predictive utility compared to the predictive capacity of any 236 

singular RSFC feature. The goal is to establish that the collective RSFC subtype profiles can 237 

offer a more detailed and comprehensive understanding of brain-behavior relationships, 238 

surpassing the insights provided by individual connectivity features alone.  239 

 240 

Answering this question could significantly advance our understanding of the heterogeneous 241 

nature of cognitive functioning and mental health, leading to more personalized and practical 242 

approaches to enhance cognitive development and mental health in children and adolescents 243 

(Bzdok & Meyer-Lindenberg, 2018; Whitfield-Gabrieli et al., 2016). Past research, such as 244 

studies by Nikolaidis et al. (2022, 2021), suggests that in prediction models, subtypes often 245 

outperform the individual features from which they are derived. We aim to verify whether this 246 

trend is observed with the RSFC subtype profiles within the ABCD dataset. Employing a 247 
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conditional random forest (CRF) (Strobl et al., 2008) approach, our analysis is specifically 248 

designed to test whether the collective profile of these subtypes emerges as a more reliable 249 

marker for cognitive functioning and mental health compared to the predictive power of each 250 

RSFC connection. We hypothesize that the subtype profiles will consistently rank as the most 251 

important features in our CRF models, demonstrating their superiority over individual RSFC 252 

connections. This focus on utilizing RSFC subtype profiles aims to address the heterogeneous 253 

nature of cognitive functioning and mental health more precisely and contributes to developing 254 

more personalized approaches in these areas.   255 

 256 

To date, a handful of studies have investigated subtyping-based approaches using the ABCD 257 

dataset, revealing various aspects of neurodevelopment and its links to psychopathology and 258 

cognitive functioning. For instance, one study employed multiple neuroimaging modalities to 259 

identify subgroups associated with overall psychopathology, finding that certain neurobiological 260 

profiles correlated with increased psychopathology (Wang et al., 2023). Another study used 261 

latent profile analysis on task-based fMRI ROIs to uncover seven unique neurodevelopmental 262 

profiles, each associated with distinct demographic and clinical features, indicating diverse 263 

neurodevelopmental subgroups within the population (Lichenstein et al., 2022). Additionally, a 264 

study on inhibitory control established cognitive and neurobiological profiles related to reading 265 

abilities, demonstrating significant reading ability variations among groups with different default 266 

mode network connectivity patterns (Fekson et al., 2023). Moreover, research on ADHD (Sui et 267 

al., 2023) identified two distinct ADHD biotypes with implications for personalized medication 268 

therapy, emphasizing the potential of neuroimaging markers in tailored treatment approaches 269 

(Yan et al., 2023). Together, these studies highlight the ABCD dataset's potential role in revealing 270 

neurodevelopmental profiles that may contribute to a deeper understanding of mental health, 271 

cognitive abilities, and the potential for personalized treatment strategies. 272 

 273 

Yet, while those previous studies have identified various neurodevelopmental profiles, our study 274 

extends deeper than simply deriving the subtype profiles, but rather critically evaluates whether 275 

these subtypes offer additional value over the metrics (in our case, RSFC connections) for 276 

predicting cognitive functioning and mental health. Our current work introduces a novel and 277 

rigorous approach focused on determining the meaningfulness and predictive power of RSFC 278 

subtypes beyond the measures used to derive them. Using the IVEPR framework, our study 279 

stands out by rigorously validating the reliability and reproducibility of the RSFC subtypes. This 280 

rigor of the multifaceted IVEPR approach aims to ensure the stability and consistency of the 281 

subtype profiles and to rigorously test their predictive utility. Moreover, our study also carefully 282 

implements safeguards against biases and overfitting by utilizing split-sample resampling and 283 

down-sampling methods at all levels of analysis. This enhances the robustness of our findings, 284 

offering a quantitatively reliable measure for assessing the reproducibility and reliability of our 285 

results. This methodology not only strengthens the validity of our conclusions but also sets a 286 

prototype for future research in the field. 287 

 288 

Figure 2. 289 
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Figure 2. Schematic representation of the RSFC subtyping analysis pipeline steps according to 291 

the IVEPR framework. Note: The IVEPR framework icon labels are included for each stage of 292 

the analysis pipeline.  293 

 294 

 295 

2. STAR Methods 296 

 297 

2.1. Participants 298 

The current report used the ABCD Study Curated Annual Release 4.0, comprising 3T MRI data 299 

and cognitive assessments from 11,758 children (5,631 females) aged 9-10 years at baseline. 300 

Participants were recruited from 21 locations throughout the United States (Garavan et al., 2018). 301 

The study purposively achieved demographic (White 52.2%; Black 15.1%; Hispanic 20.4%; 302 

3.2% including Asian, American Indian/Alaska Native, Native Hawaiian, and other Pacific 303 

Islander; Multiple races 9.2%) and socioeconomic diversity (Family annual income: <$25K - 304 

16.1%, $25K-$49K - 15.1%, $50K-$74K - 14.0%, $75K-$99K - 14.1%, $100K-$199K - 29.5%, 305 

>$200K - 11.2%) to approximate the national demographic statistics for children of the same age 306 

as determined by the American Community Survey (Heeringa & Berglund, 2020). Please refer to 307 

Supplemental Table 1 for a detailed examination of the demographic characteristics 308 

encompassing the samples used in the current report. Ethical aspects of the ABCD study, 309 

including informed consent, confidentiality, and sharing assessment outcomes with participants, 310 

have been discussed in depth elsewhere (Clark et al., 2018).  311 

 312 

The ABCD study provided detailed procedures for data acquisition and MRI image processing 313 

(Casey et al., 2018; Hagler et al., 2019; Yang & Jernigan, n.d.). We followed their recommended 314 

exclusion criteria based on automated and manual quality control (QC) review of each resting-315 

state functional magnetic resonance imaging (rs-fMRI) scan listed under the abcd_imgincl01 316 

table (Yang & Jernigan, n.d.). The ABCD Data Analysis and Informatics Core created an 317 

exclusion flag for rs-fMRI (“imgincl_rsfmri_include”) based on several criteria involving image 318 

quality, MR neurological screening, and number of repetition times. For the current report, we 319 

removed participants with an exclusion flag for rs-fMRI and randomly selected only one sibling 320 

from each family to control for familial variance. This led to a final comprehensive sample, 321 

which we refer to as the “passed RSFC quality control” sample, consisted of 7,293 children aged 322 

between 9 and 10.9 years. However, we also conducted two important supplementary subtyping 323 

analyses. The first supplementary set of analyses involved all participants with baseline RSFC 324 

data, and the second supplementary set of analyses considered only those that were designated to 325 

be excluded under the “imgincl_rsfmri_include”. Our supplementary analyses with all (randomly 326 

selected sibling) sample, which we refer to as the “complete” sample, with RSFC data comprised 327 

a sample size of 9,027. Participants with an exclusion flag, which we refer to as the “high 328 

motion” sample, formed a sample size of 1,293. Refer to Supplemental Tables 3-4 for 329 

demographics of the “complete sample” and the “high-motion” sample.  330 

 331 

The two split samples (Sub-Sample-1 and Sub-Sample-2) used in this study, predefined by the 332 

ABCD study, were matched on nine developmental factors (site, age, sex, ethnicity, grade, 333 

parental education, handedness, family income, and structure), plus anesthesia exposure, to 334 

consider its timing (lifespan or perinatal) and effects on behavioral and neurodevelopmental 335 

outcomes, addressing its sociodemographic classification (Feczko et al., 2021). By keeping 336 
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family units intact and matching for sibling and twin pairs, the approach aimed to ensure 337 

equivalence across the samples. Subsequent analysis showed no significant differences in these 338 

variables between the samples, highlighting only minor demographic variations and identical 339 

cognitive performance.  340 

 341 

2.2 Imaging acquisition and processing 342 

The imaging for the Adolescent Brain Cognitive Development (ABCD) study was conducted on 343 

participants at 21 different locations across the United States, utilizing harmonized protocols on 344 

Siemens Prisma, Philips, and GE 3T scanners. Detailed specifics of the imaging methodology are 345 

further outlined in Casey et al. (2018). During the resting state scans, participants were instructed 346 

to keep their eyes open while viewing a passive crosshair for 20 minutes, to ensure a minimum 347 

of 8 minutes of data with low motion. These scans were performed using a gradient-echo EPI 348 

sequence, characterized by a repetition time (TR) of 800 ms, an echo time (TE) of 30 ms, a flip 349 

angle of 90°, a voxel size of 2.4 mm^3, and encompassed 60 slices. To monitor head motion, the 350 

FIRMM software was used at Siemens sites (Dosenbach et al., 2017). 351 

 352 

Data processing adhered to the ABCD pipeline, executed by the ABCD Data Analysis and 353 

Informatics Core (Hagler et al., 2019). These procedures involved correcting T1-weighted 354 

images for gradient nonlinearity distortion and intensity inhomogeneity, followed by rigid 355 

registration to a custom atlas and segmentation via FreeSurfer to derive regions of interest 356 

(ROIs) for white matter, ventricles, and the whole brain. Resting-state images underwent a 357 

comprehensive correction process for head motion, B0 distortions, and gradient nonlinearity 358 

distortions, alongside registration to structural images using mutual information. The initial scan 359 

volumes were discarded, and voxel-wise normalization and demeaning were performed. The data 360 

were further refined by regressing out the signal from estimated motion time courses—including 361 

six motion parameters, their derivatives, squares, quadratic trends, and the mean time courses of 362 

white matter, gray matter, and whole brain plus their first derivatives. Frames exhibiting more 363 

than 0.2 mm displacement were excluded to mitigate motion contamination.  364 

 365 

 366 

2.3 Measures 367 

2.3.1 Brain Measures  368 

For the subtyping analysis, we used rs-fMRI connectivity metrics from the ABCD Data 369 

Repository, which were generated using a seed-based correlational method. Specifically, we used 370 

247 measures derived from connectivity between 19 subcortical regions and 13 cortical 371 

networks, while 91 measures pertained to connectivity within and between the cortical networks, 372 

summing up to 338 RSFC measures. Note that the term 'none' was used for regions not affiliated 373 

with any networks. Below is a brief description of the surface sampling, ROI averaging, and 374 

network correlation analysis. For full details on ABCD’s image processing and analysis methods, 375 

refer to (Hagler et al., 2019). 376 

 377 

Preprocessed time courses were sampled onto each subject's cortical surface for the surface 378 

sampling and ROI averaging analyses. Then average time courses were calculated for cortical 379 

surface-based regions of interest (ROIs) utilizing FreeSurfer’s anatomically-defined parcellations 380 

(Desikan et al., 2006; Destrieux et al., 2010), as well as a functionally-defined parcellation based 381 

on resting-state functional connectivity patterns (Gordon et al., 2016). These parcellations are 382 
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resampled from the atlas-space to align with each subject's space. Similarly, average time courses 383 

were computed for subcortical ROIs (Fischl et al., 2002). For each ROI, the variance over time 384 

was calculated, indicating the amplitude of low-frequency oscillations. For the network 385 

correlation analyses, correlation values were computed for each ROI pair, subsequently 386 

converting these into z-statistics via Fisher transformation. This approach generated summary 387 

measures of network correlation strength (Van Dijk et al., 2010). ROIs within the Gordon 388 

parcellation framework were categorized into various networks (e.g., default, frontoparietal, 389 

dorsal attention, etc.) (Gordon et al., 2016). The average correlation within a network was 390 

determined by averaging the Fisher-transformed correlations of every unique ROI pair within 391 

that network. For inter-network correlations, the correlations of every unique ROI pair between 392 

two different networks were averaged. Additionally, the correlation of each network with each 393 

subcortical gray matter ROI was assessed by averaging the correlations between every ROI in a 394 

given network and each subcortical ROI.  395 

 396 

2.3.2 Behavioral Measures  397 

The present report focused on cognitive and emotional measures due to their potential relevance 398 

to mental health outcomes in children and adolescents. The cognitive measures, derived from the 399 

NIH Toolbox, assessed several cognitive domains highly relevant in academic and social 400 

success. Impulsivity, measured via the UPPS-P questionnaire, was chosen due to its relevance in 401 

understanding behavioral tendencies and potential susceptibility to high-risk behaviors. The 402 

Stroop measures provided a way of assessing cognitive control over emotional information. 403 

Lastly, the parent-reported psychopathology symptoms via the Child Behavior Checklist (T. M. 404 

Achenbach & Ruffle, 2000) allowed us to use more naturalistic assessments of behavioral and 405 

emotional difficulties. Together, these measures provide a robust, multi-dimensional overview of 406 

factors contributing to cognitive functioning and mental health, thus assisting in understanding 407 

the relationship between these domains and our RSFC subtypes. 408 

 409 

2.3.2.1 Cognitive and Executive Functioning 410 

Cognitive functioning was assessed in several ways, many of which were based on tasks included 411 

in the ABCD battery that utilize portions of the National Institutes of Health (NIH) Toolbox, 412 

which assesses various cognitive domains such as memory, language, and processing speed 413 

(Bleck et al., 2013; Gershon et al., 2013; Hodes et al., 2013) . First, we used principal component 414 

scores representing three broad cognitive domains from the neurocognitive battery of the ABCD 415 

dataset (Luciana et al., 2018) that were derived using a Bayesian Probabilistic Principal 416 

Components Analysis (BPPCA) model, which accounts for site-specific and familial variations 417 

(Thompson et al., 2019). To summarize, the NIH Toolbox provided seven cognitive metrics: 418 

Picture Vocabulary evaluates language proficiency and verbal intelligence; Oral Reading 419 

Recognition assesses reading capabilities; Pattern Comparison Processing Speed gauges swift 420 

visual processing; List Sorting Working Memory evaluates memory based on categories and 421 

perceptions; Picture Sequence Memory tests memory through sequencing activities; Flanker 422 

Inhibitory Control and Attention assesses conflict processing and response inhibition; and 423 

Dimensional Change Card Sort evaluates cognitive adaptability. Beyond the NIH Toolbox, two 424 

additional tasks were considered: The Rey auditory verbal learning test (RAVLT), which assesses 425 

auditory memory and recognition, and the Little Man Task, which evaluates visual-spatial 426 

processing, especially mental rotation.  427 

 428 
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The BPPCA model identified three primary component scores: general-ability-(BPPCA), 429 

influenced mainly by oral reading, picture vocabulary, and list sorting memory tasks; executive-430 

capability-(BPPCA), influenced by the flanker, dimensional change card sort, and pattern 431 

comparison speed tasks; and learning/memory-(BPPCA), influenced by picture sequence memory 432 

and list sorting memory tasks. For the present report, to ensure the consistency of the separate 433 

samples, the CFA and PCA scores were derived separately from Sub-Sample-1 and Sub-Sample-2 434 

(Feczko et al., 2021).  435 

 436 

Second, we employed a previously established EF model derived from the ABCD baseline study 437 

data (Freis et al., 2022), which is grounded in the widely supported unity/diversity model of EFs 438 

(Friedman & Miyake, 2017). This measure was derived from performance on the Flanker, Card 439 

Sort, and List Sort tasks from the NIH Toolbox2 and behavioral data from two neuroimaging 440 

tasks: the Emotional N-back and Stop-Signal tasks (SST). The reliability of these tasks has been 441 

validated and documented in pilot ABCD data and prior research (Casey et al., 2018; Luciana et 442 

al., 2018). Factor loadings for each sample are reported in Supplemental Table 5. The three 443 

derived factors were common-EF-(CFA), cognitive-aptitude-(CFA), and updating-specific-(CFA). 444 

 445 

2.3.2.2 Emotion-Related Processing 446 

 447 

2.3.2.2.1 Psychopathology 448 

Parental reports were used to measure symptoms of psychopathology using the Achenbach Parent 449 

Report Child Behavior Checklist (CBCL) (T. Achenbach, 2009). The CBCL produces scores for 450 

eight scales representing different symptoms of psychopathology. These scales have shown 451 

reliability and can be used to create broader internalizing and externalizing composites (Dutra et 452 

al., 2004; Petty et al., 2008).  453 

 454 

The current report used the eight subscale scores of the Child Behavior Checklist (CBCL) 455 

alongside the Internalizing and Externalizing psychopathology composite scales to 456 

comprehensively assess a child's emotional and behavioral functioning. These subscales include 457 

Anxious/Depressed, which measures symptoms related to anxiety and depression; 458 

Withdrawn/Depressed, assessing social withdrawal and depressive symptoms; Somatic 459 

Complaints, focusing on physical symptoms without a clear medical cause often linked to 460 

emotional distress; Social Problems, evaluating difficulties in social interaction, including peer-461 

related issues; Thought Problems, identifying unusual thoughts or behaviors such as strange ideas 462 

or obsessions; Attention Problems, measuring symptoms of inattention, impulsivity, and 463 

hyperactivity; Rule-Breaking Behavior, assessing behaviors that contravene accepted rules or 464 

norms, like lying, stealing, and truancy; and Aggressive Behavior, evaluating confrontational or 465 

aggressive behaviors. Additionally, the CBCL's composite scores, "Internalizing Problems" which 466 

encompasses the Anxious/Depressed, Withdrawn/Depressed, and Somatic Complaints subscales, 467 

and "Externalizing Problems," combining Rule-Breaking Behavior and Aggressive Behavior 468 

subscales, offer further insight into broader patterns of psychopathology. For a more in-depth 469 

description of the measures used in the ABCD study, see  (Barch et al., 2021).  470 

 471 

2.3.2.2.2 Impulsivity   472 

For the current report, we derived five dimensions of impulsivity that were measured through a 473 

child report using a condensed 20-item version of the Urgency, Premeditation (lack of), 474 
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Perseverance (lack of), Sensation Seeking, Positive Urgency, Impulsive Behavior Scale (UPPS-P)  475 

(Lynam et al., 2007; Watts et al., 2020). Following the same CFA procedures outlined in Watts et 476 

al. (2020), scores for these five dimensions were derived separately from Sub-Sample-1 and Sub-477 

Sample-2 to ensure the consistency of the separate samples and prevent data leakage across our 478 

subsequent analyses that used the saved factor scores. Factor loadings for each sample are 479 

reported in Supplemental Table 5.  480 

 481 

2.3.2.2.3 Emotional Word-Emotional Face Stroop 482 

This task was designed to examine cognitive control to focus on task-relevant information when 483 

the task-irrelevant information is emotionally salient. In this task, participants categorized the 484 

emotional valence (positive, negative) of a word while disregarding an accompanying face, whose 485 

facial expression might match (congruent) or conflict with (incongruent) the word's valence. This 486 

task, executed on an iPad, comprised two blocks: one with a 75% congruent and 25% incongruent 487 

trial split ('mostly congruent block') and another with equal percentages of both ('equal block'). 488 

Each block consists of 48 trials, allowing 2000 ms for response. The facial stimuli from (Guyer et 489 

al., 2008) feature white adolescents expressing happiness or anger.  490 

 491 

In the current study, we used the difference in accuracy between incongruent and congruent trials 492 

as our measure of performance, calculated separately for trials in which the distracting face was 493 

happy and those in which it was angry. This measure indicates the participant's ability to manage 494 

cognitive interference and maintain task focus. For further details on this task and its 495 

implementation, refer to Smolker et al. (Smolker et al., 2022). 496 

 497 

2.4 Procedure 498 

 499 

IVEPR: Identification and Validation 500 

2.4.1 Precise Subtyping with Bagging-Enhanced Leiden Community Detection  501 

The foundation of our analysis was established through bagging-enhanced Leiden Community 502 

Detection (LCD) (DeRosa, Kim, et al., 2023; Traag et al., 2019), a data-driven clustering 503 

methodology. LCD is an effective strategy for identifying distinct subgroups, in the current case, 504 

with analogous functional connectivity properties. Each sample was individually processed using 505 

this procedure, which was applied to both cortical and subcortical resting-state functional 506 

connectivity (RSFC) measures to identify the different subtypes. The strength of the bagging-507 

enhanced LCD lies in its ability to address uncertainty inherent in the input data, in this case, the 508 

connectivity matrix, through bootstrapping. Additionally, its data-driven nature lends itself well 509 

to exploratory analyses, bypassing potential biases from preconceived assumptions about the 510 

number of subtypes or their structure (Nikolaidis et al., 2022, 2021). The validation stage 511 

confirms the discovered subtypes' reproducibility, reliability, and robustness. We employed a 512 

split-sample approach, which used comparisons between subtypes and their profiles in divided 513 

samples for initial validation. This comparison is a stepping-stone for further confirmation of 514 

subtype robustness and reliability.  515 

 516 

The LCD algorithm is a data-driven method that identifies optimal communities within a 517 

complex network, such as the network of brain regions we examined. At its core, the LCD 518 

algorithm optimizes a metric called modularity (Q), a measure of the strength of the division of a 519 

network into communities. It compares the density of connections within communities versus 520 
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those between them. High modularity implies many connections within communities and only a 521 

few between them, which means the divisions are well-defined.  The algorithm begins with every 522 

node (in our case, individuals) in its own community. Then, it iteratively evaluates the impact on 523 

modularity by moving each node to a different or merging community. The move or merge that 524 

maximizes the modularity is performed, and the process is repeated until no further 525 

improvements can be made, reaching a locally optimal community structure. This structure, 526 

wherein no single move or merge can enhance modularity, represents the optimal number of 527 

communities (clusters) for that run. However, how nodes are evaluated for potential moves or 528 

merges can influence the LCD algorithm’s solution. Refer to DeRosa et al. (2023) for additional 529 

information regarding this procedure. 530 

 531 

IVEPR: Validation 532 

2.4.2 Employing Gradient Boosted Decision Trees and Shapley Additive Explanations for 533 

Neurodevelopmental Subtype Classification and Feature Importance 534 

We conducted an out-of-sample classification accuracy assessment to evaluate the 535 

reproducibility of our identified subtypes using Sub-Sample-1 as the training set and Sub-536 

Sample-2 as the testing set. Our classification process used the gradient-boosted decision trees 537 

method via the XGBoost algorithm (Chen & Guestrin, 2016). A gradient-boosted decision tree is 538 

a machine-learning technique that optimizes prediction accuracy by combining multiple weak 539 

decision trees through iterative improvement and error correction. This XGBoost algorithm is 540 

notable for its efficacy in handling high-dimensional data sets, such as neuroimaging data.   541 

 542 

A distributed hyperparameter optimization process was carried out to achieve optimal model 543 

performance using the Ray Tune library in Python (Liaw et al., 2018). This package efficiently 544 

searches the hyperparameter space using a cross-validation-based approach and returns the 545 

optimal parameters that minimize the loss function. The optimized hyperparameters were then 546 

used to fit the final XGBoost classifier on the training data. The XGBoost algorithm was 547 

implemented with the objective function “multi:softmax”, indicating a multi-class classification 548 

problem. The tree method was set to “hist”, which uses histogram-based algorithms to grow 549 

trees. Finally, the XGBoost classifier was applied to the holdout data to generate predictions. 550 

 551 

To further understand the model classifications, we used Shapley additive explanations (SHAP) 552 

to quantify the contribution of each feature to the prediction (Lundberg & Lee, 2017). SHAP 553 

values were computed for the holdout data using a tree explainer. To reveal the most important 554 

features driving the classification, the model's feature importances were extracted and ranked. 555 

The top 15 features were selected and used to visualize the subtypes. This analysis provided a 556 

comprehensive understanding of the identified subtypes' classification based on the RSFC 557 

features and offered insights into the most influential features in the classification process. 558 

 559 

Finally, to validate the authenticity of these subtypes, we took measures to confirm they were not 560 

solely influenced by socioeconomic status (SES) and demographic factors which were household 561 

income, parental marital status, parental education, marital status, and adversity. To do this, we 562 

used the SES and demographic features as predictors for the subtypes. This step was necessary to 563 

ensure the identified subtypes were not predominantly the result of underlying socio-economic or 564 

demographic indicators. 565 

 566 
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IVEPR: Evaluation 567 

2.4.3 Assessment of Cognitive and Executive Functioning and Mental Health Using Latent 568 

Models and Confirmatory Factor Analysis 569 

We performed confirmatory factor analysis (CFA) to derive two latent model factors representing 570 

a) cognitive and executive functioning and b) impulsivity. We used a task-based latent variable 571 

model of Executive Functions (EFs) from Freis et al. (2022) for the first model. For the second, 572 

we used the self-reported Urgency, Premeditation (lack of), Perseverance (lack of), Sensation 573 

Seeking, and Positive Urgency subscales from the Impulsive Behavior Scale (UPPS-P) as 574 

outlined by Barch et al. (2018). Age and sex were regressed out of all measures before extracting 575 

the latent factors and using these scores for subsequent analyses. Furthermore, we conducted 576 

invariance testing to validate the construct measurement and ascertain that the detected 577 

differences across subtypes genuinely represented underlying differences in the constructs of 578 

interest (Millsap, 2011). Verifying measurement invariance across our constructs ensures the 579 

consistent representation of the same constructs across varied subtypes. All analyses, including 580 

latent model derivation and CFA invariance testing, were conducted using the Lavaan package in 581 

R (Rosseel, 2012).  582 

 583 

2.4.4 Neurodevelopmental Differences in Cognitive and Executive Functioning and Mental 584 

Health  585 

To evaluate differences in cognitive and executive functioning, impulsivity, and psychopathology 586 

across the identified subtypes, we used ANOVA with false discovery rate (FDR) correction 587 

(Benjamini & Hochberg, 1995). Both split samples (Sub-Sample-1 and Sub-Sample-2) and the 588 

Full-Sample, which combined the subtypes from Sub-Sample-1 and Sub-Sample-2, were 589 

subjected to this analysis. ANOVA was conducted to determine if there were any statistically 590 

significant differences among the means of the subtypes for cognitive and executive functioning, 591 

impulsivity, and psychopathology. Following the ANOVA, FDR-corrected post-hoc comparisons 592 

were performed to identify which specific subtypes were significantly different from each other 593 

concerning cognitive and executive functioning, impulsivity, and psychopathology. We first 594 

identified significant subtype group-level differences across both samples. We then deemed 595 

differences to be reproducible if at least one pairwise post hoc comparison was significant in 596 

both Sub-Sample-1 and Sub-Sample-2 for cognitive and executive functioning, impulsivity, and 597 

psychopathology measures. This criterion ensured that the observed differences were consistent 598 

across both split samples. 599 

 600 

IVEPR: Prediction 601 

2.4.5 Evaluating Subtype Importance in Brain-Behavior Predictive Models 602 

Our Brain-Behavior predictive modeling pipeline began with a systematic approach to RSFC 603 

before computing the conditional random forest (CRF) models that included the categorical 604 

Subtype feature as a predictor. A conditional random forest is an advanced machine learning 605 

model that builds multiple decision trees to make predictions, adjusting for specific conditions or 606 

variables to capture complex interactions and dependencies within the data. We implemented the 607 

BorutaShap method (Kursa & Rudnicki, 2010) using the Boruta-Shap package in Python to 608 

perform this feature selection. Unlike traditional approaches that lean heavily on the inherent 609 

feature importance of random forests, BorutaShap capitalizes on SHAP values to determine 610 

feature importance, establishing it as a more model-agnostic method. For each of our cognitive 611 

functioning and mental health measures, our process involved fitting an XGBoost model, 612 
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followed by the computation of SHAP values for each feature. The Boruta algorithm was 613 

subsequently applied. This approach is particularly advantageous for pre-processing steps in 614 

CRF models. Two primary reasons underpin this assertion: 1) Dimensionality Reduction - which 615 

optimizes training times by reducing irrelevant features and omitting noisy features; and 2) 616 

Compatibility - Boruta's algorithm was initially designed for random forests, making it congruent 617 

with models like CRFs. 618 

 619 

Building on this, we sought to discern whether the RSFC subtypes consistently outperform the 620 

RSFC features as a predictor for cognitive and mental health scores using CRFs from the party 621 

package in R (Strobl et al., 2008). There are several reasons why CRFs are apt for gauging 622 

feature importance and assessing the predictive capacity of neuroimaging-based subtypes. 623 

Importantly, CRFs can accommodate categorical features with multiple levels, such as our 624 

Subtypes, and are favored over XGBoost, which necessitates transforming categorical measures 625 

into dummy-coded features for model inclusion. Unlike parametric models, CRFs are not 626 

tethered to assumptions about data distributions, enabling them to delineate intricate, non-linear 627 

relationships between predictors and outcomes. Such adaptability is crucial when analyzing high-628 

dimensional neuroimaging data. CRFs also leverage the inherent structure of decision trees to 629 

assess multivariate patterns across the included measures, allowing for a comprehensive 630 

evaluation of how interactions among variables contribute to predicting cognitive and mental 631 

health outcomes. Additionally, the ensemble nature of CRFs offers resistance to overfitting. 632 

CRFs also harness a "bagging" strategy, wherein multiple trees constructed from random data 633 

subsets are aggregated, promoting model stability and generalizability. Finally, CRFs allow for 634 

an interpretable measure of feature importance through "permutation importance", which 635 

quantifies the dip in prediction accuracy when a feature is randomly shuffled. 636 

 637 

To bolster the robustness of our findings, we performed 1000 iterations of the CRFs for each 638 

cognitive functioning and mental health measure. Each measure's feature importance was ranked 639 

across these iterations. Subsequently, for both Sub-Sample-1 and Sub-Sample-2, we calculated 640 

the mean feature importance ranks across the thousand iterations. Keeping the samples separate 641 

was essential to gauge the consistency of top features in each sample, preventing undue influence 642 

of one sample's features on the other. The resultant feature importance means from both samples 643 

were averaged to procure a definitive ranking by measure.  644 

 645 

To evaluate the significance of the Subtype feature across our CRF models, we focused on its 646 

ranking in terms of feature importance across all the measures. Specifically, we calculated how 647 

frequently the Subtype feature appeared as the most important predictor in different ranking tiers: 648 

top 1, top 5, and top 10. This analysis involved calculating the proportion of times the Subtype 649 

feature was ranked as the most important (top 1), within the five most important (top 1-5), and 650 

the ten most important features (top 1-10) for predicting each measure. We then conducted 651 

similar proportion calculations for each of the individual RSFC features, assessing their rankings 652 

in the top 1, top 5, and top 10 positions. This approach allowed us to directly compare the 653 

subtype's predictive ability against other RSFC features. Our final assessment determined 654 

whether the Subtype consistently emerged as the leading predictor across these three tiers of 655 

feature importance. By juxtaposing the Subtype's rankings against the RSFC features, we sought 656 

to ascertain its relative importance in forecasting various cognitive and mental health outcomes. 657 

 658 
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IVEPR: Replication 659 

2.4.6 Assessing Reproducibility, Differences, and Predictive Ability of Neurodevelopmental 660 

Subtypes 661 

We used two key strategies, bootstrapping and split-sample subsampling, for the robust 662 

assessment of the reproducibility of the identified subtypes, their differences, and their predictive 663 

ability. For additional details on the rationale of our replication analyses, refer to the 664 

Supplemental Materials.  665 

 666 

Bootstrapping. The first strategy was bootstrapping. Sub-Sample-1 and Sub-Sample-2 were first 667 

partitioned to maintain an equal number of individuals within each subtype. This procedure was 668 

implemented to protect against increasing the imbalance in individuals from each subtype drawn 669 

during the bootstrap resampling. Each partitioned sample was then resampled with replacement 670 

(bootstrapping), with each bootstrapped iteration comprising 66% of the individuals from the 671 

original sample. We performed ANOVA on each new bootstrapped sample's cognitive 672 

functioning and mental health measures. This process was repeated for 1000 iterations for each 673 

bootstrapped sub-sample. Furthermore, we resampled the Full-Sample of individuals who passed 674 

RSFC quality control with replacement and ran it through the ANOVA analyses. The robustness 675 

and reliability of a given measure were assessed by extracting the FDR-corrected p-values from 676 

each iteration and ensuring their mean value was less than .05 across all three samples (Sub-677 

Sample-1, Sub-Sample-2, Full-Sample). 678 

 679 

Split sample down-sampling. The second strategy we used was split-sample down-sampling. For 680 

each of the nine down-sampling increments (from 10% to 90% of the total), we generated 100 681 

new samples, resulting in a total of 900 samples (9 increments × 100 samples). Since we had 200 682 

new samples for Sub-Sample-1 and Sub-Sample-2, this amounted to 1800 new samples (900 683 

samples per split × 2 splits = 1800 samples). Bagging-enhanced LCD was applied to these 1800 684 

new samples to derive the down-sampled subtypes. We then performed a series of tests on each 685 

of the 1800 new down-sampled subtypes, including calculating modularity (Q), the Adjusted 686 

Rand Index (ARI) compared to the complete set of individuals within a given subtype for each of 687 

Sub-Sample 1 and Sub-Sample 2, the mean maximum correlations to full split-samples, and the 688 

maximum correlation across each of the other subtypes within the 100 iterations. Specifically, 689 

the mean maximum correlations were calculated by comparing each down-sampled subtype's 690 

connectivity patterns to the corresponding original complete set of individuals for a given 691 

subtype within each of the two sub-samples. The ARI (Adjusted Rand Index) is a statistical tool 692 

used to evaluate the similarity between two sets of subtypes, factoring in the likelihood of 693 

random chance. It effectively quantifies the consistency of the identified subtypes across 694 

different sub-samples, providing a solid foundation for evaluating the quality and reproducibility 695 

of the subtype identification process. 696 

 697 

Additionally, these down-sampled subtype profiles were compared across the two sub-samples, 698 

assessing how these down-sampled subtypes reliably replicate the connectivity profiles observed 699 

in the larger, complete original sub-samples and maintain consistency across different subsets. 700 

We evaluated the success, reproducibility, and reliability based on the mean maximum 701 

correlations between the original subtype profiles in each split sub-sample and the down-sampled 702 

subtype profiles. Furthermore, we calculated the ARI to the original sample subtype label. We 703 

defined success as high mean maximum correlations (average > .9) across the subtypes for each 704 
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down-sampling split sample, as well as to the original labels. We also expected the Adjusted 705 

Rand Indexes to outperform chance for each sample comparison and to show an increasing trend 706 

as the sample size grows. 707 

 708 

This sub-sampling approach aims to rigorously assess the reproducibility and reliability of 709 

subtype detection across varying sample sizes, directly addressing potential concerns when 710 

dealing with smaller samples in future studies. Importantly, achieving high reproducibility in 711 

these down-sampled datasets is a prerequisite for advancing to the second objective of our 712 

methodology. Only upon validating the stability and consistency of our subtype models through 713 

this down-sampling approach could we confidently apply these models to new samples without 714 

re-clustering. Such a step is crucial for demonstrating the generalizability of our findings. This 715 

conditional progression underlines the importance of our initial down-sampling strategy in 716 

ensuring that our models possess the robustness required for effective application to diverse 717 

populations. Success in this first phase would enhance the translational potential of these RSFC 718 

subtypes, mirroring the approach used in developing polygenic scores from large discovery 719 

samples and emphasizing the utility of large discovery sets for accurately applying 720 

neuroscientific models across varied demographic contexts.  721 

 722 

2.4.7. Evaluating the Robustness of RSFC Subtypes Against Noisy Data 723 

We had two primary reasons for these supplementary subtyping analyses. First, we aimed to 724 

determine if including individuals with noisy fMRI data would impact the subtypes derived from 725 

those with cleaner data. To achieve this, we executed the same LCD analyses on the complete 726 

sample (N=9027) of ABCD participants with neuroimaging data, ensuring only one sibling was 727 

selected from each family. Subsequently, we calculated the maximum correlations across the 728 

subtypes for both samples. While one might object to including individuals with noisy data, there 729 

is evidence that certain cognitive variables, such as executive function, may correlate with head 730 

motion (Wylie et al., 2014). If that is the case in this sample, excluding them might influence the 731 

brain-behavior relationships between the identified subtypes. Hence, we wanted to test whether 732 

our results are robust against such potential bias. However, this question's validity hinged on 733 

whether the subtype profiles were consistent across the entire and include-only samples. To 734 

assess this, we performed bootstrapped ANOVAs to gauge the consistency of subtype differences 735 

across both groups (see Supplemental Table 6 and Supplemental Figure 3).  736 

 737 

Furthermore, we aimed to ascertain if the subtypes would be consistent in the "high motion" 738 

sample (N=1,293). It could have significant implications if these subtypes are reproducible 739 

within that group. It might allow us to retain these individuals in future analyses, reinforcing a 740 

primary objective of our paper: to demonstrate that the subtype (i.e., whole-brain profile) might 741 

be a more reliable and meaningful neuro-marker than individual RSFC connections. To test this 742 

idea, we employed the same LCD analyses to evaluate the consistency of subtype profiles. The 743 

outcomes of these supplementary analyses are briefly discussed in the results and discussion 744 

sections, with more detailed results available in the supplemental materials section. 745 

 746 

2.5. Code Accessibility 747 

Custom Python, R, and bash code for all primary statistical analyses are available at 748 

https://github.com/jakederosa123/neuro_dev_rsfc_subtypes_abcd- 749 

 750 
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 751 

3. Results 752 

 753 

IVEPR: Identification and Validation 754 

This study employed bagging enhanced LCD on RSFC data to identify distinct 755 

neurodevelopmental subtypes and examine their relationships with demographic and behavioral 756 

traits. Specifically, four subtypes were identified via LCD on the RSFC data.  All subtypes 757 

showcased high reproducibility (r range=0.98-0.996) and strong associations with demographic 758 

and behavioral measures. We conducted an out-of-sample classification accuracy assessment to 759 

assess the reproducibility of our identified subtypes across Sub-Sample-1 and Sub-Sample-2. 760 

This analysis yielded an accuracy of 88.90%, underscoring reasonable robustness and 761 

reproducibility of the subtypes across the two samples. To ensure that our subtypes were not 762 

merely artifacts influenced by SES and demographic factors, we used these SES and 763 

demographic features as predictors for the subtypes. This analysis yielded a low accuracy of 764 

32.35%, suggesting that SES and demographic factors do not predominantly drive these 765 

subtypes.  766 

 767 

Regarding the distribution of individuals across the identified RSFC subtypes, we found a 768 

uniform presence of all four subtypes across the different samples, affirming their broad 769 

applicability within the population (Supplemental Table 1). Specifically, Subtype-1 emerges as 770 

the most prevalent, with its presence marked by 26.81% in Sub-Sample-1, 28.35% in Sub-771 

Sample-2, and 28.27% in the Full-Sample. Subtype-2 also exhibits a notable representation, 772 

encompassing approximately a quarter of each sample (25.29% in Sub-Sample-1, 22.44% in 773 

Sub-Sample-2, and 24.35% in the Full-Sample), reinforcing the diversity and consistency of 774 

neurodevelopmental patterns in the population. Subtypes 3 and 4, while showing slightly lower 775 

percentages, particularly in Sub-Sample-1 (21.93% for Subtype-3 and 25.97% for Subtype-4) 776 

and the Full-Sample (22.56% for Subtype-3 and 24.82% for Subtype-4), nonetheless maintain a 777 

significant presence. This distribution aligns with the assumed nested heterogeneity within the 778 

ABCD sample, where each subtype, characterized by unique RSFC patterns, coexists within the 779 

population. 780 

 781 

The demographic and phenotypic associations reported below were replicated across the two 782 

independent samples (Sub-Sample-1 and Sub-Sample-2), meaning that significant FDR-783 

corrected differences that involved the same variables and directions were observed across both 784 

samples. For each subtype, we begin by characterizing the prominent features of the respective 785 

imaging profile, followed by the prominent features characterizing their demographic and 786 

phenotypic profiles. Refer to Supplemental Table 2 for a comprehensive report on all 787 

phenotypic and Supplemental Table 1 demographic comparisons across the subtypes, Figure 3 788 

for the RSFC profiles of each subtype, and Figure 4A-B for the cognitive and mental health 789 

profiles for each subtype by sub-sample. 790 

 791 

In comparisons between the “passed RSFC quality control” sample and the “complete sample”, 792 

the subtype maximum correlations consistently exceeded .99. In comparisons between the 793 

“passed RSFC quality control”, “complete sample” sample, and the “high motion” sample, the 794 

subtype correlations varied between .623 and .965. It is worth highlighting that subtypes 1 and 3 795 

in the " high motion” sample exhibited the highest correlations to the “passed RSFC quality 796 
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control” and “complete sample” subtypes 1 and 3, both surpassing .9. See Supplemental Figure 797 

2 to view these correlations and RSFC profiles across the different inclusion criteria sample 798 

subtypes and Supplemental Tables 3-4 for subtype demographics.   799 

 800 

Finally, we conducted additional analyses to verify that our identified subtypes were not artifacts 801 

of frame displacement (FD) (i.e., head motion). In these analyses, we removed the influence of 802 

FD from the RSFC data before generating the subtypes. The resulting subtype profiles 803 

demonstrated high reproducibility between Sub-Samples 1 and 2, with maximum correlation 804 

values ranging from .96 to 1. Furthermore, most individuals remained in their respective 805 

subtypes, as indicated by the adjusted rand indices (ARI) of .78 for Sub-Sample-1 and .85 for 806 

Sub-Sample-2. These findings suggest that FD did not substantially affect the subtypes we 807 

initially identified. 808 

 809 

IVEPR: Evaluation 810 

3.2.1. RSFC Subtype Profiles 811 

 812 

Subtype-1 813 

Subtype-1 is characterized by strong positive within default mode network connectivity and 814 

strong negative connectivity between auditory and sensorimotor-hand networks and between the 815 

cingulo-opercular and default mode network. This subtype also shows strong negative 816 

connectivity between the default mode and the dorsal attention network. Furthermore, this 817 

subtype exhibits strong positive connectivity between the cingulo-opercular network and the left 818 

caudate and right hippocampus while displaying strong negative connectivity with the right 819 

ventral diencephalon. In addition, the sensorimotor-hand networks demonstrate strong negative 820 

connectivity with the sensorimotor-mouth networks, strong positive connectivity with the left 821 

pallidum and right caudate, and strong negative connectivity with the right hippocampus. 822 

  823 

Subtype-1 performed better on all cognitive and EF than Subtypes 2 and 3. Subtype-1 also did 824 

not reveal a high degree of mental health problems. Regarding demographics, children in 825 

Subtype-1 predominantly come from families where parents have a high level of education, with 826 

many holding post-graduate degrees. Most families in this subtype have upper-range household 827 

incomes, and a majority of their parents are married. Subtype-1 was also characterized by 828 

relatively lower adversity scores than the other subtypes. The gender distribution is nearly equal 829 

between males and females. 830 

  831 

Subtype-2 832 

Subtype-2 is characterized by strong negative connectivity between auditory and sensorimotor-833 

hand networks and strong positive connectivity within the cingulo-opercular network and with 834 

the default mode network. Additionally, individuals in this group show strong positive 835 

connectivity between the cingulo-opercular network and the left caudate and right hippocampus, 836 

along with strong negative connectivity between the sensorimotor-hand networks and 837 

sensorimotor-mouth networks. This subtype also shows robust negative within-network 838 

connectivity in all networks except the salience network.  839 

 840 

Compared to other subtypes, Subtype-2 performed poorly across various cognitive measures, 841 

including the LMT, RAVLT, general capability, executive-capability-(BPPCA), and 842 
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learning/memory-(BPPCA). For the Cognitive and EF latent factors, Subtype-2 performed lower 843 

than Subtype-4 but performed better than Subtype-3 in common-EF-(CFA), cognitive-aptitude-844 

(CFA), and the Updating-Specific factor.  Demographically, children in Subtype-2 come from 845 

families whose parents have varied educational backgrounds, though a significant proportion 846 

have bachelor's and post-graduate degrees. Household incomes in this subtype are varied but 847 

tend to be relatively high, and most parents are married. Subtype-2 children had significantly 848 

higher adversity scores than Subtype-4 but lower than Subtype-3. There is an even gender 849 

distribution in Subtype 2.  850 

 851 

Subtype-3 852 

Children in Subtype-3 exhibit strong positive connectivity between auditory and sensorimotor-853 

hand networks and moderate positive connectivity within the cingulo-opercular network. They 854 

also display pronounced negative connectivity between the frontoparietal and sensorimotor-hand 855 

networks and the frontoparietal and auditory networks. Notably, there are strong negative 856 

connections between the cingulo-opercular network and the left caudate, right hippocampus, and 857 

right ventral diencephalon for this subtype. Furthermore, the sensorimotor-hand networks 858 

demonstrate strong positive connectivity with sensorimotor-mouth networks while displaying 859 

negative connections with the left pallidum, right caudate, and right hippocampus. 860 

 861 

Notably, these children performed worse in most all cognitive and EF measures compared to the 862 

other subtypes. Subtype-3 also had higher externalizing and rule-breaking behavior problems on 863 

average. Demographically, the parents of children in Subtype-3 tend to have varied educational 864 

backgrounds, with a significant portion having some college education. This subtype includes 865 

many families with lower household incomes and fewer parents who are married compared to 866 

the other subtypes, and they have higher adversity scores. The gender distribution is 867 

approximately even between males and females.  868 

 869 

Subtype-4 870 

The children in Subtype-4 exhibit weak negative connectivity between auditory and 871 

sensorimotor-hand networks and negative connectivity between the default mode and dorsal 872 

attention network, similar to Subtype-1. They also show positive connectivity within the default 873 

mode and cingulo-opercular connectivity with the left caudate, right hippocampus, and right 874 

ventral diencephalon. Additionally, the sensorimotor-hand networks display negative 875 

connectivity with sensorimotor-mouth networks while demonstrating positive connectivity with 876 

the left pallidum, right caudate, and right hippocampus. 877 

 878 

Similar to Subtype-1. Subtype-4 outperformed Subtype-2 and Subtype-3 on all cognitive and EF 879 

measures. Subtype-4 also did not reveal major mental health problems. Demographically, a 880 

significant number of parents of the Subtype-4 children hold post-graduate degrees. The families 881 

of children in this subtype generally have higher household incomes, and many of the parents are 882 

married. Subtype-4 revealed lower adversity than Subtypes 2 and 3 and equivalent to Subtype-1. 883 

There is a nearly even distribution of genders, with a slightly higher number of males.  884 

 885 

 886 

 887 

 888 
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Figure 3. 901 

Figure 3. Resting State Functional Connectivity (RSFC) Subtype Profiles. A) RSFC Gordon 902 

Networks legend for C and D. All 13 networks are displayed and labeled accordingly. B) 903 
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Subtype profiles represent the mean standardized functional connectivity among the top 10 sub-904 

cortical regions identified by SHAP feature importances for classifying each subtype. Lines are 905 

colored by Subtype association (Subtype-1, orange; Subtype-2, yellow; Subtype-3, green; 906 

Subtype-4, blue) and differentiated by sample (Sub-Sample-1, straight, Sub-Sample-2; dashed). 907 

Full sub-cortical ROI and cortical network names are displayed below the profiles. For both C 908 

and D, the line thickness represents the connectivity strength. Connectivity directionality is 909 

denoted by blue for negative and red for positive. Self-loops characterize within-network 910 

connectivity. Given the high reproducibility across Sub-Sample-1 and Sub-Sample-2 subtypes, 911 

the Full-Sample subtypes are displayed from left to right. C) Subtype profiles represent the 912 

functional connectivity among cortical regions based on a connectivity threshold of 0.3 for each 913 

RSFC Subtype. D) Subtype profiles represent the functional connectivity among the top 15 914 

cortical regions identified by SHAP feature importances for classifying each RSFC Subtype. 915 

Note: The amplitude of connections by Subtype can be seen in Supplemental Figure 1.  916 

 917 

3.2.6. Invariance Testing across Factors Underlying Cognitive and Mental Health 918 

Difficulties 919 

We evaluated metric invariance across the RSFC subtypes using fit indices and Chi-square 920 

difference tests for the two models (EF model and the UPPS-P factor model). We observed 921 

evidence supporting the establishment of minimum metric invariance in all three-factor models, 922 

as indicated by acceptable fit indices and the absence of significant Chi-square differences upon 923 

adding constraints, which were consistently observed across all models. Refer to Supplemental 924 

Table 5 for a complete report of invariance testing results.  925 

 926 

Figure 4. 927 
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Figure 4. RSFC Subtype Cognitive and Mental Health Profiles. Illustration of the mean 928 

residualized z-score for different phenotypic measures, colored by subtype (Subtype-1, red; 929 

Subtype-2; yellow; Subtype-3, green; Subtype-4, blue) by Sub-Sample-1 A) and Sub-Sample-2 930 

B). Points represent the mean age and sex residualized z-score for each cognitive functioning and 931 

mental health measure. Shaded bars signify each point's 95% confidence interval and are colored 932 

by Subtype. Sectors of the radar plots are color-shaded by domain allegiance (impulsivity; green; 933 

psychopathology, blue; emotion and cognition; red; cognitive functioning; black). Refer to 934 

Figure 3 B-D for Subtype patterns of connectivity.  935 

 936 

3.3.  Evaluating Subtype Importance in Brain-Behavior Predictive Models 937 

To evaluate the significance of our Subtypes in predicting the 27 cognitive functioning and 938 

mental health measures compared to the individual RSFC connections, we performed 27 CRF 939 

models for each sample. These measures were selected to cover a broad spectrum of cognitive 940 

abilities and mental health-related conditions. Analyzing the feature importance ranks from these 941 

models across both samples, we found that, out of the 27 measures, the Subtype emerged as the 942 

top predictor for 5 measures (18.52%). It also ranked among the top 5 predictors for 11 measures 943 

(40.74%) and the top 10 for 17 measures (62.96%). Notably, the Subtype consistently secured its 944 

position within the top 1, 5, and 10 features across Sub-Sample-1 and Sub-Sample-2 (see Figure 945 

5). For a detailed breakdown of the counts and proportions of the most influential RSFC 946 

connections that ranked among the top 1, 5, and 10 predictors, see Supplemental Table 6. 947 

 948 

 949 

 950 

 951 

 952 

 953 

 954 

 955 

 956 

 957 

 958 

 959 

 960 

 961 

 962 

 963 

 964 

 965 

 966 

 967 

 968 

 969 
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 971 

 972 

 973 
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Figure 5 974 
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 975 

Figure 5. Subtype feature importance in brain-behavior prediction models. A) Top predictor and 976 

Subtype rank across all 27 cognitive functioning and mental health brain-behavior prediction 977 

models. B) The proportion of times the RSFC Subtype and connections ranked in the top 1, 5, 978 

and 10 features out of the 27 brain behavior prediction models. Note: The subcortical ROIs 979 

abbreviations and respective names are: crcxlh: left cerebellum cortex, aglh: left amygdala, 980 

crcxrh: right cerebellum cortex, vtdclh: left ventral diencephalon, cdelh: left caudate, hplh: left 981 

hippocampus, aarh: right accumbens area, thplh: left thalamus proper, vtdcrh: right ventral 982 

diencephalon, pllh: left pallidum. The three derived factors from the analysis correspond to 983 

distinct models and conceptual frameworks: common EF, cognitive aptitude, and updating 984 

specific factors are associated with the CFA models; general capability, executive capability, and 985 

learning/memory components are linked to the BPPCA model.  986 

 987 

3.4. How reproducible, reliable, and robust are these RSFC subtypes?  988 

 989 

IVEPR: Replication 990 

3.4.1 Bootstrapped ANOVAs  991 

Our bootstrapped ANOVA analyses, conducted on 27 measures related to cognitive functioning 992 

and mental health, revealed consistent patterns that underscore the reliability of differences 993 

among subtypes across these variables. 994 

 995 

Refer to Figure 6 and Supplemental Table 7 for complete reporting of the bootstrapped outputs. 996 

Most measures that showed statistically significant differences in the original non-bootstrapped 997 

ANOVAs remained significant in the Full-Sample of individuals who passed RSFC quality 998 

control and one of the sub-samples in the bootstrapped ANOVA analyses. On average, the FDR 999 

corrected p-value across the iterations was greater than .05. Of note, the most robust effects, 1000 

which were those that were significant across both sub-samples and the Full-Sample, were 1001 

observed for all cognitive measures, except for executive-capability-(BPPCA), as well as 1002 

positive urgency and rule breaking (see pink bars in Figure 6), Compared to the measures in the 1003 

mental health domains, the cognitive functioning measures exhibited less variability in the effect 1004 

size differences across the subtypes, indicating that these measures are particularly insensitive to 1005 

the characteristics of the sample. In contrast, only  1006 

 1007 

Regarding the bootstrapped results derived from the complete sample, we observed even more 1008 

consistent reproducibility patterns than the "passed RSFC quality control” sample result reported 1009 

above. Notably, the Stroop happy and angry accuracy, executive-capability-(BPPCA), and 1010 

attention problems emerged as significant across both Sub-Sample-1 and Sub-Sample-2 across 1011 

these analyses. See Supplemental Figure 3 for these results.  1012 

 1013 

 1014 

 1015 

 1016 

 1017 

 1018 

 1019 

 1020 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 17, 2024. ; https://doi.org/10.1101/2024.03.16.585343doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.16.585343
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6.  1021 

Figure 6. Bootstrapped ANOVAs by Sample by Phenotypic Measure. Bootstrapped 1022 

ANOVAs, log10 FDR corrected P-values from each iteration are evaluated by sample, where 1023 

black dots indicate the original FDR corrected p-values from the non-bootstrapped samples, 1024 

colored dots and CI's are colored by sample (Full-Sample, grey; Sub-Sample-1, blue; Sub-1025 

Sample-2; green) and represent the mean and range of FDR corrected p-values for each sample 1026 

across the 1000 bootstrapped ANOVAs, and shaded bars in red indicate the mean of all three 1027 
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samples are < .05. Note: The three derived factors from the analysis correspond to distinct 1028 

models and conceptual frameworks: common EF, cognitive aptitude, and updating specific 1029 

factors are associated with the CFA models; general capability, executive capability, and 1030 

learning/memory components are linked to the BPPCA model.  1031 

 1032 

 1033 

3.4.2 Split-Sample Reproducibility  1034 

As another way of evaluating our subtype’s reproducibility and reliability, we created restricted 1035 

down-samples in 10% increments of each of Sub-Sample-1and Sub-Sample-2 and considered the 1036 

mean maximum correlations between the original subtype profiles in each split sub-sample (Sub-1037 

Sample-1, Sub-Sample 2) and their restricted sample. We defined success based on high mean 1038 

maximum correlations (average > .9) across the subtypes for each down-sampled split sample 1039 

based on the original subtype labels. Our results showed consistent success as most of our down-1040 

sampled categories exhibited mean maximum correlations exceeding 0.9, especially in the down-1041 

samples that represented a higher percentage of the total sample. The ARIs demonstrated 1042 

reasonable and consistent results across both samples, reinforcing the robustness of our subtypes. 1043 

Importantly, even at smaller percentages like the 10% sample size, the relatively high ARI values 1044 

underscore the reproducibility of the subtypes. The fact that we see consistent and reasonable 1045 

ARI values at such small sample sizes and a steady increase thereafter offers compelling 1046 

evidence that the subtypes are robust and can be reliably replicated across varying sample sizes. 1047 

See Figure 7 for a visual representation of these results, and a detailed breakdown is available in 1048 

Supplemental Table 8. 1049 

 1050 
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Figure 7.  1074 

Figure 7. Split-sample Subtype Down-Sampling Replication. For each increment of down-1075 

sampling, ranging from 10% to 90%. Shaded bars indicate 95% (lightest shading), .8% (mid 1076 

shading), and .5 (darkest shading) confidence interval and are colored by sample (Sub-Sample-1; 1077 

blue, Sub-Sample-2; green). A) Mean maximum correlations with the down-samples to the 1078 

original samples by split. B) Adjusted rand index between down-samples and original samples. 1079 

C) Mean maximum correlations across split samples. D) Down-sampled final bagged modularity 1080 

(Q) by sample.  1081 

 1082 

Discussion 1083 

 1084 

The Subtypes and their associations to cognition and mental health 1085 
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The current study set out with three primary goals: to identify subtypes of children based on their 1086 

RSFC, to explore the potential of these subtypes to act as brain-based predictors for cognitive 1087 

abilities and mental health, and to investigate the reproducibility and reliability of these subtypes. 1088 

We identified four distinct neurodevelopmental subtypes using cortical and subcortical RSFC 1089 

connections that offer insight into the relationship between RSFC, demographics, cognitive 1090 

functioning, and mental health. Importantly, these subtypes were highly reproducible across 1091 

different samples and were not solely influenced by socioeconomic or demographic factors. 1092 

However, these factors did differ across some of the subtypes, underscoring the potential 1093 

influence of environmental factors, such as socio-economic status (Moriguchi & Shinohara, 1094 

2019), parental education (Dubow et al., 2009), and adversity (McLaughlin et al., 2014; Wade et 1095 

al., 2022), as being associated with brain connectivity patterns. These patterns, in turn, seem to 1096 

be associated with specific cognitive and mental health outcomes. First, we discuss the 1097 

implications of our subtypes concerning their RSFC profiles and phenotypic relationships. Then, 1098 

we discuss how the IVEPR framework enhanced the reliability of our conclusions, which posit 1099 

the subtypes as neuro-markers for cognitive and mental health in children and adolescents. 1100 

Finally, we discuss the broader implications of our findings. 1101 

 1102 

The distinct connectivity profiles within the subtypes offer a window into heterogeneous whole-1103 

brain functional profiles underlying cognitive functioning and mental health in late-grade-school 1104 

children.  Subtype-1 and Subtype-4 are marked by functional connectivity patterns that appear to 1105 

be associated with higher cognitive functioning levels and lower mental health problems. These 1106 

two subtypes share some common features in their connectivity profiles. The strong connectivity 1107 

within the default mode network may support higher degrees of internally based thought, 1108 

including potential evaluation and introspection (Luo et al., 2016; Zhang et al., 2022). Such an 1109 

internal focus may facilitate cognitive processes like abstract reasoning and planning, which may 1110 

potentially be fostered by the socioeconomically advantaged backgrounds that were found to be 1111 

associated with this subtype (Aartsen et al., 2019). The strong negative connectivity between 1112 

auditory and sensorimotor-hand networks may indicate a separation of sensory inputs from 1113 

motor outputs, potentially leading to more refined motor control and sensory discrimination and 1114 

better cognitive performance (Gordon et al., 2023).  1115 

 1116 

In addition, the negative connectivity between the default mode and dorsal attention network 1117 

aligns with typical anticorrelation between these networks during rest (Dixon et al., 2016; Owens 1118 

et al., 2020). This finding indicates a conventional pattern of brain connectivity that may underlie 1119 

efficient cognitive processing and attentional control. However, other aspects of the connectivity 1120 

profiles between these two subtypes are distinct and emphasize the concept of nested 1121 

heterogeneity, suggesting that similar cognitive and mental health outcomes may arise from 1122 

different underlying RSFC patterns. For example, Subtype 1 has strong negative connectivity 1123 

between the default mode network and the cingulo-opercular network, while Subtype 4 has 1124 

positive connectivity between these networks.  1125 

 1126 

Similarly, Subtypes 2 and 3, both of which are associated with greater degrees of cognitive and 1127 

mental health difficulties than Subtypes 1 and 2, also share some similar aspects of their 1128 

connectivity profiles that differentiate them from Subtypes 1 and 2.  In particular, they exhibit 1129 

negative connectivity within the default mode network, within the cingulo-opercular network, 1130 

and between the default mode network and regions that do not fall into any organized network 1131 
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(i.e., none). In contrast, Subtypes 1 and 4 show positive connectivity for these connections. In 1132 

addition, Subtypes 2 and 3 show positive connectivity between the default mode network and the 1133 

dorsal attention network, which contrasts with the negative connectivity for this aspect of 1134 

connectivity shown for Subtypes 1 and 4.  1135 

 1136 

Yet once again, nested heterogeneity is evident in the connectivity profiles distinguishing 1137 

Subtypes 2 and 3, each characterized by unique patterns of lower-order sensorimotor 1138 

connectivity. Subtype-2 is characterized by the strongest negative connectivity within and 1139 

between the sensorimotor networks, indicating a form of sensorimotor integration that might be 1140 

less conducive to efficient cognitive processing. Conversely, Subtype-3 distinguishes itself with 1141 

strong positive connections between auditory and sensorimotor networks, suggesting a different 1142 

mode of sensorimotor coordination that may support more effective rapid response mechanisms 1143 

in specific contexts (Adise et al., 2022; Karcher & Barch, 2021). These distinct connectivity 1144 

configurations within lower-order networks underscore the diverse ways sensorimotor 1145 

integration can influence cognitive performance across these subtypes. At present, the reason 1146 

these pattern configurations relate to lower cognitive performance is a subject of speculation, and 1147 

we are actively investigating this question. Notably, Subtypes 1 and 4, which exhibited higher 1148 

cognitive performance and fewer mental health issues, showed connectivity in higher-order 1149 

systems such as the default mode and cingulo-opercular networks.  1150 

 1151 

In summary, our RSFC subtypes provide insight into the distinct brain connectivity patterns 1152 

associated with cognitive functioning and mental health in children and adolescents. Subtypes 1 1153 

and 4, marked by specific connectivity configurations of integration between higher-order 1154 

networks (e.g., dorsal attention, default mode network), are associated with higher cognitive 1155 

abilities and fewer mental health issues. In contrast, Subtypes 2 and 3 are characterized by a 1156 

contrasting connectivity pattern that may favor immediate sensory-motor responses over higher-1157 

order cognitive processing. The degree to which these connectivity patterns might be linked to 1158 

environmental and socio-economic factors must be investigated in future studies. 1159 

 1160 

The IVEPR framework 1161 

The IVEPR framework was a fundamental component in achieving the aims of this study, as it 1162 

provided a comprehensive toolset for identifying, evaluating, and validating the RSFC subtypes. 1163 

The framework's efficacy was demonstrated through the split-sample approach, which confirmed 1164 

that the identified RSFC subtypes were highly reproducible. The ability to replicate these 1165 

subtypes even with a down-sample as small as 10% of the original size is particularly 1166 

noteworthy, as it suggests that the subtypes are fundamentally stable and can be reliably 1167 

identified across different sample populations and sizes. This implies that the subtypes are not 1168 

just artifacts of a particular dataset but may reflect underlying individual differences in their 1169 

functional brain architecture. The reliability of these subtypes lays the groundwork for future 1170 

studies. It suggests that subsequent research can build on these findings to investigate 1171 

neurodevelopmental patterns and behavioral characteristics that may be associated with them. 1172 

Establishing which phenotypic measures consistently differentiate these subtypes across the two 1173 

sub-samples allowed us to add another layer of validation to the subtypes. This step was critical 1174 

for understanding which measures reliably differed and reproduced between the subtypes across 1175 

the two sub-samples (i.e., Sub-Sample-1, Sub-Sample-2).  1176 

 1177 
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Perhaps the most significant implication of the IVEPR framework's application is the 1178 

demonstration that the RSFC subtypes have the most consistent predictive value for cognitive 1179 

functioning and mental health profiles. This finding supported our hypothesis that an individual's 1180 

whole functional brain profile may offer more insight into cognitive and emotional functioning 1181 

profiles than isolated RSFC connections. Our findings highlight the diverse roles different brain 1182 

regions or networks might have in shaping developmental pattern differences. When discussing 1183 

'different brain profiles,' we refer to unique connectivity patterns within the brain, as identified 1184 

through RSFC data.  We show that despite varying connectivity profiles, two subtypes are 1185 

associated with higher cognitive performance and fewer mental health issues, while two other 1186 

subtypes exhibit lower cognitive performance and greater mental health challenges. This 1187 

suggests that there may not be optimal or adverse functional connectivity configuration for 1188 

cognitive and mental health outcomes. Instead, multiple configurations can lead to similar 1189 

cognitive or mental health patterns, indicating that certain brain regions or networks may have a 1190 

more pronounced impact on specific cognitive processes or mental health conditions than 1191 

previously understood. It will be necessary for future studies to assess if these subtypes have 1192 

practical relevance in tracking developmental progress over time and informing clinical 1193 

interventions.  1194 

 1195 

The reproducible identification of RSFC subtypes across individuals who meet typical inclusion 1196 

criteria and those often excluded from neurodevelopmental research due to noisy data could have 1197 

significant implications for improving retention and representation in these studies. Historically, 1198 

individuals who exhibit high motion during scans, often those with pronounced behavioral 1199 

problems or cognitive impairments (Thomson et al., 2021), are excluded from 1200 

neurodevelopmental research. This exclusion has limited our understanding of brain-behavior 1201 

relationships in those who might benefit most from such insights (Satterthwaite et al., 2012). 1202 

However, our findings indicate that even those typically excluded due to noisy data may still be 1203 

reliably subtyped. Notably, the subtype profiles of this high-motion sample showed robust 1204 

reproducibility to those in Sub-Sample-1 and Sub-Sample-2 of our primary analyses. In 1205 

examining the cognitive functioning and mental health differences across Sub-Sample-1 and 1206 

Sub-Sample-2 in the “complete sample,” we identified significant differences in attention 1207 

problems, accuracy on the emotional Stroop task, and executive-capability-(BPPCA) among the 1208 

subtypes that were not replicated across Sub-Sample-1 and Sub-Sample-2 of our primary 1209 

analyses. The crucial point with this finding is that including high-motion individuals in the 1210 

analysis allowed us to identify additional cognitive functioning and mental health differences 1211 

between the subtypes. These findings suggest that our subtyping approach may allow future 1212 

studies to include those previously excluded, which could ultimately enhance our understanding 1213 

of brain-behavior relationships. Future studies will need to investigate this idea in more detail.  1214 

 1215 

Limitations and Future Directions  1216 

While this study offers valuable insights into the heterogeneity of RSFC subtypes and their 1217 

association with cognitive functioning and mental health, several limitations warrant 1218 

consideration. Our study exclusively analyzed RSFC data, limiting our understanding to brain 1219 

connectivity patterns without considering structural differences or task-based activations, which 1220 

might provide broader insights into brain metrics across subtypes. Future research incorporating 1221 

multi-modal imaging, including diffusion tensor imaging (DTI), structural MRI, and task-based 1222 

fMRI, could enhance our understanding of these subtypes and their generalizability, potentially 1223 
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offering a more comprehensive perspective on brain neuromarkers (Calhoun & Sui, 2016; Ooi et 1224 

al., 2022),  and the utility of a multi-modal approach in subtype analysis. Finally, our study's 1225 

cross-sectional design limits our ability to infer causal relationships between RSFC subtypes and 1226 

developmental outcomes. Longitudinal data will be necessary to elucidate these associations' 1227 

directionality and determine whether these subtypes predict changes in cognitive and mental 1228 

health outcomes over time. We are currently examining this issue.  1229 

 1230 

The findings from our study pave the way for several future research avenues. First, a deeper 1231 

exploration into the longitudinal development and stability of these RSFC subtypes is warranted. 1232 

Understanding how these subtypes evolve through late childhood/adolescence and the factors 1233 

influencing their stability or change may provide important insights into neurodevelopment. 1234 

Such a longitudinal approach may illuminate whether these subtypes are transient phases or 1235 

stable markers of brain organization throughout an individual's life. Finally, considering the 1236 

extensive range of measures gathered in the ABCD study, there is considerable opportunity to 1237 

delineate further brain-behavior relationships between these RSFC subtypes. Investigating these 1238 

additional relationships with these measures would be worthwhile in obtaining a more 1239 

comprehensive characterization of these RSFC subtypes.  1240 

 1241 

Conclusions 1242 

Our study represents a significant step in parsing heterogeneous patterns of brain organization 1243 

based on an individual's resting-state functional whole-brain profile to be used to predict 1244 

cognitive functioning and mental health during late childhood. Through the IVEPR framework, 1245 

we successfully identified and validated four distinct RSFC subtypes and demonstrated their 1246 

robustness and reliability across diverse sample sizes. These results suggest that the RSFC 1247 

subtypes are reliable neuro-markers for tracking variations amongst individuals in their 1248 

functional neural organization. In addition, this study sets a benchmark for future studies to build 1249 

off using these RSFC subtypes to investigate how they influence the developmental trajectories 1250 

of each subtype. In addition, these findings underscore the potential of subtypes as pivotal tools 1251 

in neuroscientific research. Exploring further applications and potential uses of these subtypes 1252 

and the IVEPR framework in future studies is likely to be useful.  1253 
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