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INTRODUCTION 
 

Young children who experienced multiple surgical 

procedures under general anesthesia before 3 years of 

age are likely to fall within a high-risk category as 

defined by the recent US Food and Drug Administration 

warning: “repeated anesthesia in surgery or lengthy use 

of sedatives and general anesthetics (> 3 hours) may 

affect the brain development in children < 3 years”  

[1–4]. However, single and short-duration anesthesia 

and surgery do not cause a detectable impact on 

neurodevelopment in children [5, 6]. Remarkably, a 

recent prospective study revealed that children receiving 

multiple exposures to anesthesia show problems in 

behaviors, executive function, and reading [7]. Thus, 

exposure to anesthetics during childhood may lead to 

long-term deficits in neurodevelopmental function of 

children [8–10].  

 

Sevoflurane, which has the favorable properties of low 

pungency, rapid onset, rapid offset, and low blood/gas 

ratio, is the most commonly used inhalational anesthetic 

agent for pediatric patients [11, 12]. Numerous 
preclinical studies have shown that repeated sevoflurane 

exposure during the neonatal period causes cognitive 

impairment and neurotoxicity in young rodents and 
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monkeys [13–17], which may be associated with nerve 

cell apoptosis [18], impairment of synaptic development 

[19], neurogenesis inhibition [20], or impairment of 

glial cells development [21]. In addition, treatments and 

possible mechanisms for cognitive impairment caused 

by repeated sevoflurane exposure have been extensively 

studied in the developing central nervous system. 

However, the underlying mechanisms of peripheral 

responses on cognitive impairment in young mice after 

multiple neonatal exposures to sevoflurane remain 

elusive. 

 

The gut microbiota is a peripheral microorganism 

community in the digestive tract that helps to maintain 

dynamic metabolic ecological balance [22, 23]. The gut 

microbiota, not only through the nervous system (the 

gut–brain neuroanatomical pathway) but also through 

the endocrine system, immune system, and metabolic 

system, affords significant advantages to the host 

throughout development [24]. However, abnormal 

composition of the gut microbiota can substantially 

influence the function and microenvironment of the 

brain [25–28], through the three routes of the gut–brain 

axis (immune, neuroendocrine, and vagal nerve 

pathway) [28–30]. Mounting evidence indicates that 

inhalation anesthesia can alter the composition of the 

gut microbiota in mice [31]. Recent studies have 

revealed significant interactions between alteration of 

the gut microbiota and cognitive behavior [32, 33]. 

However, scant attention has been paid to investigating 

the relationship between cognitive impairment and 

abnormal composition of the gut microbiota in young 

mice after multiple neonatal exposures to sevoflurane.   

 

Therefore, we used a mouse model of multiple neonatal 

exposures to sevoflurane to evaluate the effects of 

anesthesia on cognitive function. Sequencing of the 16S 

ribosomal RNA gene and analysis of fecal samples were 

used to assess changes in the gut microbiota. In 

addition, we examined the effects of fecal microbiota 

transplantation on cognitive behavior in antibiotic-

induced pseudo germ-free mice. The primary objective 

was to determine whether multiple neonatal exposures 

to sevoflurane impact on the gut microbiota of the 

young mice to induce cognitive impairment. The 

findings will contribute to an improved understanding 

of the mechanisms of anesthesia-related neurotoxicity. 

 

RESULTS 
 

Comparison of cognitive behavior between 

anesthesia group and control group 

 

The study design is summarized in Figure 1A. The mice 

from the anesthesia group (i.e., receiving 3% 

sevoflurane three times on PND (postnatal day) 6, 8, 

and 10 (for 2 h at each application) exhibited longer 

escape latency in the MWM (Morris water maze) test 

during the training phase on PND 33–35 (Figure 1D). In 

addition, the anesthesia group exhibited reduced spatial 

positioning capability as demonstrated by the results 

from the probe trial on PND 36, including showing 

fewer platform-crossing instances (4.80 ± 0.53 vs 2.20 ± 

0.49, p = 0.0021; Figure 1E), less time spent in the 

fourth quadrant (26.10 ± 1.70 s vs 18.31 ± 2.06 s, p = 

0.0092; Figure 1F), and longer mean distance from the 

platform (0.27 ± 0.02 m vs 0.35 ± 0.02 m, p = 0.0041; 

Figure 1G) compared with those of the control group. 

These results suggested that the sevoflurane treatment 

may result in defective memory and cognitive function 

of the treated mice [19, 34].  

 

Alterations in the gut microbiota composition 

between control group and anesthesia group 

 

Recent studies have demonstrated that certain 

microorganisms in the gut microbiota play critical roles 

in the memory and cognitive behaviors of the hosts [30, 

35]. We sought to determine whether the cognitive 

behavioral difference between the control and 

sevoflurane-treated mice was associated with a change 

in the gut microbiota. Given that body weight has a 

strong impact on the gut microbiota [36], we first 

measured the body weight of the control and 

sevoflurane-treated mice. No difference in body weight 

was observed between the two groups (12.70 ± 0.30 g 

vs 13.20 ± 0.29 g, p = 0.25; Figure 1B). 

 

Fecal samples were then collected for 16S ribosomal 

RNA gene sequencing. Based on the comprehensive 

PKSSU4.0 database implemented in the EzBioCloud 

platform, the bacterial taxonomic composition of the 

control and sevoflurane-treated mice was determined 

and compared. No significant difference in alpha-

diversity between the two groups was observed, as 

indicated by the Shannon and Simpson indices (p > 

0.05). Principal coordinate analysis indicated that the 

bacterial communities of the anesthesia group were not 

significantly different from those of the control group. 

These results suggested that sevoflurane treatment  

did not significantly alter the overall taxonomic 

composition of the gut microbiota. Previous reports also 

suggested that cognitive dysfunction caused by 

streptozotocin-induced diabetes or high-cholesterol  

diet did not significantly alter the gut microbiota 

composition in mice [37, 38]. However, we observed 

that multiple taxa exhibited significant differences in 

relative abundance between the sevoflurane-treated and 

control mice (Supplementary Table 1 and Figure 2). 
Among these taxa, several have been reported to be 

associated with memory and/or health of the hosts. For 

instance, the genus Streptococcus, which is an 
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important pathogen causing neural damage and a risk 

factor for cerebral microbleeds and cognitive 

impairment [39, 40], exhibited increased relative 

abundance in the sevoflurane group. In contrast, the 

species PAC001381_s, an uncultured taxon belonging 

to the Lachnospiraceae, exhibited decreased relative 

abundance in sevoflurane-treated mice. Lachno-

spiraceae is an important member of the gut microbiota 

that can benefit the host in multiple aspects by 

producing beneficial metabolites, such as propionate 

and tryptophan [41]. Decreased Lachnospiraceae 

abundance in the gut microbiota were associated with a 

worse clinical profile, including higher frequencies  

of cognitive impairment [42]; while higher 

Lachnospiraceae abundance were associated with good 

cognition behaviors independent of clinical variables 

[43]. Decreased relative abundance of two species 

affiliated with Pseudoflavonifractor, PAC002302_s and

 

 
 

Figure 1. Morris water maze test for control and sevoflurane-treated mice. (A) Experimental schedule: 3% sevoflurane was applied 

for 2 h daily on PND 6, 8, and 10, MWM test on PND 31–36, and fecal sample collection for 16S ribosomal RNA gene sequencing and fecal 
bacteria transplant on PND 37. (B) Body weight (Student’s t-test, p > 0.05). (C) Trace plot of control and sevoflurane-treated mice in the 
MWM test. (D) Escape latency (two-way ANOVA; Time: F4,72 = 67.43, p < 0.001; Group: F1,18 = 43.14, p < 0.001; Interaction: F4,72 = 3.857, p = 
0.007). (E) Platform-crossing instances (Student’s t-test, p = 0.0021). (F) Time spent in the fourth quadrant (Student’s t-test, p = 0.0092). (G) 
Mean distance from the platform (Student’s t-test, p = 0.0041). PND: postnatal day; ANOVA: analysis of variance; MWM: Morris water maze. 
Data are shown as mean ± SEM (n = 10). Significance: * p < 0.05, ** p < 0.01, *** p < 0.001, ns: non-significant. 
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PAC002490_s, in the sevoflurane-treated mice was 

observed. Pseudoflavonifractor is positively associated 

with weight loss of obese patients and may benefit the 

host by producing short-chain fatty acids [44, 45]. The 

results suggested that the sevoflurane treatment showed 

a long-term impact on the gut microbiota, at least 27 

days post the sevoflurane treatment as demonstrated by 

the microbiota profiling results.   

 

Effects of control group and anesthesia group gut 

microbiota transplant on MWM behavior in 

antibiotic-induced pseudo germ-free mice 

 

To examine whether the defective memory and 

cognitive function of the sevoflurane-treated mice were 

due to alteration of the gut microbiota composition, we 

performed microbiota transplantation experiments using 

the microbiota from the sevoflurane-treated mice and 

the control mice as donors and pseudo germ-free mice 

as recipients. The study design is summarized in Figure 

3A. The pseudo germ-free mouse model was 

established by administering antibiotics at high doses 

for 14 consecutive days on PND 21–34. Gut microbiota 

from the control group and anesthesia group were 

transplanted into the gastrointestinal tract of pseudo 

germ-free mice for an additional 14 consecutive days on 

PND 35–48.  

 

No obvious differences in body weight gain among the 

control (no treatment), pseudo germ-free mice (vehicle), 

pseudo germ-free mice with transplanted microbiota 

from the control mice used in the aforementioned 

experiment (FMTC), and pseudo germ-free mice with 

transplanted microbiota from the sevoflurane-treated

 

 
 

Figure 2. Differential abundance of gut bacteria between control (n = 5) and anesthesia (n = 4) mice. (A) Species PAC001381_s. 

(B) Species PAC001069_s. (C) Species PAC002302_s. (D) Species PAC002490_s. (E) Species PAC001786_s. (F) Genus Streptococcus. Taxa were 
assigned based on the PKSSU4.0 database implemented in the EzBioCloud platform. 
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mice used in the aforementioned experiment (FMTS) 

were observed (Figure 3B). Interestingly, the vehicle 

mice exhibited increased escape latency time during the 

training phase of the MWM test (16.31 ± 3.83 s vs 

42.70 ± 11.25 s, p = 0.005 for PND 54; Figure 3D), and 

fewer platform-crossing instances (4.10 ± 0.31 vs 1.00 ± 

0.26, p < 0.001; Figure 3E), less time spent in the fourth 

quadrant (24.80 ± 1.59 s vs 12.45 ± 2.71 s, p = 0.0011; 

Figure 3F), and longer mean distance from the platform 

(0.28 ± 0.02 m vs 0.46 ± 0.03 m, p < 0.001; Figure 3G) 

compared with those of the control group. The defective 

memory and cognitive function of the vehicle mice 

were recovered by regaining the regular full-spectrum 

microbiota (i.e., that of the FMTC mice); however, the 

microbiota derived from sevoflurane-treated mice (i.e., 

the FMTS mice) did not dramatically improve the 

cognitive function of the recipients as demonstrated by 

the MWM test (Figure 3D–3G). 

 

 
 

Figure 3. Effects of transplantation of fecal microbiota from control and sevoflurane-treated mice on behavior of pseudo 
germ-free mice. (A) Experimental summary: fecal microbiota transplantation effects on behavioral testing in pseudo germ-free mice. Wild-

type male mice were first treated by administering high doses of antibiotic solution for 14 consecutive days on PND 21–34. Thereafter, mice 
were orally treated with fetal microbiota of control and anesthesia mice on PND 35–48. The MWM test was performed on PND 49–54. Fecal 
samples were collected for 16S ribosomal RNA gene sequencing testing on PND 55. (B) Body weight (two-way ANOVA; Time: F2,72 = 959.6, p < 
0.001; Group: F3,36 = 1.795, p = 0.17; Interaction: F6,72 = 1.209, p = 0.31). (C) Trace plot of mice in the MWM test. (D) Escape latency (two-way 
ANOVA; Time: F4,144 = 35.46, p < 0.001; Group: F3,36 = 14.51, p < 0.001; Interaction: F12,144 = 4.436, p < 0.001). (E) Platform-crossing instances 
(one-way ANOVA; F3,36 = 12.20, p < 0.001). (F) Time spent in the fourth quadrant (one-way ANOVA; F3,36 = 8.812, p = 0.0002). (G) Mean 
distance from the platform (one-way ANOVA; F3,36 = 12.56, p < 0.001). PND: postnatal day; ANOVA: analysis of variance; MWM: Morris water 
maze. Data are shown as mean ± SEM (n = 10). * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Effects of fecal microbiota transplant from 

anesthesia and control mice on the abundance of 

host gut microbiota 
 

Since all mice used for FMTS and FMTC treatments were 

on the same mental and gut microbiota composition 

background (pseudo germ-free vehicle mice), thus the 

cognitive behavior differences between the FMTS and 

FMTC mice were not due to the mental status or the 

original gut microbiota of the used mice, but were mainly 

due to the transplanted gut microbiota. Therefore, we 

performed the gut microbiota comparison analysis. The 

results demonstrated that the microbiota composition of 

the vehicle mice was very simple with majority of the 

members in the normal gut microbiota eliminated, while 

the microbiota composition of the FMTS and FMTC mice 

was dramatically different from that of the vehicle mice, 

suggesting the FMT experiments were successfully 

performed (Supplementary Figure 1). Following an 

identical bioinformatics analysis protocol, the microbiota 

composition of FMTS and FMTC mice was compared 

and the taxa differing significantly in abundance were 

identified (Supplementary Table 2 and Figure 4). A 

fraction of differentially abundant taxa identified in the 

FMTS vs FMTC experiment not overlapping with the 

abovementioned control vs sevoflurane experiment, 

which is frequently observed in fecal microbiota 

transplantation experiments [46]. However, it was 

interesting to note that several taxa showed consistency 

between the pre- and post-transplantation microbiota. 

Control or sevoflurane-treated fecal microbiota 

transplantation significantly improved or further 

aggravated the same changes in pseudo germ-free mice 

(Figure 4A–4F). 

 

DISCUSSION 
 

The newborn period is an extremely important stage for 

brain development [47, 48]. For rodents, this critical 

neurodevelopmental process, also termed “the window of 

vulnerability”, is likely to occur during PND 7–30 when 

the neuronal architecture and brain function are 

dramatically trained and improved by environmental 

events, which may better equip an individual to cope  

with environmental challenges [49, 50]. Negative 

environmental factors experienced by an individual during 

this window of vulnerability can also lead to adverse 

reactions in brain development [51]. Consistent with the 

findings of previous studies [52, 53], the present results 

demonstrated that multiple neonatal exposures to 

sevoflurane induced cognitive impairment of the young 

host. However, the mechanisms underlying this 

anesthesia-triggered cognitive impairment remain elusive. 
 

The present results demonstrated that those sevoflurane-

treated neonatal mice that showed learning disability 

and memory impairment exhibited an altered gut 

microbiota composition compared with that of the 

control mice (Figure 2 and Supplementary Table 1). 

The fecal transplantation experiments using pseudo 

germ-free mice further demonstrated that the gut 

microbiota alternation is responsible for the learning 

disability and memory impairment of the host [54–56]. 

Comparison of microbiota profiles between the control 

and sevoflurane-treated mice (first experimental cycle) 

as well as the FMTC and FMTS mice (second 

experimental cycle) identified multiple taxa that 

exhibited consistent differential relative abundance 

(Figures 2, 4, Supplementary Tables 1, 2). Several of 

these taxa, such as Lachnospiraceae and Streptococcus, 

have been reported to be associated with learning and 

memory functions of the hosts [39, 40, 42, 43]. 

Accumulating evidence indicates that inhalational 

anesthetics can affect the process of microbial 

colonization [31, 57]. The current results further 

suggested that the memory and cognitive function 

impairment of the sevoflurane-treated host is due to, at 

least partially, altered relative abundance of certain 

crucial members of the gut microbiota. 

 

Recent studies have demonstrated that the gut 

microbiota is an environmental factor that strongly 

impacts on brain development and behavior [23, 58, 

59]. The gut microbiota is a relatively stable ecosystem; 

however, the composition and diversity of the gut 

microbiota is always in a dynamic state during the 

neonatal period [23]. Newborn babies’ intestines are 

rapidly colonized by an array of microbes from their 

mothers, which is characterized by low diversity; in 

addition, infants possess a stable gut microbial profile 

that is highly similar to the characteristic microbiota of 

an adult by the end of the third year of life [60–62]. 

Therefore, the first 3 years of life represent the most 

critical period for establishment of the gut microbiota to 

improve child growth and neurodevelopment, during 

which time the composition and diversity of the gut 

microbiota is readily affected by harmful environmental 

factors, such as bacterial infections and antibiotic 

treatment [63]. In this study, we found the pseudo germ-

free mice exhibited cognitive impairment symptoms. 

Although it was hard to differentiate and quantify the 

roles of high dose antibiotics and the consequent gut 

microbiota alteration on the observed cognitive 

impairment in the pseudo germ-free mice [64], 

however, fecal microbiota transplanted from control 

mice, but not from sevoflurane-treated mice, reversed 

the detrimental effects on cognitive function in the 

pseudo germ-free mice, further demonstrating that the 

microbiota alternation triggered by sevoflurane 
treatment was responsible for the cognitive impairment 

in the sevoflurane-treated mice. Taken together, these 

findings show that multiple neonatal exposures to 
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sevoflurane may strongly impact on microbial 

colonization of the gut, resulting in altered cognitive 

phenotypes in adulthood.  

 

Several aspects were not addressed by the present study. 

First, we primarily focused on the microbial taxa that 

showed a consistent trend before and after fecal 

microbiota transplantation to investigate the mechanism 

of cognitive impairment, but other members of the gut 

microbiota might also be associated with cognitive 

function. Second, the microbial alpha-diversity failed to 

show an apparent difference in response to sevoflurane 

treatment. Although alpha-diversity is used as a 

measure of the diversity and richness of the unique 

microbial taxa within a sample, it should be emphasized 

that alpha-diversity may not be the sole criterion for gut 

microbiota dysbiosis [65]. Furthermore, some instances 

of gut microbiota dysbiosis show no changes in alpha-

diversity [66]. Third, the germ-free mouse construct 

provides an optimal means of assessing long-term 

effects of specific bacteria on cognitive impairment, but 

the behavioral assessment of these mice is restricted to 

sterile isolator units to maintain the germ-free 

environment. Thus, pseudo germ-free mice provide a 

more amenable and cost-effective model for behavioral 

assessment. Finally, under the present experimental 

design, we observed elements of the gut microbiota that 

may participate in regulation of cognitive functions in 

young mice after multiple neonatal exposures to 

sevoflurane, further investigation is needed to elucidate 

the roles and the mechanisms of these bacteria on the 

cognitive functions, and how the microbiota alternation

 

 
 

Figure 4. Effects of fecal microbiota transplantation from anesthesia-treated (FMTS, n = 14) and control (FMTC, n = 13) mice 
on the composition of the host gut microbiota of pseudo-germ-free mice. (A) Species PAC001381_s. (B) Species PAC001069_s. (C) 

Species PAC002302_s. (D) Species PAC002490_s. (E) Species PAC001786_s. (F) Genus Streptococcus. Taxa were assigned based on the 
PKSSU4.0 database implemented in the EzBioCloud platform. 
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affects the brain tissue to cause the cognitive 

impairment in the sevoflurane-treated mice. 

 

To the best of our knowledge, the present study is the 

first to show the effects of an altered gut microbiota on 

cognitive impairment in young mice after multiple 

neonatal exposures to sevoflurane. These findings 

indicate that neonatal exposures to sevoflurane may 

lead to abnormal composition of the gut microbiota, 

which is a potential risk factor for neurological 

development. With its novel insight into sevoflurane-

related neurotoxicity in the developing brain, this study 

presents a promising foundation for further research on 

microbial manipulation to improve the safety of 

anesthesia care in children. 

 

MATERIALS AND METHODS 
 

Animals and anesthesia 

 

The animal studies (ethical protocol number: 

201910A204) were conducted in accordance with the 

guidelines and regulations of the Institutional Animal 

Care and Use Committee of Soochow University 

(Suzhou, China). C57BL/6J mice were purchased from 

the Shanghai Laboratory Animal Center (Shanghai, 

China) and housed in a specific pathogen-free animal 

room supplied with standard rodent food and water. The 

male pups were used in this study. The neonatal mice 

were randomly assigned to either of the two study 

groups (control or sevoflurane treatment) with the aid of 

a computer-generated table. 

 

The animal model was described in our previous study 

[52]. The mice in the sevoflurane group received 3% 

sevoflurane with 60% oxygen (balanced with nitrogen) 

for three non-consecutive days (postnatal days [PND] 6, 

8, and 10), for 2 h at each application (2 L/min fresh gas 

from the start up to 3 min for induction, followed by 1 

L/min for maintenance) in a chamber using a Datex-

Ohmeda anesthesia system (Madison, WI, USA), which 

conceptually mimics the multiple exposures of 

anesthesia in patients [67]. The control group received 

60% oxygen in nitrogen for 2 h with an equal rate of 

flow in a chamber that was identical to the anesthesia 

chamber [13]. The sevoflurane concentration was 

continuously monitored using a gas analyzer (Vamos; 

Dräger Medical, Lübeck, Germany) during the 

anesthesia. The rectal temperature of the mice was 

maintained at 37 ± 0.5° C. After anesthesia, the mice 

were returned to home cages (metabolic cage: allowing 

feces to leak out to prevent eating each other's feces) 

under standard care [53, 68]. Given that previous 

studies demonstrated that anesthesia with 3% 

sevoflurane did not significantly change the pH, partial 

pressures of oxygen, partial pressures of carbon dioxide, 

and hematocrit of the young mice [52], we did not 

perform blood gas analysis of the mice in this study. 

 

Morris water maze (MWM) Test 

 

A Morris water maze (MWM) test was conducted as 

previously described [69]. The water maze device, i.e., 

a round steel pool (150 cm diameter and 60 cm height) 

with a 10 cm diameter-size platform located in the 

center, was surrounded by a black curtain and located in 

an isolated, quiet room. The device was filled with 

water to a level 1.0 cm above the surface of the 

platform. Throughout the experiment, the water 

temperature was maintained at 22° C. The mice were 

trained to reach the platform for five consecutive days 

(PND 31–35) with four trials per day. In the training 

phase each mouse was placed in the water and given 60 

s to locate the platform; if the mice could not find the 

platform within 60 s, they were gently guided to the 

platform and allowed to remain there for 15 s. The time 

and routine for each mouse to reach the platform was 

recorded by video-tracking software (ANY-maze, 

Stoelting, CO, USA) to evaluate its spatial learning 

ability. The platform was removed in the testing phase 

on PND 36, then a 60 s probe trial was performed for 

assessment of memory function. The number of times 

the mice crossed the platform area and time spent in the 

fourth quadrant were recorded. The mice were warmed 

and dried with a heat lamp after each test.  

 

Pseudo germ-free mice model establishment 

 

Pseudo germ-free mice were established as described by 

previous studies [51, 70] with slight modification. 

Briefly, C57BL/6J male mice were treated with a broad-

spectrum antibiotics cocktail (ampicillin 1 g/L, 

neomycin sulfate 1 g/L, and metronidazole 1 g/L; 

Sigma-Aldrich, St Louis, MO, USA) in drinking water 

for 14 consecutive days. The drinking solution was 

renewed every 2 days. 

 

Fecal microbiota transplant and MWM test 

 

The male mice were placed in a clean cage after the 

MWM test. The 30 male mice were divided into the 

sevoflurane group (15) and control group (15). Ten 

mice in each group were prepared for fecal microbiota 

transplantation and the remaining mice in each group 

were used for 16S rDNA sequencing. The mice were 

killed on day 37 and the feces samples were collected 

from the ileocecal region and placed in a sterilized 

centrifuge tube. Feces were stored in a −80° C freezer 

until analysis and transplantation [71]. The fecal 

microbiota was prepared by diluting 1 g of the fecal 

sample obtained from the anesthesia group or control 

group mice in 10 mL sterile PBS. The fecal material 
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was suspended and 0.2 mL of the suspension was 

guided by gavage into each mouse recipient for 14 

consecutive days, and the pseudo germ-free mice were 

used as the recipients [70]. The MWM test was 

performed for the control (i.e., untreated), vehicle mice 

(i.e., pseudo germ-free), FMTC (i.e., pseudo germ-free 

mice with transplanted microbiota from the control 

mice used in the aforementioned experiment), and 

FMTS (i.e., pseudo germ-free mice with transplanted 

microbiota from the sevoflurane-treated mice used in 

the aforementioned experiment) as described in section 

2.2. 

 

High-throughput 16S rDNA sequencing of the fecal 

samples and bioinformatics analyses 

 

The fecal samples from the control and sevoflurane-

treated mice used in the first cycle experiment, as well 

as the FMTC, and FMTS and vehicle mice used in the 

second cycle, were collected immediately from the 

ileocecal region after the MWM test (Figures 1A, 3A). 

Samples were placed in 1.5 ml tubes, snap-frozen on 

dry ice, and stored at −80° C. The 16S rDNA high-

throughput sequencing was performed by Sangon 

Biotech Co., Ltd (Shanghai, China). DNA was extracted 

using EZNA Soil DNA Kits (Omega, Doraville, GA, 

USA). The 16S rDNA V3–V5 region was amplified 

with the primer set 338F (5′-

ACTCCTACGGGAGGCAGC-3′) and 806R (5′-

GGACTACHVGGGTWTCTAAT-3′). Triplicate PCR 

reactions for each sample were performed and merged 

for sequencing. The reverse primer contained a sample 

barcode and both primers were connected with an 

Illumina sequencing adapter. The PCR products were 

purified and sequenced on an Illumina MiSeq PE300 

platform. Original sequencing data from the sample 

were sorted by unique barcodes, followed by removal of 

the barcode, linker, and PCR primer sequences. The 

resultant paired-end sequencing data were merged using 

FLASH [72], and the merged fastq files were analyzed 

using the 16S rRNA gene-based Microbiome 

Taxonomic Profiling pipeline implemented on the 

EzBioCloud server (https://www.ezbiocloud.net/) with 

the EzBioCloud 16S rDNA database version PKSSU4.0 

employed [73]. Comparisons of the taxonomic 

composition between the control and the sevoflurane-

treated mice (named as Sevoflurane herein) or the 

FMTC and FMTS mice using the comparative MTP 

analyzer implemented in EzBioCloud, and the alpha- 

and beta-diversity between the control and Sevoflurane 

groups or FMTC and FMTS groups, were conducted 

using normalized data with variation in the gene copy 

number considered. The taxonomic biomarkers for each 

group were identified using the linear discriminant 

analysis  effect  size  (LEfSe)  algorithm [74] using the  

aforementioned normalized data; the taxa with an 

adjusted p-value (false discovery rate) < 0.05 were 

considered to be significantly group-associated 

biomarkers. 

 

The sequencing data have been deposited in the CNGB 

CNSA database under the Bioproject accession no. 

CNP0001462. 

 

Statistical analysis 

 

Values presented are expressed as the mean ± SEM. 

Statistical analyses were performed using SPSS version 

17.0 software (SPSS Inc., Chicago, IL, USA). Escape 

path length and escape latency in the MWM test were 

analyzed using two-way analysis of variance 

(ANOVA). Other data were analyzed using one-way 

ANOVA followed by post-hoc Tukey’s test, Student’s 

t-test, or Fisher’s exact test. P-values less than 0.05 

were considered statistically significant. 
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SUPPLEMENTARY MATERIALS 

 

Supplementary Figure 

 

 

 

 

 

Supplementary Figure 1. Stacked histogram showing the relative abundance of bacterial community in the vehicle (pseudo 
germ-free), FMTC and FMTS mice. The taxa were shown at phylum level. 
  



 

www.aging-us.com 16748 AGING 

Supplementary Tables 
 

Please browse Full Text version to see the data of Supplementary Tables 1, 2. 

 

Supplementary Table 1. Differentiating bacterial taxa between sevoflurane and control identified by lefse. 

 

Supplementary Table 2. Differentiating bacterial taxa between FMTS and FMTC identified by lefse. 


