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Intermediate Levels of Network 
Heterogeneity Provide the Best 
Evolutionary Outcomes
Flávio L. Pinheiro   1 & Dominik Hartmann2,3

Complex networks impact the diffusion of ideas and innovations, the formation of opinions, and 
the evolution of cooperative behavior. In this context, heterogeneous structures have been shown 
to generate a coordination-like dynamics that drives a population towards a monomorphic state. 
In contrast, homogeneous networks tend to result in a stable co-existence of multiple traits in the 
population. These conclusions have been reached through the analysis of networks with either very 
high or very low levels of degree heterogeneity. In this paper, we use methods from Evolutionary 
Game Theory to explore how different levels of degree heterogeneity impact the fate of cooperation in 
structured populations whose individuals face the Prisoner’s Dilemma. Our results suggest that in large 
networks a minimum level of heterogeneity is necessary for a society to become evolutionary viable. 
Moreover, there is an optimal range of heterogeneity levels that maximize the resilience of the society 
facing an increasing number of social dilemmas. Finally, as the level of degree heterogeneity increases, 
the evolutionary dominance of either cooperators or defectors in a society increasingly depends on the 
initial state of a few influential individuals. Our findings imply that neither very unequal nor very equal 
societies offer the best evolutionary outcome.

It is well known that the structure of complex networks affects the outcomes of dynamical processes1,2, such as 
epidemic outbreaks3–5, diffusion of innovations6,7, opinion formation8–10 and behavioral evolution11,12. In that 
context, network heterogeneity is a topological feature of complex networks that is of particular importance13–17. 
The network heterogeneity refers to the heterogeneity among the number of ties maintained by each individual in 
a network; it is often measured by the variance of the degree distribution18 and called degree heterogeneity. Until 
now most works have, however, dealt with structures that exhibit opposite levels of degree heterogeneity, such as 
networks where all individuals have a similar number of network ties or networks with a power law distribution 
of the individuals’ ties. In this paper, we explore the gap between these two extremes in the context of evolutionary 
game theory19,20 and the problem of the evolution of cooperation21,22. Our goal is to understand if (1) there is a 
minimum threshold of heterogeneity necessary for the evolution of cooperation, and (2) if is there an optimal 
level of heterogeneity?

Previous theoretical works have extensively explored the role of the population structure in the evolution of 
cooperation. Yet, they have mainly dealt with structures that exhibit opposite levels of degree heterogeneity23–34. In 
this regard, regular and highly symmetric structures with low levels of heterogeneity–such as lattices11,25–27–have 
been shown to promote a stable co-existence dynamics between different competing behaviors, such as coopera-
tors and defectors35. This co-existence dynamics stems from the formation of compact clusters that constrain the 
evolution of cooperation to the boundaries between regions dominated by individuals of a single type. In contrast, 
structures with high levels of degree heterogeneity (e.g. scale-free networks) prompt a coordination-like dynam-
ics36,37 that result in the population being quickly driven to a monomorphic state which is dominated by one of the 
existing behaviors (i.e. either only cooperators or defectors). In these heterogeneous networks, the observed coor-
dination dynamics results from the existence of higher degree nodes (i.e. hubs) that act as role models and lead to 
effective dynamics of competition between hubs. Thus, while both low and high heterogeneous networks promote 
cooperation, heterogeneous networks are able to promote cooperation in a wider range of social dilemmas.
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Few works, though, have explored how a gradual interpolation between extreme levels of topological features 
in complex networks impact the outcome of dynamical processes. For instance, Santos et al.38 explored how the 
randomization of the connectivity patterns of a network–interpolating from a regular to a randomized homo-
geneous network–impacts the evolution of cooperative behavior and epidemic spreading. Following this line of 
research, we explore in this paper how the level of degree heterogeneity impacts the evolution of cooperation. For 
this purpose we analyze a wide range of networks with different levels of degree heterogeneity to show to which 
extent degree heterogeneity facilitates the dominance or co-existence of cooperators and/or defectors in a society.

Previous works have linked degree heterogeneity and degree variance also with social diversity, in the sense 
that it captures diversity among individual’s degrees of popularity and influence18. Social diversity is, however, not 
limited to popularity and influence, nor is it only able to be modeled through to the interaction structure of the 
population. Indeed, recent works have explored how diversity among interactions weights39, individuals’ aspira-
tions40, wealth distribution41–43, age distribution44, and the type of social dilemmas faced by individuals45 play an 
important role in dictating the fate of cooperative behavior in social systems. Central for the positive impact of 
diversity in promoting cooperation is the heterogeneous distribution of wealth and influence it generates46. Thus 
our work also contributes to a better understanding of how social diversity drives the evolution of cooperation in 
complex networks.

To explore how different levels of degree heterogeneity impact the evolution of cooperation, we make exten-
sive Monte Carlo simulations of the evolutionary dynamics. Moreover, we consider a wide range of populations 
whose structures smoothly interpolate between low and high levels of heterogeneity (see Model Section). Our 
findings show that many situations require a minimum threshold level of heterogeneity for cooperation to be sus-
tainable. Moreover, there is an optimal range of heterogeneity that maximizes the population’s resilience across a 
wide range of social dilemmas. This is the case because an increasingly heterogeneous network structure becomes 
increasingly correlated with the initial state of a few highly influential individuals (see Discussion section). The 
findings imply that neither very equal nor extremely unequal societies, in terms of their level of degree heteroge-
neity, tend to offer the best evolutionary outcome.

Model
Let us consider a population with Z individuals. The structure of interaction between the Z individuals of the 
population is modeled by means of a complex network, where nodes represent individuals, and the links between 
the nodes represent social relationships between the individuals. The total number of links of an individual i 
corresponds to his/her degree zi. The degree distribution, D(z), describes the fraction of individuals with degree 
z. To generate networks with different levels of degree heterogeneity D(z), we use an algorithm of network growth 
and biased preferential attachment by Fortunato et al.47. The algorithm proceeds as follows: it starts from a clique 
of three connected nodes and then sequentially Z − 3 other nodes are added; each of the newly added nodes gets 
attached to two pre-existing ones sampled proportionally to tα (α ≥ 0.0) where t corresponds to the age of the 
nodes. In the limiting case of Z → ∞, the networks exhibit a degree distribution of the form D(z) ≈ z−γ with γ = 
(1 + α)/α47,48. Here α takes the role of the degree heterogeneity parameter exhibiting a one-to-one relationship 
with var(z), so that a low (large) α is associated with a low (large) level of degree variance or heterogeneity.

Let us also consider that individuals behave unconditionally either as Cooperators (C) or Defectors (D). At 
each moment, there are k Cs and Z − k Ds in the population. The evolutionary process follows the fermi update 
rule49,50, thus at each time step a random individual (A) imitates the strategy of a random neighbor, B, with the 
probability

p
e
1

1 (1)A B f f( )B A
=

+ β→ − −

where β regulates the selection pressure (i.e. the level of randomness of the individuals’ decision to be a coop-
erator or a defector), while fi corresponds to the fitness of the individual i. When β ≪ 1, the population evolves 
under weak selection pressure; when β ≫ 1 the population evolves under strong selection pressure. In the limit 
of strong selection (large β), the results obtained under the fermi update rule become qualitatively similar to the 
replicator dynamics51.

Individuals obtain a payoff from each interaction with their neighbors. The value of the payoff depends only 
on the strategies of both. The four possible outcomes can be summarized in the following payoff matrix:

where R represents the Reward payoff resulting from mutual cooperation; P is the Punishment payoff from 
mutual defection; S is the Sucker’s payoff obtained by a Cooperator that faced a Defector; and T represents the 
Temptation payoff that a Defector obtains when facing a Cooperator. Here, we consider a simplified parameter 
space in which R = 1, P = 0, T = λ and S = 1 − λ with 1 ≤ λ ≤ 2. Hence, λ represents both the temptation for 
defection and the fear of being cheated, encapsulating the harshness of the dilemma faced by individuals.

The fitness of an individual corresponds to the accumulated payoff over all interactions in which he/she par-
ticipates and can be computed as
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where ni
C (ni

D) is the number of Cs (Ds) in the neighborhood of i ( + =n n zi
C

i
D

i) and si = 1 (0) if i is a C (D). 
Moreover, λ defines the strength of the dilemma faced by individuals. When λ > 0, individuals engage in the 
Prisoner’s Dilemma (PD) and λ captures both the temptation to defect towards a C and the fear of being cheated 
by a D.

In order to measure the impact of different network structures on the evolution of cooperation, we measure 
the level of cooperation (ηx0). More details on how the level of cooperation (ηx0) is computed can be found in the 
Methods section. We estimate ηx0 starting from a fraction x0 of cooperators and for different levels of selection 
pressure β, degree heterogeneity α, and harshness of the social dilemma λ. The level of cooperation (ηx0) can thus 
be understood as the expected number of cooperators in the equilibrium. In order to explore the role that differ-
ent individuals play in the evolutionary dynamics, we classify the individuals according to their network degree18. 
Hence let us denote nodes as low degree (LDN) if their degree is bounded by 3zi ≤ mα; medium degree (MDN) 
when mα < 3zi ≤ 2mα; and high degree (HDN) for 3zi > 2mα, where mα corresponds to the observed maximum 
degree of an individual in a network with a level of degree heterogeneity of α.

Results and Discussion
We start by analyzing how the level of degree heterogeneity (α) and the selection pressure (β) impact the level of 
cooperation (ηx0

) under different values of dilemma strength (λ). In the panels A, B and C of Fig. 1, three different 
regions can be highlighted according to their evolutionary outcome: (i) the domain of parameters strictly domi-
nated by Ds (blue region); (ii) the domain of parameters strictly dominated by Cs (red region) and (iii) the 
domain of parameters where neither Cs or Ds are strictly dominant. The results in Fig. 1 suggest that cooperation 
requires a minimum level of degree heterogeneity (α) to be evolutionary viable – i.e. to achieve a state of C dom-
inance with a non-zero likelihood. This result is particularly evident under weaker selection regimes (β < 1). 
Moreover, there is a region in the α × β domain under which the viability of cooperation is more resilient to 
variations in the harshness of the social dilemma faced by individuals (λ).

It must be noted that optimal levels of selection pressure have been identified in previous works26,27,52. Here, 
though, we show that this effect is restricted to a certain interval of network heterogeneity, in our case for α > 
0.6. Figure 2A shows how the level of cooperation is affected by degree heterogeneity for different levels of the 
dilemma strength. While a sharp transition in the levels of cooperation characterizes the evolution under small 
values of degree heterogeneity, increasing values of degree heterogeneity lead to a slower decay of cooperation 
with rising levels of dilemma strengths.

Previous works have shown that heterogeneous networks facilitate a coordination-like dynamics at the 
population-wide level36. Hence, next we compute the Average Gradient of Selection (Γg(k)) in order to inspect 
of the nature of the population-wide dynamics with different levels of degree heterogeneity. Details on how to 
compute Γg(k) can be found in the methods section. In a nutshell, negative (positive) values of Γg(k) indicate that 
a population with k Cooperators and Z − k Defectors population is more likely to see an decrease (increase) in 
the number of cooperators. For instance, in a well-mixed population (i.e. a complete graph, where all individuals 
are connected with each other) and when individuals engage in the Prisoner’s Dilemma, we observe Γg(k) to be 
always negative within the interval 0 < k < Z. Moreover, Γg(k) has two trivial solutions, one at k* = 0 and another 
at k* = Z. Hence, we inspect the existence of internal solutions (k*) that lie inside the domain 0 < k* < Z.

Figure 2B shows the internal fixed points of the Average Gradient of Selection (Γg(k)) at the 150th generation. 
Gray areas represent regions in which Γg(k) < 0 and white areas regions in which Γg(k) > 0. Arrows point towards 
the direction of selection. White circles represent coordination points. These are unstable fixed points, because 
when the population is close to one of this points it will evolve away from such state. Conversely, black circles 

Figure 1.  The impact of degree heterogeneity (0.0 ≤ α ≤ 1.25) and intensity of selection (10−2 ≤ β ≤ 102) on 
the level of cooperation (η = .x 0 50

) under different values of the harshness of the social dilemmas that the 
individuals face: λ = 1.15 (left), 1.25 (center) and 1.35 (right). Blue areas indicate the parameters that lead to a 
full dominance of Defector and Red regions denote areas of Cooperator dominance. White areas correspond to 
scenarios in which it is equally likely for the population to reach either a state fully dominated by Cooperators 
or Defectors. The horizontal line marks β = 0.3. All simulations have been conducted in populations with Z = 
103 individuals and start from a configuration with equal composition of strategies.
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represent co-existence points. These are stable fixed points, because the population will converge to such a state. 
We see that for the interval of heterogeneity under analysis the Γg(k) is mostly dominated by a single coordination 
point (xL), which implies that the population will be driven to a monomorphic state, depending on the initial 
fraction of cooperators (x0). Hence, these results reassure us that measuring the level of cooperation (ηx0

) equates 
to finding the likelihood with which a population reaches a state of full cooperation.

Figure 2C and D shows the internal fixed points of Γg(k) during the first 150 generations when α = 0.35 and α 
= 1.00, respectively. Although at the beginning the Γg(k) is mostly a negative, the evolutionary dynamics will lead 
to the emergence of an internal coordination point, which shapes the outcome of the population.

Next, we show the level of cooperation (η = .x 0 50
) as a function of the temptation to defect (λ) and of the level of 

degree heterogeneity (α) in the case of a weak (β = 0.3) and a strong (β = 3.0) selection pressure (see Fig. 3A and B). 
The level of heterogeneity largely defines the domain of social dilemmas under which cooperation is evolutionary 
viable. Although increasing levels of degree heterogeneity diminishes the range of λ that are strictly dominated by 
Ds, the degree heterogeneity also does not increase the region strictly dominated by Cs. In fact, for low selection 
pressures there is an optimal level of heterogeneity that maximizes the range of social dilemmas strictly dominated 
by Cs. For β = 0.3 this is between 0.6 ≤ α ≤ 0.9. This implies that if a population structure evolves to become 
increasingly heterogeneous, the population will eventually reach a level under which cooperation becomes less 
viable. Moreover, Fig. 3A and B show that for increasing levels of degree heterogeneity there is an increase in the 
region in which neither strategy is strictly dominant (white area), a result that is also suggested from the analysis of 
the α × β domain in Fig. 1A,B and C.

We scrutinize the mechanisms that lead to the prevalence of balanced levels of cooperation (white regions) 
for such a wide range of parameters. Our hypothesis is that the evolutionary outcome of the population becomes 
correlated with the initial state of the most well-connected individuals. With increasing levels of degree heter-
ogeneity, the higher connected individuals (hubs) also receive more and more connections during the network 
growth. In consequence, the network becomes increasingly more unequal in terms of the distribution of influence 
and wealth. In other words, the fact that a small number of individuals in the population can participate in the 
majority of the available social interactions, thus accumulating a proportionally large fitness, results in these indi-
viduals dictating the outcome of the population according to their initial state.

Figure 2.  Population-wide dynamics for a wide range of levels of heterogeneity. (Panel A) shows how the level 
of cooperation changes for variation of λ and α with β = 0.3. Although the level of cooperation ηx0

 increases 
with increasing α the range of λ strictly dominated by cooperators decreases. (Panel B) shows the Average 
Gradient of Selection (Γg(k)) after 150 generations for λ = 1.25 and β = 0.3 for a wide range of α values. The red 
line shows how the respective levels of cooperation change under the parameters as used to compute Γg(k). 
Panels C and D show how Average Gradient of Selection changes over time until the 150th generation. In (panels 
B, C and D), λ = 1.25 and β = 0.3. The dark areas denote regions in which Γg(k) < 0 and white areas in which 
Γg(k) > 0.
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Figure 3.  Panels A and B show the level of cooperation (η) while panels C, D, E and F show the correlations 
between the initial state of Low Degree Nodes (LDN), Medium Degree Nodes (MDN) and High Degree Nodes 
(HDN). All panels explore these quantities as a function of the harshness of the social dilemmas λ the 
individuals face and the degree heterogeneity α of the population structure. The left column shows results for β 
= 0.3 while the right column considers β = 3.0. All results have been computed for a population size of Z = 103 
and an average degree of 〈k〉 = 4.
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To explore this hypothesis, we compute the phi correlation (φM) between the initial strategy of individuals in 
a degree class (LDN, MDN or HDG) and the final state of the population. This quantity is formally defined as

φ =
−

• • • •

n C C n D D n D C n D C
n C n C n D n D
( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , ) (3)
M

M M M M

M M M M

where nM(X, Y) is the number of times we observe an individual in the degree class M with initial strategy X in 
a simulation where the population ended in a state dominated by strategy Y, nM(X, •) = nM(X, Y) + nM(X, X) 
and nM(•, X) = nM(X, X) + nM(Y, X). Hence, when φM = 0, the initial state of the nodes in degree class M are 
not correlated with the final state of the population, however when φM = 1, the population always ends up in a 
state dominated by the initial strategy of the nodes of degree class M. Conversely, when φM = −1, the population 
always ends up in the opposite state of the initial strategy of the nodes of degree class M.

Figure 3C to H show the correlation between the initial state of individuals from different degree classes and 
the final state of the population. We draw three main conclusions from these results: (i) in the region dominated 
by a single strategy (blue and red areas in Fig. 4A and B) the final state is not predicted by the elements of any 
of the degree classes; (ii) Medium degree (MDN) and Low degree (LDN) nodes are weak predictors of the final 
level of cooperation; and (iii) the most connected, high degree, individuals (HDN) play a fundamental role in the 
region associated with a balanced levels of cooperation. In this region, we observe a strong correlation between 
their initial state and the fate of the population, meaning that the evolutionary outcome of the society depends on 
the probability (set by the initial fraction of cooperators parameter) of the highly connected individuals starting 
as cooperators or defectors. This confirms the hypothesis that the evolutionary outcome is driven by the initial 
state of the most influential individuals in the population. Moreover, HDN nodes play a central role in determin-
ing the final level of cooperation of the population in domains associated with the phase transition between the 
two strictly dominance regimes. Indeed, at this point the evolution of cooperation is dictated by the initial state of 
the most influential and wealthiest individuals.

However, the initial state of the most influential individuals (HDN) does not suffice in explaining what deter-
mines the final evolutionary outcome of the society. Without the existence of other Cs in the population, the odds 
of cooperation being sustainable are very slim. Figure 4 shows how the evolutionary outcome (ηx0

) depends on 
the initial abundance of cooperators (x0 in the Y-axis) under different heterogeneity levels (α in the X-axis) and 
the temptation to defect (λ). Again, it is clear that the evolution of cooperation requires a minimum level of 
degree heterogeneity and, moreover, a minimum number of cooperators to be evolutionary viable. For increas-
ingly difficult social dilemmas, i.e. larger λ, cooperation viability requires a larger level of degree heterogeneity, 
hence a more unequal population.

Figure 4.  Level of Cooperation (ηx0
) as a function of the initial fraction of Cooperators, and for different levels 

of degree heterogeneity, α. The red areas correspond to areas that are strictly dominated by Cooperators, the blue 
areas are dominated by Defectors. The horizontal line indicates x0 = 0.5. All simulations have been conducted with 
populations of Z = 103 individuals, an average degree of 〈z〉 = 4 and a selection pressure of β = 0.3.
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Figure 5 shows the correlation between the initial state of the most influential individuals (HDN) and the final 
state of the population under similar conditions as considered in Fig. 4. The obtained results suggest, once again, 
a strong correlation in the domain characterized by a balanced levels of cooperation (non-blue or non-red areas 
in Fig. 4).

Conclusions
In this work we have explored how different levels of degree heterogeneity impact the evolution of cooperation 
in the Prisoner’s Dilemma. To that end, we made use of an algorithm of network growth and biased prefer-
ential attachment to generate a large set of network structures that interpolate between low and high levels of 
heterogeneity.

We find evidence of a threshold level of degree heterogeneity above which there is a substantial increase in 
the range of dilemmas where cooperation is evolutionary dominant. More importantly, we show that increasing 
levels of degree heterogeneity lead to an evolutionary trade off for populations: although the range of dilemmas 
in which cooperation can evolve increases, the range of dilemmas under which cooperation is strictly dominant 
decreases. Indeed, we observe that the evolution of cooperation becomes coupled with the initial state of the most 
well connected individuals. Hence, the ability of populations to overcome the underlying social dilemmas indi-
viduals engage becomes tied to the ability of a few individuals do so. Our findings imply that neither equal nor 
very unequal societies (in terms of degree heterogeneity) tend to offer the best evolutionary outcome, but instead 
suggest that there is an optimal level of equality. Although here we have explored static structures, recent works 
have shown how co-evolution of population structure often leads to an increase in degree heterogeneity53–56. 
Whenever the degree heterogeneity of a population increases, it also increases the dependence of the population 
on the decisions of a handful of influential individuals.

Open questions, though, are whether competition between societies can explain the preferential selection 
of heterogeneous social structures and whether a particular level of heterogeneity is favored under such a com-
petitive environment. Finally, we explored the role of degree heterogeneity in the context of the evolution of 
cooperation. Our results suggest that there is a need to pay attention to the role that different levels of network 
heterogeneity play in the context of opinion dynamics and epidemic outbreaks.

Methods
Level of cooperation.  (ηx0

) is estimated by averaging the number of cooperators in the population after a 
large transient period of up to 105 generations from 104 independent simulations. Each simulation lasts for 5 × 
103 generations and starts from a fraction x0 of Cs that are randomly distributed across the network. Given the 
coordination nature of the population-wide dynamics in heterogeneous networks36, ηx0

 provides a good approx-

Figure 5.  Correlation between initial state of high degree nodes and the final state of the population (φHDN) as a 
function of the initial fraction of Cooperators and for different levels of degree heterogeneity (α). Red (Yellow) 
areas correspond to regions in which the initial state of higher degree nodes is highly correlated (uncorrelated) 
with the final state of the population. All simulations have been conducted with populations of Z = 103 
individuals, average degree of 〈z〉 = 4 and selection pressure of β = 0.3.
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imation of the likelihood of a population reaching a monomorphic state dominated by Cs. Along the manuscript 
we compute under ηx0

 different scenarios of degree heterogeneity (α), selection pressure (β) and the temptation 
to defect (λ).

Average Gradient of Selection.  (AGoS) captures the population-wide dynamics on structured popula-
tions. This quantity is the numerical counterpart of the drift term in a Birth-Death stochastic processes on finite 
and well-mixed populations57. We can estimate this quantity conveniently by computing the difference between 
the probability to increase (ξ + k( )g ) and the probability to decrease (ξ − k( )g ) the number of Cooperators by one 
when the population is in a state with k Cooperators and Z − k Defectors. The AGoS is, thus, formally defined as

ξ ξΓ = −+ −k k k( ) ( ) ( ) (4)g g g

where ξ ± k( )g  is numerically computed according to

∑∑ξ δ ξ=
Λ
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where Λg(k) accounts for the total number of times the population was observed in a state with k Cooperators at 
generation g over all Ω simulations and Θ(a,b) is a square discrete function that is equal to 1 if b − 1 ≤ a < b, 
being 0 otherwise. Finally ξω

± k t( , ) is the transition probability at time t of time-series ω, that is
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where ζj is the set of closest neighbours of j and kt is the number of Cs at time t. In this expression, the first sum is 
calculated over each individual in the population and the second sum is calculated over each individual’s neigh-
bourhood. In order to estimate Γ(k) we let a population evolve for 150 generations. Each simulation of the evolu-
tionary process starts from a possible random state (i.e. starting from a random number of Cooperators k 
randomly selected from the interval 1 < k < Z). We repeat this for a total of Ω = 2.5 × 107 times. For each itera-
tion we estimate the ξω

± k t( , ) as described above.
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