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Abstract: Cyclotron-produced radiometals must be separated from the irradiated target and purified
from other metal impurities, which could interfere with the radiolabeling process. We compared
different chromatographic and colorimetric methods to determine the amount of transition metals in
radioactive samples. Besides commercially available colorimetric tests, 4-(2-pyridylazo)resorcinol and
xylenol orange were used as a non-selective metal reagents, forming water-soluble chelates with most
of the transition metals immediately. We compared the applicability of pre- and post-column deriva-
tization, as well as colorimetric determination without separation. The studied chromatographic and
colorimetric analyses are not suitable to completely replace atomic spectroscopic techniques for the
determination of metal contaminants in radioactive samples, but they may play an important role in
the development of methods for the purification of radiometals and in their routine quality control.

Keywords: radiometal; gallium-68; high-performance liquid chromatography; 4-(2-pyridylazo)resorcinol;
xylenol orange; transition metal ions

1. Introduction

With the increasing application of cyclotron-produced radiometals, the determination
of non-radioactive metal impurities is becoming more important, since they can reduce the
radiolabeling efficiency. Most cyclotron sites do not have dedicated ICP or AAS instruments
for the in-house measurement of radioactive samples. External laboratories are not prepared
to accept radioactive samples and measurement after total decay of the radioactivity, as it
is too slow to provide practical feedback for process optimization. For the routine quality
control of radiometal solutions, simple and fast limit tests are desired.

From the broad pool of cyclotron-produced radiometals, gallium-68 is receiving the
highest attention. Nowadays, the positron-emitting gallium-68 isotope is obtained mainly
from 68Ge/68Ga generators for the synthesis of radiopharmaceuticals, but the recent in-
crease of generator price and availability issues have motivated the development of differ-
ent cyclotron production methods using liquid- [1–3] and solid targets [4–11]. For some
well-established gallium radiotracers, it can be observed that the 68Ga-labeled compound
is replaced by the 18F-labeled analogue due to the higher isotope production yield and
longer half-life of the latter in large-scale applications, resulting in a logistical and cost-
effective advantage. However, the simple labeling chemistry of gallium-68 facilitates the
development of new specific radiopharmaceuticals based on receptor–ligand interaction
for different diseases and the broadening application of receptor-targeted radionuclide
therapy necessitates the use of 68Ga-labeled tracers for therapy monitoring and dosimetry.
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The longer half-life (4.042 h) and the lutetium-like coordination chemistry of positron-
emitting scandium-44 makes it a potential competitor of gallium-68. Scandium-44 tracers were
shown to have more similar biodistribution to lutetium-labelled compounds than gallium
tracers [12]. Scandium-44 and gallium-68 can be produced with the proton irradiation of
appropriate metal targets (44Ca(p,n)44Sc [13]; 68Zn(p,n)68Ga [14]). Several authors developed
purification methods for scandium-44 [15] using various resins, and Kilian et al. compared
some of these methods [16,17]. Transition metal concentration in the purified samples was
determined using ICP-OES or ICP-MS techniques after the decay of the radioactivity.

A great advantage of using ICP for metal determination in radiometal samples is
the simultaneous detection of all metals in the low concentration (ppm to ppb) range,
as the effect transition metals have on labeling efficiency is cumulative in the case of a
non-selective chelator (e.g.,: DOTA). However, not all metals are created equal in complex
formation reactions. Oehlke et al. compared the influence of numerous metal ions on the
radiolabeling reaction of DOTA with gallium-68 isotope. The most interfering metal ions
are Cu2+, Fe3+, Ga3+ and Zn2+, similar to [44Sc]Sc3+ [18].

The main limitation of using atomic spectroscopic techniques is that the measurements
have to be performed off-site with significant delay. The high sample volume consumption
(up to several mL, depending on the method of sample injection) is a further significant
drawback. The sample must be inactive at the time of measurement and must not con-
tain long-lived isotopes that could accumulate on the parts of the instrument. European
Pharmacopoea describes GFAAS method for the determination of Zn2+ and Fe3+, with
a limit of 10 µg/GBq for cyclotron-produced gallium-68 [19]. Most PET centers are not
equipped to perform these measurements. One approach is to determine the typical cold
metal content of radiometal samples during the validation of the isotope production and
purification process. This can be acceptable if the produced radiometal is used for labeling
in a continuous process. But if centralized supply of cyclotron-produced radiometal is per-
formed by a manufacturer and the radiometal for labeling is used elsewhere, the produced
solution must be tested for metal content. Countless sources of metals can be found in every
laboratory, and trace metal contamination can easily get into the radiometal production
process at various points. Non-filtered laboratory air contains a significant amount of rust-
and metal-containing dust particles, while powdered gloves and the rubber plungers of
the syringes contain zinc, as well as nylon parts and highly pigmented plastics that are
sources of trace metals [20]. Even traces of decorative cosmetics can be sources of Bi3+ and
Sb2+ [21]. Without regular checking of metal content, it is hard to identify and avoid these
sources. For the determination of metal content, in-house methods would be preferable.

Besides the well-known atomic spectroscopic techniques, transition metals can also be
determined by converting to colored complexes with spectrophotometric or colorimetric
techniques with or without chromatographic separation. Complex formation can occur
both before and after the column. One of the most widely used complexing agents is
4-(2-pyridylazo)resorcinol (PAR) [22,23] (Figure 1). This tridentate ligand forms colorful
water-soluble chelates with most of the transition metals immediately at room temperature.
The aqueous solution of PAR is itself colored: red at pH 5.5 or below; orange between pH
6–12.5; and deep red above pH 13.

Post-column derivatization is often used after ion chromatographic separation to quan-
tify metal ions in environmental samples. Transition metals (Fe3+, Cu2+, Ni2+, Zn2+, Co2+,
Cd2+, Mn2+ and Pb2+) can be separated as anionic complexes with pyridine-2,6-dicarboxylic
acid (PDCA) containing eluent [24–26]. Most often, pyridylazo derivatives (e.g., PAR and
5-Br-PADAP (2-(5-bromo-2-pyridylazo)-5-diethylaminophenol)) are used as complexing
agents. The main drawback of the post-column method is the relative complexity of the
chromatographic system. Two metal-free HPLC pumps and an injector (autosampler) is
necessary. The post-column reagent slowly decomposes in air and contaminates hardware
(connections, UV cell). The reagent has to be freshly prepared and flushed through the
system prior to measurement and cleared out with careful rinsing of the system.
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Besides the post-column method, pre-column complexation is also broadly used.
The most important transition metals were examined with: 2-(2-quinolinylazo)-5-
diethylaminophenol (QADEAP) in drinking water [27]; with 2-(2-quinolinylazo)-5-
dimethylaminophenol (QADMAP) [28] and 2-(8-quinolylazo)-4,5-diphenylimidazole
(QAI) [29] in tobacco; with 2-(5-nitro-2-pyridylazo)-5-[N-propyl-N-(3-sulfopropyl)amin
o]phenol (nitro-PAPS) [30] in milk powder, wine and drinking water; and with PAR in
river water [31].

Transition metal impurities could also be determined by colorimetric tests; for exam-
ple, xylenol-orange [32,33], triazine [34,35] and Chromeazurol S [36,37] reagents (Figure 1).
Colorimetric detection of transition metals can be performed quickly and with high sen-
sitivity in the ppm concentration range, because a complex formation is accompanied by
intense color change [38,39].

For the quality control (QC) of radiopharmaceuticals, it is essential to use methods
that are reliable and fast. In this report we described the comparison of different chro-
matographic and colorimetric methods to determine the amount of transition metals in
radioactive samples.

2. Results and Discussion
2.1. Post-Column Derivatization with PAR

Transition metals were separated on a Dionex IonPac CS5A column. The PAR reagent
solution was mixed to the effluent to form a light-absorbing complex with the metals. Fe3+

and Zn2+, considered to be the major contaminants of cyclotron-produced [44Sc]Sc3+, were
baseline separated. Residual zinc ions can be determined down to 0.16 ppm and iron
to 0.26 ppm. Besides the two mentioned transition metals, Cu2+ ions are also a strong
competitor in DOTA-labeling reactions [18]. It cannot be separated from Zn2+ ions with the
current method, but the presence of both metal ions can be excluded if no peak is observed
between 8 and 9 min. Many transition metal ions can be detected with good LOQ values
(Table 1). However, the long-term observation of the baseline (Figure 2) shows significant
noise, which could be decreased by careful equilibration of the system with the eluents, but
it could not be completely avoided.

Thus, small differences in retention times, together with the baseline instability, do not
allow unambiguous identification of each peak, however the absence of peaks is a good
indication of sample purity.

This method has an acceptable resolution for Fe3+ and Zn2+ ions (Rs = 1.43, Figure 3)
under the applied conditions, but for other potentially interfering metal ions (e.g.,: Cu2+,
Al3+) the separation is not appropriate. Therefore, it is able to verify the low metal content
of the radiometal samples but does not allow accurate quantification at low concentrations.
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Table 1. Quantitation limits for the examined non-radioactive metals with post-column derivatization.

Metal Ions LOQ (ppm) tR (min.) c (ppm) Rs

Bi3+ 8.85 5.32 1.0 -
Fe3+ 0.26 6.56 0.5 0.89
Zn2+ 0.16 8.52 0.5 1.43
Cu2+ 0.13 8.87 0.3 0.26
Ni2+ 1.39 9.48 1.0 0.80
Al3+ 1.17 9.69 1.0 0.25
Pb2+ 0.31 9.75 1.0 0.04
Co2+ 0.13 9.96 1.0 0.15
Cd2+ 0.33 10.41 0.3 0.33
Mn2+ 0.10 17.57 1.0 5.17
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Figure 3. Analysis of radioactive scandium-44 samples on Dionex IonPac CS5A column with PDCA
(pyridine-2,4-dicarboxylic acid) eluent.

The post-column derivatization method is sensitive, but time-consuming to use. In
addition, reagents should be freshly prepared by the excluding air before measurement and
the system must be carefully equilibrated with the eluents. Despite prolonged washing, sig-
nificant baseline drift and stability problems were often observed. Based on our results, the
use of this method for routine quality control of short-lived isotopes is not recommended.
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2.2. Pre-Column Derivatization with PAR

To avoid the difficulties observed during the post-column derivatization, we applied the
same derivatization reaction before sample injection for analysis of the samples. Determination
of Co2+, Fe3+, Cu2+ and Zn2+ ions were investigated. In the case of Co2+, Fe3+ and Cu2+,
the formed metal-PAR complexes were retained on reversed phase column (LiChrospher
100 RP18) and eluted with phosphate buffer–methanol eluent. The unreacted PAR reagent
elutes at 6.1 min, and the Fe3+-PAR complex was baseline separated (RS = 3.09) at 7.8 min with
detection at 530 nm (Figure 4). The calibration curve was linear (R2 = 0.998) in the 0.5–1 ppm
range. Limit of quantitation was found to be 0.1 ppm.
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Zn2+ ions could not be determined with pre-column derivatization, as a solid precipi-
tate was formed in the sample which was irreversibly retained on the column. However,
this method was suitable for the determination of Fe3+ with good sensitivity and in the case
of Cu2+ contaminants the sensitivity was moderate (Table 2). Results of iron determination
was in good agreement with ICP data (Table 3).

Table 2. Separation of transition metal ions in test solution.

Metal LOQ (ppm) tR (min.) c (ppm) Rs

Co2+ 0.004 4.14 4.91 -
PAR - 7.19 - 6.54
Fe3+ 0.1 8.12 3.3 1.33
Cu2+ 22.33 9.50 52.96 1.78

Table 3. Comparison of Fe3+ content of gallium-68 samples, determined with ICP (inactive samples)
and pre-column derivatization (radioactive samples).

Samples
c(Fe3+) ppm

ICP HPLC Pre-Column
Derivatization with PAR

07.02 0.39 0.41
07.01/2 0.41 0.30
07.01/1 0.39 0.24
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2.3. Colorimetric Metal Determination

The determination of the small amount of transition metal ions (Fe3+, Zn2+, Al3+) was
also investigated by commercially available colorimetric tests. These tests are based on
the selective formation of a metal–dye complex and the selectivity of a particular metal
ion is often enhanced by masking of interfering metal ions. Therefore, the tests contain
several reagents to be added to the sample before the color formation reaction. The main
disadvantage of commercially available colorimetric tests is that they require a large volume
of sample, which must be reduced when testing radioactive samples. The original color
comparison method does not allow the decrease of test solution volume without reducing
the sensitivity. This could be overcome by changing the method of color determination
from visual to instrumental, using UV-VIS detection. Thus, we decreased the sample and
reagent volumes (Table 4) and injected the samples to the HPLC-UV detector, without the
presence of a column.

Table 4. Sample preparation methods of colorimetric tests.

Reagent Original Method 1 Sample Preparation for HPLC Detection

PAR -

Reagent: 6 mg PAR was dissolved in 3.5 mL
methanol and 6.5 mL buffer 2.

Sample preparation: 5 µL of PAR solution,
1465 µL of buffer 1 and 30 µL sample.

Xylenol orange -

Reagent: 14.3 mg xylenol orange was
dissolved in 10 mL buffer 1. Sample

preparation: 10 µL of XO solution, 1460 µL of
buffer 1 and 30 µL sample.

Zinc test

5 mL of sample, 4 drops of reagent 1 (160 µL),
1 dosing spoon of reagent 2 (188 mg) and

1 microspoon of reagent 3 (10.3 mg). Leave to
stand for exactly 5 min (reaction time). And

add 4 drops of reagent 4 (160 µL).

45 µL of reagent 1, 53 mg of reagent 2, 9 mg
of reagent 3, 1380 µL of buffer 1, 30 µL

sample, leave to stand for exactly 5 min
(reaction time), and 45 µL of reagent 4.

Iron test
20 mL of sample and 5 drops of reagent 1

(200 µL). Leave to stand for 3 min
(reaction time).

15 µL of reagent, 1455 µL of buffer 1 and
30 µL sample. Leave to stand for 3 min

(reaction time).

Aluminum test

5 mL of sample, 1 microspoon of reagent 1
(147.6 mg), 1.2 mL of reagent 2 and 4 drops of

reagent 3 (160 µL). Leave to stand for 7 min
(reaction time).

34.8 mg of reagent 1, 282 µL of reagent 2,
1150 µL of buffer 1, 30 µL sample and 38 µL

of reagent 3. Leave to stand for 7 min
(reaction time).

1 Original methods and reagent 1, 2, 3 were provided by Merck with colorimetric test. 2 1 M ammonium acetate
buffer, pH 6.5.

Besides the colorimetric tests, we investigated the use of PAR- and xylenol orange
reagents without separation to determine the metal content of the radioactive samples.
The formation and the color of the metal–PAR complex was pH-dependent; thus, the
addition of buffer was essential. Accordingly, 1 M ammonium acetate buffer (pH = 6.5)
was used to adjust the pH of the samples. The strong orange color of the PAR reagent did
not allow the observation of a color change when the PAR concentration of the sample
solution was 200 µM, so it was optimized. Using a 10 µM PAR solution, a color change
from light yellow to pink was clearly visible (Figure 5). The LOQ was 0.21 ppm for Fe3+

with approximately 10 µM PAR, using photometric detection at 490 nm. The calibration
curve was linear (R2 = 0.9993) up to 10 ppm Fe3+ concentration.

Xylenol orange was successfully used for Zn2+ determination in samples containing
0.01 M HCl solution (LOQ 0.61 ppm, R2 = 0.9996), but not in the case of high hydrochloric
acid concentration (2–5 M HCl). Despite the neutralization of samples by large excess of
the buffer, the spectra of xylenol orange was shifted, causing a decrease of absorbance
on the examined wavelength. This was probably due to the presence of chloride anions.
This limits the use of this test for only low HCl-containing samples, so it can be used to
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test the residual Zn2+ content of purified gallium-68 samples, but is not applicable for
checking the intermediate samples of the purification. Similar disturbance was observed in
the presence of other transition metal ions in the sample (Fe3+, Cu2+) with a concentration
higher than 1 ppm. This should be also taken into consideration when attempting to
use xylenol orange for zinc determination. Accordingly, to exclude the presence of Fe3+-
and other interfering transition metal ions, the PAR test (pre-column derivatization or
colorimetric) should be used first, followed by the xylenol orange test to determine Zn2+

content of radioactive samples.
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The tested colorimetric reagents (Table 5) can be used in the low ppm range for metal
determination, but based on our results, the typical Fe3+- and Zn2+ content of the purified
gallium-68 solutions was under the LOQ of the examined methods due to the use of
ultrapure chemicals and careful purification.

Table 5. Comparison of the tested methods.

Reagents Methods Metal Determined Range (ppm) LOQ (ppm) Interfering Metal Ions

PAR

post-column Fe3+ 0.5–1.0 0.08 -

pre-column Fe3+ 1.95–10.0 0.10 -

colorimetry Fe3+ 1.50–11.0 0.21 Cu2+, Ni2+, Ga3+, Bi3+,
Co2+, Cd2+

Triazine derivate
(Merck) colorimetry Fe3+ 1.50–13.0 0.62 Co2+, Cr3+, Cu2+,

Ni2+, Pb2+

Xylenol Orange colorimetry Zn2+ 1.50–20.0 0.61 Cu2+, Ni2+, Fe3+,
Co2+, Al3+

Thiocyanate
(Merck) colorimetry Zn2+ 1.0–20.0 0.20 Cu2+, Fe3+, Ni2+, Pb2+,

Chromazurol S
(Merck) colorimetry Al3+ - 0.04

Ag+, Co2+, Cr3+, Cu2+,
Fe3+, Mn2+, Pb2+,

Sn2+, Zn2+

3. Materials and Methods
3.1. Chemicals and Reagents

All chemicals (buffers, 2-dimethylaminoethanol, pyridine-2,6-dicarboxylic acid, potas-
sium hydroxide, formic acid, potassium sulfate, ammonium hydroxide, sodium bicarbonate,
natural calcium) were obtained from Sigma-Aldrich (Budapest, Hungary) and used without
further purification. 4-(2-pyridylazo)resorcinol (PAR) was purchased from Alfa Aesar (Kandel,
Germany). DGA, Zr and TK200 resins were purchased from TrisKem (Bruz, France). Enriched
zinc-68 (98.60%) was obtained from NeonestAB (Stockholm, Sweden). Ultrapure hydrochloric



Pharmaceuticals 2022, 15, 147 8 of 11

acid (35%) and ultrapure nitric acid (69%) were supplied by Carl Roth GmbH (Karlsruhe,
Germany). Metal ion standard solutions (1000 mg/L Fe3+, Co2+, Cu2+, Ni2+, Bi3+ in nitric
acid for AAS), colorimetric tests (MColortest Zinc Test 1.14412.0001, Mqant Aluminium Test
1.14413.0001, Mcolortest Iron Test 1.14403.0001) and xylenol orange (XO) were supplied by
Merck (Budapest, Hungary). HPLC-grade solvents were purchased from VWR. Ultrapure
water was obtained from a Merck Simplicity Water Purification System.

3.2. HPLC Equipment and Conditions
3.2.1. Post-Column Complexation

The measurements were performed with a chromatographic system, consisting of
a Jasco PU-2080i (metal free) pump, a waters Acquity UPLC BSM pump, a modified
Knauer 3800 autosampler (equipped with plastic injector valve, needle, and 10 µL loop)
and a Waters 2487 dual λ absorbance detector. A photomultiplier tube (Hamamatsu
Photonics H10493-001), equipped with plastic scintillator, was used for the detection of
radioactivity. Data were evaluated by Empower 3 chromatography software. Dionex IonPac
CS5A (2 × 250 mm) column was used for the separation of transition metals [40]. The eluent
contained 7.0 mM PDCA (pyridine-2,6-dicarboxylic acid), 66 mM Potassium hydroxide,
74 mM Formic acid, 5.6 mM Potassium sulfate, delivered with 0.3 mL/min flowrate
by the Jasco metal-free pump. The post-column reagent contained 0.5 mM PAR, 1.0 M
2-dimethylaminoethanol, 0.50 M ammonium hydroxide and 0.30 M sodium bicarbonate. It
was pumped by the Waters BSM pump to the column effluent with 0.15 mL/min flowrate.
Both solutions were prepared and used under an inert atmosphere. Samples were injected
without any sample preparation. The separation took 15 min. UV chromatograms were
integrated at λ = 530 nm (Table 6).

Table 6. Summary of HPLC methods.

System Column Eluent Flow Rate Reagent Detection

Post-column
complexation

Dionex IonPac
CS5A

(2 × 250 mm)

Eluent A: 7.0 mM PDCA,
66 mM Potassium hydroxide,
74 mM Formic acid, 5.6 mM

Potassium sulfate
Eluent B: 0.5 mM PAR, 1.0 M

2-dimethylaminoethanol,
0.50 M ammonium hydroxide

and 0.30 M sodium
bicarbonate

A: 0.3 mL/min
B: 0.15 mL/min PAR 530 nm

Pre-column
complexation

LiChrospher
100 RP18 column

(75 × 4 mm,
5 µm)

65% 0.1 M; pH 6.5
NH4H2PO4/(NH4)2HPO4
buffer and 35% methanol

0.8 mL/min PAR 530 nm

Colorimetry - water 0.8 mL/min

PAR 490 nm

XO 570 nm

Zinc test 435 nm

Iron test 560 nm

Aluminium test 590 nm

3.2.2. Pre-Column Complexation

The measurements were performed with a Jasco PU-2080i (metal free) pump, a mod-
ified Knauer 3800 autosampler (equipped with plastic valve, needle, and 10 µL loop)
and a Waters 2487 dual λ absorbance detector. Flow rate of 0.8 mL/min on a LiChro-
spher 100 RP18 column (75 × 4 mm, 5 µm). The mobile phase was 65% 0.1 M; pH 6.5
NH4H2PO4/(NH4)2HPO4 buffer and 35% methanol. Samples were mixed in 1:1 ratio with
PAR reagent solution, prepared by dissolving 6 mg of solid PAR in 3.5 mL methanol and
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6.5 mL NH4H2PO4/(NH4)2HPO4 buffer (0.1 M; pH 6.5). Formation of the PAR complex
was accompanied by an immediate color change (Table 6).

3.2.3. Colorimetry

The measurements were performed with a Jasco PU-2080i (metal free) pump, a modi-
fied Knauer 3800 autosampler (equipped with plastic valve, needle and 10 µL loop) and
a Waters 2487 dual λ absorbance detector. The injector was directly connected to the
detector—without column. Eluent was water with 0.8 mL/min flowrate. UV detection was
performed at 490 nm (Table 6). Table 4 shows the sample preparation methods for different
colorimetric analyzes.

3.3. Production and Purification of Scandium-44 and Gallium-68 Radionuclides

Scandium-44 and gallium-68 isotopes were produced in a GE PETtrace cyclotron with
proton irradiation of solid calcium and zinc metal targets (44Ca(p,n)44Sc), (68Zn(p,n)68Ga)
using a shuttle-type solid target system developed in-house [15], equipped with 50 µm
HAVAR- and 500 µm aluminum energy degrader foils. The targets were prepared by
pressing approximately 120 mg natural calcium metal or 40 mg enriched zinc-68 powder to
form a pellet and these pellets were pressed into aluminum target holders. Targets were
irradiated with 30–50 µA proton beam for 10–180 min.

Purification of [44Sc]Sc3+: Irradiated target (with 100–500 MBq activity) was placed
in a lead pot and pressed against a plastic dissolution block equipped with an O-ring seal
and two Teflon capillaries ending at the target metal surface. The irradiated metal was
dissolved in 4 mL 3 M u.p. HCl at room temperature, pumped at 1 mL/min with a syringe
pump. Target solution was loaded onto 70 mg DGA resin and washed with 3 mL 3 M HCl
(removal of Ca2+) and 3 mL 1 M HNO3 (removal of Fe3+, Zn2+, Ni2+). [44Sc]Sc3+ was eluted
fractionally with 1 mL 0.1 M HCl. [44Sc]Sc3+ recovery was 75–85%.

Purification of [68Ga]Ga3+: Irradiated target (2–60 GBq) was dissolved in 10 mL 5 M u.p.
HCl at room temperature in the same dissolution block and loaded to Zr resin, washed
with 10 mL 5 M HCl and eluted to TK200 resin with 5 mL 2 M HCl. Final elution from the
second resin was performed with 0.05 M HCl.

4. Conclusions

We have compared various metal determination methods, utilizing colored complex
formations with different dyes.

Based on our studies, chromatographic separation with post-column derivatization is
a more selective and sensitive method for trace metal analysis, but the complexity of the
instrumental setup and the observed baseline instabilities prohibit its use for routine QC.
Furthermore, commercially available or in-house-developed colorimetric tests can be useful
for the detection of higher (more than few ppm) concentrations of contaminating metals,
but is not selective enough to use in the sub-ppm range, where the typical metal content of
radiometal samples can be found. We have found that the reliability and documentation of
colorimetric testing can be improved by injecting the samples to the HPLC-UV detector
without a column. In addition, the use of HPLC detection enables the use of much smaller
sample volumes (30 µL instead of 5–20 mL), which significantly reduces the material loss of
short-lived radiometals during QC. The most important advantage of colorimetric methods
is the possibility to obtain information about the metal content of a sample without delay,
which together with labeling tests (e.g., apparent molar activity determination) can facilitate
method development, help in troubleshooting and may enable some level of process control
in routine radiotracer production.

The examined colorimetric tests cannot replace atom spectroscopic techniques for the
determination of trace metal impurities in radioactive samples but can find their place in
purification method development and routine QC of radiometal solutions for labeling.



Pharmaceuticals 2022, 15, 147 10 of 11

Author Contributions: V.F. performed method development and data analysis, A.F., B.G., D.S.
(Dániel Szücs) and G.T. contributed to the design of the experiments, D.S. (Dezső Szikra) provided
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