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Abstract: The traditional signal of opportunity (SOP) positioning system is equipped with dedicated
receivers for each type of signal to ensure continuous signal perception. However, it causes a low
equipment resources utilization and energy waste. With increasing SOP types, problems become
more serious. This paper proposes a new signal perception unit for SOP positioning systems. By
extracting the perception function from the positioning system and operating independently, the
system can flexibly schedule resources and reduce waste based on the perception results. Through
time-frequency joint representation, time-frequency image can be obtained which provides more
information for signal recognition, and is difficult for traditional single time/frequency-domain
analysis. We also designed a convolutional neural network (CNN) for signal recognition and a
negative learning method to correct the overfitting to noisy data. Finally, a prototype system was
built using USRP and LabVIEW for a 2.4 GHz frequency band test. The results show that the system
can effectively identify Wi-Fi, Bluetooth, and ZigBee signals at the same time, and verified the
effectiveness of the proposed signal perception architecture. It can be further promoted to realize SOP
perception in almost full frequency domain, and improve the integration and resource utilization
efficiency of the SOP positioning system.

Keywords: time frequency analysis; signal of opportunity; Nav-SOP; convolutional neural net-
work; USRP

1. Introduction

Global navigation satellite system (GNSS) is the most widely used navigation system.
It uses satellites to broadcast positioning signals and provides positioning, navigation, and
timing services for worldwide users. However, it also has some problems: (1) The signal
landing power is about −130 dBm, which is easy to be interfered and spoofed. (2) The
signal is easy to be blocked by obstacles, making it difficult to use in dense urban areas or
indoor environments [1]. In perspective of the above-mentioned problems of GNSS, an
ever-increasing amount of researchers have begun to explore reliable positioning methods
that do not rely on GNSS systems.

SOP navigation utilizes all potential wireless signals in the surroundings for posi-
tioning [2]. SOP include various signals that are not specifically designed for navigation,
such as digital audio broadcasting (DAB), digital video broadcasting (DVB), amplitude
modulation radio (AM) and frequency modulation radio (FM), cellular signals, Bluetooth,
ZigBee, Wi-Fi, and other wireless signals [3]. These signals are widespread and usually
used for communication rather than navigation. We can extract useful information from
SOP such as signal strength, ranging and time information for navigation. Common types
of SOP are demonstrated in Table 1.
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Table 1. List of common SOP.

Signal Frequency Bandwidth

WiFi 2.4 GHz/5 GHz 20 MHz/40 MHz/80 MHz
Bluetooth 2.4 GHz 1 MHz

ZigBee 2.4 GHz 2 MHz
DVB-T 40–200 MHz 8 MHz
GMS 900, 1800 MHz 200 kHz

Iridium 1620 MHz 41.67 kHz

The process of SOP positioning can be roughly divided into signal perception, data
preprocessing, information extraction, and positioning solution [4]. Effectively identifying
the SOP is the primary task of SOP navigation. It can be seen from the Table 1 that
there are many types of opportunistic signals, with different distribution frequency bands,
bandwidths, and signal modulation methods, which brings difficulties to signal perception.
The common signal perception methods include coherent detection, energy detection,
cyclostationary feature detection, etc. [5]. The schematic flow charts of three common
detection methods as indicated in Figure 1.

• Coherent detection [6]:

Matched filters are a common way for coherent detection. Its advantages are high
recognition efficiency and high accuracy with a short detection time, so in a sense it might
be said to be an optimal detector; the disadvantage is that the relatively high computational
complexity and needs prior information about the SOP, such as modulation method,
modulation order, pulse waveform, data packet format, etc. It also needs time, carrier, and
even channel synchronization to enable correlation with the signal, which is complicated to
implement for SOP system. For different types of signals, special receivers are required too.

• Energy detection [7–9]:

Most signals are broadcast with a fixed frequency. By detecting the energy of the
specific frequency, we can judge whether the corresponding signal exists. This method
is simple to implement, has strong adaptability, and does not require more prior signal
information. To measure the energy of a signal at a certain frequency, the signal output by
the band-pass filter with bandwidth W is squared and integrated over the observation time.
Then the calculated energy value is compared with a threshold to determine the existence
of signal. The energy detection algorithm has low complexity, but the threshold is easily
affected by changes in noise power and becomes invalid. Meanwhile this algorithm is not
suitable for direct sequence spread spectrum (DSSS) signal, frequency hopping signals,
and co-band signals (e.g., Industrial Scientific Medical (ISM) band).

• Cyclostationary feature detection [10,11]:

Communication signals usually include carrier frequencies, frequency hopping se-
quences, cyclic prefixes, etc., which make the signal statistical characteristics such as the
mean value and correlation function periodic. However, noise does not have this charac-
teristic, which can use to separate the noise from the target signal. This method has good
detection performance even in the case of a low signal-to-noise ratio. The drawback of this
method are higher complexity and longer detection time.

Over 1990s, Dr. Joseph Mitola proposed the concept of software radio [12], which
has a reconfigurable software and hardware architecture. The device’s communication
frequency, transmission power, modulation method, coding system, etc. can be adjusted
through software configuration, effectively improved the openness and flexibility of the
communication system. With the development and maturity of software radio technol-
ogy, software radio-based architecture is also used by more scholars in the field of SOP
positioning [13–17].
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Figure 1. Schematic flow charts of three common detection methods. (a) Schematic flow chart
of coherent detection; (b) schematic flow chart of energy detection; (c) schematic flow chart of
cyclostationary feature detection.

At present, the usual SOP positioning system architecture is shown in the Figure 2.
In order to complete signal perception and access, dedicated receivers need to equipped
for each type of signal [18,19]. The equipped receiver will increase along with the types of
signals, which leads to a series of problems: (1) since the lack of available signal information,
all receivers need continue working to ensure the perception of all types signals, even if only
no signal exist, which causes high power consumption, and hardware and energy resources
waste; (2) different signals in the same frequency band (such as WiFi, ZigBee, Bluetooth,
etc. in the ISM band) still need multiple devices to complete the signal perception, which
does not make full utilization of hardware resources.

Figure 2. Structure diagram of traditional SOP positioning system.

With this as the backdrop, this paper designs a new signal perception unit of the
SOP positioning system to achieve efficient SOP perception. The relationship between
the perception unit and the SOP positioning system is shown in Figure 3. The task of
SOP perception is completely performed by the perception unit. When the perception
unit recognizes the existence of signal, it notifies the perception controller to flexibly
configure the USRP equipment for target SOP and activity the corresponding receiver
to start signal access. Otherwise, the receivers are in a standby state to decrease useless
energy consumption. The flexibly configuration of USRP means each one can be used
for all types of SOP, so we can develop a SOP positioning system with less USRP than
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fixed configuration system in Figure 2. It improves the system integration and resource
utilization efficiency. The remaining part is to completes signal capture, tracking and
demodulation and produce pseudorange, carrier phase observables, time synchronization
and signal strength, etc. The positioning engine calculates the positioning result according
to the signal information obtained.

Figure 3. Structure diagram of a new SOP positioning system proposed by this paper.

The advantages of the new SOP perception architecture are as follows: (1) it can
monitor hundreds of MHz bandwidth at the same time, which is related to the bandwidth
of the USRP device (in this article, B210 can monitor 50 M bandwidth). Combined with
time-sharing frequency hopping technique, signal perception can be implemented in a
wider frequency band, but it will reduce the real-time performance of perception; (2) it
can identify multiple types of signals in the same frequency band at one time. A typical
example of this situation is the ISM frequency band; (3) there is no need for multiple
receivers, which can save hardware resources and reduce energy consumption. The new
SOP perception architecture can be extended to other SOP and realize almost all frequency
domain SOP perception.

In previous work [20], we tried short-time Fourier transform (STFT) to convert signal
samples into time-frequency images, speed up robust features (SURF) algorithm for feature
extraction, K-means algorithm for clustering, and support vector machines (SVM) for signal
classification. A simulation experiment was carried in the 2.4 GHz ISM frequency band,
with Wi-Fi, Bluetooth and ZigBee as the target signals. The signal generation and perception
were carried with Simulink and Matlab. The simulation experiment preliminarily verified
the possibility of using time-frequency image for SOP perception. However, there are
several problems in the previous work: (1) if there are multiple signals in the same time-
frequency image, the result will be classified as the most likely one, and the SVM cannot
identify all signal types; (2) the results are only verified by simulation, without considering
the hardware implementation feasibility (which has not been actually tested).

In response to the above problems, this paper proposed an improved CNN feature
extraction and classification method, built a prototype hardware system, and conducted
actual experimental tests to verify the effectiveness of the designed perception architecture
and algorithm. We still select Bluetooth, Wi-Fi, and ZigBee in the 2.4 GHz ISM frequency
band to verify the perception ability. We also improved the time-frequency representation
methods. The remaining chapters of this article are as follows: Section 2 describes the
model, including the target signal and the design of the signal perception unit. Section 3
analyzes four signal time-frequency joint representation methods, and Section 4 proposes a
CNN-based SOP recognition method, this section also illustrate network design, negative
learning-positive learning (PL-NL) combined training process and classification result.
Section 5 introduces the experimental system and experimental verification. Section 6
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summarizes the work of this paper, significance for SOP positioning system, points out the
shortcomings and the direction of future work.

2. Signal and System
2.1. Signal Introduction

This section briefly introduces the target signals (Bluetooth, Wi-Fi, ZigBee) in the
paper and includes basic information such as channel parameters, transmission power, and
access method.

• Bluetooth [21]

Bluetooth is a low-power communication technology, generally used for short-distance
wireless communications. The transmission power can generally be divided into three
classes, namely 100 mW (class 1), 2.5 mW (class 2), and 1 mW (class 3). The modulation
method of Bluetooth is Gaussian Frequency Shift Keying (GFSK), the transmission rate can
reach 1 Mb/s. Bluetooth can transmit on 40 channels in the range of 2402–2480 MHz, the
width of each channel is 2 MHz. When communicate with other nodes, frequency-hopping
spread spectrum (FHSS) is used on 40 channels. In a non-connected broadcast mode,
Bluetooth signals are broadcast on three fixed channels 37, 38, and 39. The receiver can
identify the signal source by access code in broadcast data packets. The Bluetooth channel
distribution is shown in the Figure 4.

Figure 4. Bluetooth channel distribution.

• WiFi [22]

The IEEE 802.11b/g/n protocol, commonly known as WiFi uses two modulation
schemes. Direct sequence spread spectrum (DSSS) is used for lower bit rates transmission,
and orthogonal frequency division multiplexing (OFDM) is used for higher bit rates
transmission. There are 13 channels defined in the 2.4 GHz ISM frequency band (different
regions may vary), the width of each channel is 20/22 MHz. The total frequency band
width is 83.5 MHz so there is overlap between the channels, as shown in Figure 5. The
maximum allowable power is 10 mW/MHz. The wireless access point (AP) periodically
sends broadcast frames about 10 times per second to inform the existence of the WiFi
network, which contains Service Set Identifier (SSID) information.

Figure 5. WiFi channel distribution.

• ZigBee [23]

ZigBee is a low-rate wireless network, following the IEEE 802.15.4, using DSSS mod-
ulation. A total of 16 channels are defined in 2.4 GHz band and do not overlap; each
channel has 2 MHz bandwidth with a 3 MHz guard interval, which is shown in Figure 6.
The communication range is about 10 m, transmission rate can reach 250 kb/s. When a
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new ZigBee network is established, the energy detection function is used to determine the
operating channel. However, dynamic channel selection is not supported.

Figure 6. ZigBee channel distribution.

The Figure 7 shows the relationship between Bluetooth, WiFi, ZigBee on the 2.4 GHz
ISM frequency band. It can be seen that they completely overlap in the frequency do-
main [24].

Figure 7. Bluetooth, WiFi, and ZigBee signal distribution in 2.4 GHz ISM frequency band.

2.2. System Structure

The structure of the signal perception unit contains signal acquisition, time-frequency
joint representation, perception controller, model manager and signal classification. The
relationship of each part is shown in Figure 8.

Figure 8. The structure of the signal perception unit.
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• Perception controller

The perception controller is the control center of the perception unit, which com-
pletes the configuration according to different needs. Its perception strategy contains
fixed frequency mode and frequency hopping mode. The frequency hopping mode is
design to solve the contradiction between the limitation of hardware resources (such as
the bandwidth of the USRP, the transmission rate of the interface) and the wider target
frequency band. In this mode, according to the monitoring frequency range f1, f2, and
the device bandwidth M, the monitoring frequency domain can be segmented into pieces.
The controller changes the center frequency periodically to realizes the monitoring of a
wider frequency band, but the frequency hopping causes the perception hysteresis. The
schematic diagrams of the two modes shown in Figure 9.

Figure 9. Perception strategy: (a) fixed frequency mode; (b) frequency hopping mode.

• Signal acquisition

After the perception controller completes the configuration of the hardware parame-
ters (center frequency, sampling rate, etc.), USRP starts the signal acquisition whose process
includes mixing, AD sampling, data buffering, etc. The obtained data will be transferred to
LabVIEW software on PC via UHD driver and USB 3.0, waiting for further processing.

• Time-frequency joint representation

In order to obtain more abundant signal characteristics, this paper uses time-frequency
joint representation to convert 1D time-domain signals into 2D time-frequency images,
which present the time-frequency joint characteristics of the signal. Each pixel in image
represents the energy of the wireless signal at a certain frequency and time. The entire
image shows the wireless signal energy distribution over the frequency domain and a
period of time. Specifically, the transform is implemented based on the LabVIEW software.

• Preprocessing

The acquired time-frequency images need further processed for signal classification
or data set, including grayscale, size normalization, etc.

• Signal classification

This part classifies time-frequency image through a pre-trained CNN model. In order
to adopt different frequency bands or types of signals, the model can be updated according
to the parameters given by the model manager. This paper implements an improved CNN
classification method through python and pytorch library.

• Model manager

The model manager stores multiple sets of CNN parameters, different parameters
correspond to different frequency bands and signal types. The model manager selects
appropriate parameters according to the instructions of the perception controller and send
them to the signal classification part to complete the model update.
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3. Time–Frequency Representation

Signal analysis can be carried out in the time or frequency domain by Fourier transform
or inverse transform. However, the Fourier transform is a kind of overall transform, which
is only suitable for stationary and deterministic signals, and cannot reflect the changes
of signal frequency characteristics over time. To analyze the time-varying frequency
information of a signal, time-frequency representation (TFR) is needed. TFR transforms the
signal from single time/frequency domain into a time-frequency 2D feature image [25],
which reflects the time-frequency joint characteristics of the signal. A WiFi time-frequency
image is shown in Figure 10.

Figure 10. Time−frequency image.

Since the non-parametric time-frequency analysis method does not require prior
knowledge of the signal, the time and frequency resolution obtained does not depend on
the specific signal, and is more suitable for the scenario of SOP perception. Commonly used
non-parametric time-frequency analysis contains linear and nonlinear methods [26,27].
Typical linear analysis includes STFT, Continuous wavelet transform (CWT), etc., and
typical nonlinear analysis includes Wigner-Ville distribution (WVD), Cohen Classes, etc.

3.1. Short-Time Fourier Transform

The basic idea of STFT is to use a window function for signal interception, and assume
that the signal is stable within the window. Fourier transform is used to analyze the
intercepted signal, and then move the window function along the signal time direction to
obtain the time-frequency distribution relationship. The STFT of signal x(t) is expressed as:

STFT(τ, f ) =
∫ ∞

−∞
x(t)g(t− τ)e−j2π f tdt (1)

where x(t) is the target signal and g(t) is the window function [28].
In the process of STFT, the length of the window determines the time and frequency

resolution of the time-frequency image. The longer the window length, the higher the
frequency resolution after Fourier transform and the worse the time resolution. The length
of the window needs to be adjusted according to the specific situation.

3.2. Continuous Wavelet Transform

The continuous wavelet transform of the signal x(t) is expressed as:

CWT(a, b) =
1√
a

∫ ∞

−∞
x(t)w

(
t− b

a

)
dt (2)
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where w is the complex conjugate of w, w is the mother wavelet function that satisfies the
admissible condition, a is the expansion factor, and b is the translation factor [29]. The
commonly used mother wavelet function is Morlet wavelet, and its expression is:

w(t) = π−
1
4 ej2πf0te−

t2
2 (3)

3.3. Wigner-Ville Distribution

The WVD is a basic non-linear analysis method, which was originally proposed
by Wigner in quantum mechanics, and the Wigner-Ville distribution of signal x(t) is
expressed as:

WVD (t, f ) =
∫ ∞
−∞ z

(
t + τ

2
)
z
(
t + τ

2
)
e−j2π f tdτ

z(t) = x(t) + j
∫ ∞
−∞

x(u)
t−u du = x(t) + jH[x(t)]

(4)

where z(t) is the analytical signal of x(t), H[x(t)] represents the Hilbert transform of signal
x(t), and z is the complex conjugate of z [30].

If x (t) = x1(t) + x2(t), then:

WVD (t, f ) = WVDx1(t, f ) + WVDx2(t, f ) + 2Re[WVDx1x2(t, f )] (5)

where WVDx1x2(t, f ) is the cross term of the Wigner-Ville nonlinear distribution:

WVDx1x2 (t, f ) =
∫ ∞

−∞
x1

(
t +

τ

2

)
x2

(
t +

τ

2

)
e−j2π f tdτ (6)

3.4. Cohen Classes

The Cohen classes time-frequency analysis is a modification of the WVD, which can
be expressed in a unified form:

CTFD(t, f ) =
x

φ(τ, θ)WVD(t− τ, f − θ) dτd (7)

In the formula, WVD is the Winger-Ville distribution, and φ (τ, θ) is called the kernel
function [31].

Commonly used Cohen Classes distributions include pseudo-Wigner-Ville distribu-
tion (PWD), smoothed Wigner-Ville distribution (SWD), Born-Jordan distribution (BJD),
Generalized rectangular distribution (GRD), Choi-Williams distribution (CWD), Zhao-
Atlas-Marks distribution (ZAMD), etc.

3.5. Effect Analysis

We select a same segment of signal for experiment to compare the four time-frequency
analysis methods, and the results are shown in the Figure 11. The abscissa of image
represents time, and the ordinate represents frequency. The lighter the color of the pixel,
the higher the power. It can be seen that the time-frequency distribution of Cohen and
WVD has obvious cross-term interference. Between STFT and CWT, the CWT’s signal
energy more concentrated. Therefore, we select CWT for time-frequency representation in
this article.

Through time-frequency joint representation, we have completed the transformation
of signal information from time/frequency-domain to time-frequency joint characteristics,
providing more usable information for signal perception. The next step is to send the
obtained time-frequency image to the CNN for model training and signal perception.



Sensors 2021, 21, 7871 10 of 24

Figure 11. Comparison of four types time-frequency images: (a) STFT; (b) CWT; (c) WVD; and (d) Cohen.

4. CNN-Based Signal Classification Model

Machine learning is commonly used to instead artificial visual interpretation in image
classification which can be roughly divided into: shallow learning and deep learning [32].
Shallow learning includes: SVM, Boosting, Logistic Regression, etc. Deep learning in-
cludes: convolutional neural network (CNN), recurrent neural network (RNN), generative
adversarial network (GAN), etc. A large number of experiments and practices have veri-
fied that the shallow learning performs poorly in processing high-dimensional data, but
deep learning makes up for this shortcoming. By using multi-level non-linear processing
units, it has advantages in extracting deep structural features, and is more suitable for
tasks such as visual recognition [33,34], audio recognition [35,36], and natural language
processing [37,38].

As a deep feedforward network, CNN’s core is to simulate the learning behavior of
the human brain by constructing a neural network model, and optimize the parameters
of the CNN model through training iterations [39,40]. The classic CNN models contains
LeNet-5, AlexNet, ZF-Net, VGGNet, GoogLeNet, ResNet, and DenseNet.

AlexNet [41] is a CNN framework proposed by Alex and Hinton when they partici-
pated in the 2012 ImageNet competition. They introduce the Relu activation function and
Dropout to improve training speed and prevent overfitting. The advantages of AlexNet
are simple calculation and fast convergence speed.
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4.1. CNN Structure Design

The CNN consists of convolutional, pooling, and fully connected layers. The theoreti-
cal basis of the convolutional layer is the concept of receptive fields in biology, which can
greatly reduce the parameters required for neural network training. Pooling, also known
as down-sampling, is used to reduce the amount of data while retaining useful information.
By superimposing the convolutional layer and the pooling layer, it forms one or more fully
connected layers to achieve higher-order reasoning capabilities.

In this paper, a CNN model is designed based on the Alexnet architecture for signal
classification and is streamlined to reduce the requirements for device performance. The
network structure is in Figure 12:

Figure 12. CNN network structure designed in this paper.

It contains four pairs of convolutional layers and pooling layers (C1-P1, C2-P2, C3-P3,
and C4-P4), followed by two fully connected layers (FC1 and FC2) and an output layer
(FC3). The main purpose of the convolutional layer is the feature abstraction and extraction,
while the pooling layer is responsible for feature fusion and dimensionality reduction. The
fully connected layer is responsible for logical inference, in which the first one is used
to link the output of the convolutional layer, remove the spatial information (number of
channels), and turn the three-dimensional matrix into vector. Each convolutional and fully
connected layers’ output, except the last output layer, are connected to rectified linear unit
(ReLU), which helps to alleviate the gradient disappearance or explosion, and speed up
the training process.

After analysis, the color of the time-frequency image is of little significance to signal
classification, meanwhile the more important things are signal pattern character and spatial
distribution. Therefore, during preprocessing the time-frequency image obtained is directly
transformed into a 224 × 224 grayscale image, so the input size of the network is 224 × 224
pixels. The convolution kernel size of the first convolution layer is 11 × 11 × 16, stride
= 4 and padding = 2. The total parameters number of this layer is (11 × 11) × 16 = 1936,
which represents the weight of the layer. The output size of each convolution kernel in
the first layer is (224 − 11)/2 + 1 = 55, and the output size of the C1 is 55 × 55 × 16.
The second layer is a pooling layer (P1), with a size of 3 × 3 and stride = 2. The output
size of the kernel is (55 − 3/2 + 1) = 27, so the output size of this layer is 27 × 27 × 16.
All parameters of the pooling layer are hyper-parameters and do not need to be learned.
Similarly, we can calculate the size of each convolution and pooling layer. In the end there
are 2 fully connected layers with 864 neurons in each layer, whose parameters are fully
connected weight coefficients. We use the dropout layer after the fully connected layer to
avoid overfitting.

Since the existence of signal is independent for each other, this is a multi-label classi-
fication problem. So, we replaced the original softmax with Sigmoid function in the last
layer (FC3). The output probability of each signal is between [0, 1]. If the output is greater
than the probability threshold (usually 0.5), we considered that corresponding signal exists.
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4.2. Data Collection

Before the network training, a data set must be collected first for model training and
training effect evaluation. This article uses hardware equipment to generate signals for
testing and data acquisition. The equipment selection is as follows:

We select TP-Link mini wireless router node TL-WR802N as WiFi equipment, which
main control chip is Qualcomm QCA9533. It follows IEEE802.11n standard, and runs in
AP mode by default, transmission power <20 dbm. The photos of the TL-WR802N and the
time-frequency image are in Figure 13.

Figure 13. WiFi equipment: (a) photo of TL-WR802N; (b) WiFi signal time-frequency image.

We select the E18-TBL-01 module produced by EBYTE as ZigBee equipment. The main
control chip of the module is TI’s CC2530 chip, which integrates an enhanced 8051 CPU,
follows the IEEE802.15.4 standard. Transmit power can set as 4.5/20/27 dBm. The module
works in broadcast mode by default. The photos of the E18-TBL-01 and the time-frequency
image are in Figure 14.

Figure 14. ZigBee equipment: (a) photo of E18-TBL-01; (b) ZigBee signal time-frequency image.

The Bluetooth equipment uses Social Retail’s iBeacon node, and the main control
chip is TI’s CC2541 Bluetooth chip. The iBeacon carries on BLE broadcasting whose frame
period is 500 ms, and transmission power is 0 dBm. The photos of the Bluetooth iBeacon
and the time-frequency image are in Figure 15.

We choose a spacious environment for signal acquisition and to ensure that there was
no interference signals. In order to monitor possible external interference sources at the
test area (such as other Wi-Fi equipment), we used Rohde & Schwarz’s FSH8 spectrum
analyzer which is shown in Figure 16. Figure 17 shows the spectrum analyzer detection
result measured in two ways: (a) using the max hold mode to measure the maximum level
within a period of time; and (b) using the clear/write mode, observe whether there is a
jump on the 2.4 G spectrum. Perform interference detection before each experiment to
check external interference, so as to avoid results bias.
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Figure 15. Bluetooth equipment: (a) photo of iBeacon node; (b) Bluetooth signal time-frequency image.

Figure 16. Rohde and Schwarz FSH8 Spectrum Analyzer.

Figure 17. Interference signal detection result by spectrum analyzer: (a) max hold model detection result; (b) clear/write
model detection result.

If we acquire signal time-frequency images at the same time, the acquired image
should only contain low-power noise signal and USRP device thermal noise which is
shown in Figure 18.
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Figure 18. The time-frequency image of noise signal.

After confirming no external interference sources in the experimental environment,
place the signal source equipment and turn on the signal acquisition system to collect
time-frequency images under different signal combinations. The number of each type
of node in the working state is variable, and should include all the signal combinations
which is better in conformity with practical channel environment. Three types of signals
can enumerate seven types of signal combination situations, as shown in Figure 19. If the
number of working signal source can change at the same time, the combination will be
more complicated, so we do not list them one by one here.

Figure 19. Types of signal combinations.

We chose all situations in the Figure 19 above as data set labels, and each label
collected at least 200 pictures. In the actual acquisition process, images with weak signal
characteristics or no signal at all will appear, and these poor-quality data need to be
manually eliminated. Finally, we use 80% of the data set as the training set, 20% as the
validation set, and collect other 20 images for each type of label as the test set. Figure 20
shows a part of the data set.

Figure 20. Part of the data set.
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4.3. Model Training

Sometimes the signal pattern in the time-frequency image is small and sparse, the
features are not obvious. This often happens when the target signal has long broadcast
cycle, weak power and small bandwidth (for example, Bluetooth). An example is shown
in the Figure 21, the white dot in the area enclosed by the yellow box in the figure are
Bluetooth signal pattern.

Figure 21. Bluetooth time-frequency image with unobvious characteristics.

This will cause the model to learn the noise features incorrectly during the training
process and cause over-fitting. So, we introduce a negative learning (NL) training method
to prevent CNN from overfitting noisy data which is proved by Kim [41]. NL method
does not require any prior knowledge of noise data such as type and quantity. Different
from the positive label data used in positive learning (PL) which contains the target feature
information that the model focuses on, the negative label data can tell the model about
the feature information of noise and interference information, which helps to distinguish
the useless features. By combining PL and NL, we can improve accuracy while ensuring
training speed. PL can quickly reduce the loss, but it is easy to overfit in the end. The
obtained model after PL is then subjected to NL to correct the over-fitting of the noise and
improve the recognition accuracy. This article uses a combination of two NL and one PL
for training. The training process is shown in the Figure 22.

Figure 22. The training process combined NL and PL.

In order to obtain the best classification performance, we need to adjust three hyperpa-
rameters which are the initial learning rate, the mini-batch size, and the training iterations
number. We set different hyperparameter values for the three training processes, and
conduct a series of training to try different parameter combinations. The final parameter
values are shown in Table 2.
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Table 2. Hyperparameter setting for the three training processes.

Learning Rate Batch Size Training Iteration Number

Negative learning 1 0.000002 30 10
Positive learning 0.0003 30 30

Negative learning 2 0.00001 30 15

4.4. Training Result

In a total of 55 iterations of training process, the loss function and training accuracy
curve are shown in the Figure 23. It can be seen that after the first 40 iterations of training,
the loss function curve gradually decreased to a lower level. However, in the 41st training
process, both the loss curve and the accuracy curve showed great changes which means
the model has been overfitted. The second negative learning completed the correction of
the over-fitting, and the loss function and accuracy curve returned to a normal level. The
test results of the finally trained model on the test set are shown in the Table 3.

Figure 23. Training curves: (a) loss curve; (b) accuracy curve.

Table 3. Test set verification results.

Learning Rate Batch Size Training Iteration Number

Negative learning 1 0.000002 30 10
Positive learning 0.0003 30 30

Negative learning 2 0.00001 30 15

5. Experiments and Performance Evaluation
5.1. Perception Experiment
5.1.1. Experimental System

We built a SOP perception system based on the USRP platform. The hardware uses
B210 USRP produced by Ettus and a DELL notebook. The device connection relationship
is shown in the Figure 24, USRP’s radio port is connected to a standard 2.4 GHz omnidirec-
tional antenna, and data port is connected to the laptop through the USB3.0 interface.

USRP B210 integrates a AD9361RFIC direct conversion transceiver, providing up to
56 MHz real-time bandwidth, and the radio frequency range is from 70 MHz to 6 GHz.
The onboard signal processing and control of the AD9361 is performed by a Spartan6
XC6SLX150 FPGA, which is connected to the host PC using USB3.0, and the PC performs
further processing on the collected data.
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Figure 24. SOP perception system.

The notebook model is DELL’s P74G, with i7-8550U dual-core CPU, 8 GB RAM,
Windows 10 operating system, the installed software includes USRP Universal Hardware
Driver (UHD) driver, LabVIEW 2020, python 3.8. Remove the internal wireless network
card during the test to avoid interference.

The structure and data flow of the entire perception system is shown in the Figure 25.

Figure 25. The structure and data flow of the SOP perception system.

The USRP completes the sampling of the wireless signal and sends the data to the
PC via UHD and USB3.0. LabVIEW software completes the subsequent signal processing
and interactive interface. Signal processing includes time-frequency image representation,
image preprocessing, perception model management, signal classification, etc. The signal
classification uses the python node to run the pre-trained CNN model through LabVIEW.
We use python to implement the CNN model based on the pytorch library. The system
software interface is shown in Figure 26. The functions include system settings, spectrum
monitoring, real-time preview, classification results display, data collection and storage, etc.

5.1.2. Experimental Scenarios

In order to test the SOP perception effect, we deployed multiple WiFi, Bluetooth,
ZigBee signal nodes in the actual scene, and used the built perception system for signal per-
ception testing. The experiment was chosen to be carried out in a two-story underground
parking lot where has no 2.4G wireless equipment. Figure 27 shows a real view of the
test site.
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Figure 26. System software interface.

Figure 27. Experimental environments: (a) B1 of parking lot; (b) B2 of parking lot.

In advance, we make sure that there was no external interference in the 2.4 GHz
frequency band in the test site by using an Agilent spectrum analyzer. The test results are
shown in the Figure 28.

Figure 28. Spectrum analyzer detection results show no interference source: (a) max hold model; (b) clear/write model.

After external interference check, we arranged the signal nodes in different areas. The
layout need consider the influence to perception with different numbers and combinations
of signal sources. The deployed nodes are shown in Figure 29.
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Figure 29. The deployed signal nodes: (a) Wi-Fi node; (b) Bluetooth node; and (c) ZigBee node.

On the B1 layer, we deploy multiple types of signal nodes at the same time to test
the system’s signal perception ability in a complex wireless environment where multiple
signals coexist. On the B2 layer, we only deploy one type of signal at a time to test the
system’s ability to percept specific signal at different distance. The floor plan and signal
source layout position are shown in Figure 30. The green line represents the walking route
of tester.

Figure 30. Test site plan and signal source layout location: (a) B1 of parking lot; (b) B2 of parking lot.

5.1.3. Experimental Result

In the B1 the tester holds the perception system and passes through the test area
according to the route. The perception results are shown in Figure 31. We use line graphs
to indicate the signal perception result. The dashed line indicates that the signal is not
recognized at all, and the solid line indicates that the signal is recognized. At the same time,
the red solid line represents the perception result is error, yellow solid line represents the
signal perception result is correct but unstable, and green represents the result is correct,
stable, and continuous.
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Figure 31. Experiment and results in B1: (a) experimenting in parking lot; (b) perception result in
parking lot B1.

Experimental results show that the system can simultaneously perceive WiFi, Blue-
tooth and ZigBee signals in a mixed wireless signal environment. However, accidental
misrecognition and unstable recognition also occurred during the experiment. The reason
of unstable recognition or even unrecognizable during the experiment are as follows: (1) the
weak signal power causes weak signal characteristics. When the signal power is less than
the noise, signal perception failed; (2) the signal broadcast cycle is too long to guarantee
that the signal will be captured in each time-frequency image. These two situations are
more common in the Bluetooth signal perception. Due to its low power consumption
design, the signal transmission power is lower and the period is longer. The weak signal
power also easy to appear due to ‘non-line of sight’.

In the B2, we tested the perception ability at different distances, respectively. The
distance between signal source and test points are a multiple of 8 m. At each test point, we
continuously record the perception results for 2 min and calculate the recognition rate. The
result is shown in Figure 32.

It can be seen from the experimental results that the effective distance of perception
is: WiFi > ZigBee > Bluetooth, and the main factors that affect the perception are signal
power and signal bandwidth. The stronger the power, the wider the signal bandwidth, and
the more obvious the characteristics of the target signal on the time-frequency image, the
easier it is to be accurately identified, and the longer the perception distance. It should be
noted that when the signal received power is less than the noise, no signal characteristics
can be reflected in the time-frequency image, and the perception method is invalid.

5.2. Energy Efficiency Evaluation

After confirming the effectiveness of the perception architecture proposed in this
article, we can further evaluate its improvement in energy efficiency. As mentioned above,
the sensing result of the SOP perception unit can not only help the flexible configuration of
the USRP device, but also determine whether it enters the standby state to reduce power
consumption. Assume that the access USRP device’s running power consumption is P1,
and P′1 in standby mode. The perception USRP device’s running power consumption is
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P2. The saved power can be calculated as
(
P1 − P′1

)
×N′ − P2, where N′ is the number of

USRP switched to standby mode according to the perception result. The energy efficiency

improvement percentage can be further calculated as (P1−P′1)×N′−P2
P1×N .

Figure 32. Experiment and results in B2: (a) experimenting in parking lot; (b) the recognition rate at different distances.

We take a SOP positioning system composed of six X310 and one B210 as an example
for power consumption evolution, where X310s are responsible for signal access and B210
is responsible for signal perception. By using a DC power meter, we measured the power
consumption of the device in different states: The P1 and P′1 of the X310 is about 34.7 w
and 16.2 w; the P2 of the B210 is about 0.7 w, which is shown in Figure 33.

Figure 33. Energy efficiency evaluation experiment: (a) a SOP positioning system with six X310 and one B210; (b) P2: the
running power of B210; (c) P1: the running power of X3100; (d) P′1: the standby power of X310.
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Based on these data, the reduced power consumption and percentage of energy
efficiency improvement at different N′ can be calculated, as shown in Figure 34. It can be
seen that the power consumption can be reduced by about 10% to 50% (20 w–110 w) in
this system.

Figure 34. Relationships between the reduced power consumption, percentage of energy efficiency improvement, and the
number of USRP switched to standby mode.

6. Conclusions

This paper proposes a new signal perception architecture for SOP positioning system
and completed the implementation. By separating the signal perception function, it reduces
hardware and energy resources waste caused by multiple devices continuous working in
traditional method. The core is an CNN-based SOP classification model and signal time-
frequency joint representation. We use CWT to complete the signals time-frequency joint
representation, and designs a CNN-based model for feature extraction and classification to
time-frequency images. This paper introduces the NL-PL joint training method, which can
suppress overfitting to noise data effectively. Compared with the previous work with SURF
+ K-means + SVM method, the recognition rate is higher (more than 97%), and solved the
problem of recognize mixed signals in same time-frequency image. We also build a proto-
type system through USRP and LabVIEW, and verified the perception ability of 2.4 GHz
ISM signals (WIFI, Bluetooth, ZigBee) in the underground parking lot. The experiment
result proved the effectiveness of the design. The perception architecture proposed in
this paper can be extended to other opportunistic signal and realize almost all frequency
domain and all kinds SOP perception. The efficient realization of the SOP perception
function can promote the further integration and upgrade of the SOP positioning system.

In response to the problems exposed in research and experiments, the subsequent
research directions are as follows:

1. Introduce noise suppression methods to solve the perception failure when the target
signal power is at the same level of noise, and improve the sensitivity of perception;

2. Select USRP equipment with better performance to realize wider bandwidth
SOP perception;

3. Combine the perception unit proposed with SOP positioning system to carry out
positioning experiments.
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