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Blood-brain barrier (BBB) modeling in vitro is a huge area of research covering study
of intercellular communications and development of BBB, establishment of specific
properties that provide controlled permeability of the barrier. Current approaches in
designing new BBB models include development of new (bio) scaffolds supporting
barriergenesis/angiogenesis and BBB integrity; use of methods enabling modulation
of BBB permeability; application of modern analytical techniques for screening the
transfer of metabolites, bio-macromolecules, selected drug candidates and drug
delivery systems; establishment of 3D models; application of microfluidic technologies;
reconstruction of microphysiological systems with the barrier constituents. Acceptance
of idea that BBB in vitro models should resemble real functional activity of the barrier
in different periods of ontogenesis and in different (patho) physiological conditions
leads to proposal that establishment of BBB in vitro model with alterations specific for
aging brain is one of current challenges in neurosciences and bioengineering. Vascular
dysfunction in the aging brain often associates with leaky BBB, alterations in perivascular
microenvironment, neuroinflammation, perturbed neuronal and astroglial activity within
the neurovascular unit, impairments in neurogenic niches where microvascular scaffold
plays a key regulatory role. The review article is focused on aging-related alterations in
BBB and current approaches to development of “aging” BBB models in vitro.
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INTRODUCTION

Brain aging is one of the most intriguing issues in modern neurobiology, physiology and cell
biology. Effects of aging on pivotal brain functions, i.e., cognition and social behavior, are
well-known, however, the molecular basis on neurological deficits appearing in the aging brain and
showing strong tendency to further redoubling is not fully understood. Numerous experimental
and clinical data suggest that the complex of alterations is of great importance for the development
of functionally incompetent brain in aged individuals. Such complex includes excessive neuronal
death associated with impaired neurogenesis and gray matter shrinking, gliopathy associated
with neuroinflammation, excitotoxicity and demyelination, disturbed cerebral microcirculation,
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imbalanced production of regulatory molecules, altered blood-
brain barrier (BBB) permeability and impaired functional brain
networks (Peters, 2006; Desai et al., 2010; Antonenko and
Flöel, 2014; Bajaj et al., 2017). In this context, age-associated
brain disorders might be considered as a particular case of
accelerated aging or as an example of disturbed aging process.
Also, it is clear that several exogenous factors may affect brain
aging either negatively (stress, intoxication etc.) or positively
(physical exercise, cognitive training, balanced diet etc.). Most
importantly, deciphering molecular mechanisms of their action
would help in preventing brain dysfunction or in developing up-
to-date therapeutic strategy aimed to control aging process in the
brain.

BBB is a highly specialized complex of cells within so-called
neurovascular unit (NVU) that are responsible for brain
tissue protection, controlled bidirectional transport of fluids,
endogenous and exogenous (macro) molecules, immune and
progenitor cells trafficking, primarily, at the level of cerebral
capillaries. In mammals, BBB/NVU includes cerebral endothelial
cells lying on the thin basement membrane (BM), pericytes
(PC), perivascular astroglia, neurons and microglia (Abbott
and Friedman, 2012; Banks, 2016). A main component of
the BBB is a monolayer of brain microvessel endothelial
cells (BMECs) that are characterized by high mitochondrial
content, low fenestration level, substantial expression of
tight junction proteins, small perivascular space, pronounced
coverage with astroglial end-feet, and expression of wide
spectrum of transporters and receptors (Figure 1). Intercellular
communications play prominent role in the regulation of
BBB establishment in embryos and in the early neonatal
period (barriergenesis), maintenance of BBB structural and
functional integrity in the adult brain, in acquisition of
barrier properties in newly-formed cerebral vessels in (patho)
physiological conditions (reparative angiogenesis, plasticity-
associated angiogenesis; Salmina et al., 2015b; Dudvarski
Stankovic et al., 2016; Lecuyer et al., 2016; Osipova et al.,
2018).

Current interest for molecular mechanisms of BBB
development and function is based on real clinical needs.
Particularly, overcoming the barrier for the targeted delivery
of drugs to the brain tissue, monitoring the barrier status
and controlling its permeability in pathological conditions
(neuroinflammation, stroke, brain edema), testing new drugs-
candidates in in vitro and in silico BBB models are among
top technologies expected to transform the therapy of central
nervous system disorders (Albrecht et al., 2016; Zhang Y. Y.
et al., 2016; Semyachkina-Glushkovskaya et al., 2017a,b; Bolwerk
et al., 2018).

BBB dysfunction in the aging brain relates to various
mechanisms, including loss of structural barrier integrity,
lower functional coupling of cells contributing to the barrier
establishment, PC loss, disturbed activity of BMECs within
clonogenic niches (i.e., neurogenic niche, oligovasculogenic
niche), altered activity of BBB molecular transporters, and
impaired activity of glymphatic system (Zeevi et al., 2010).
Thus, simplest characteristic of aging BBB is a loss of structural
and functional integrity resulting in pathological permeability

FIGURE 1 | Blood-brain barrier (BBB) structure and intercellular
communications within the neurovascular unit (NVU). Brain microvessel
endothelial cells (BMECs), pericytes (PC), basement membrane (BM),
perivascular astroglial cells (ACs), microglia (M) and neurons (N) form the NVU
where endothelial cell layer controls bidirectional transport of macromolecules
and fluids, trafficking of immune and progenitor cells to the brain tissue. NVU
serves as a platform for neuron-astroglia metabolic coupling, gliovascular
control of microcirculation, glia- and pericyte-mediated control of BBB
permeability and angiogenesis, vascular support of neurogenesis.
Er, erythrocytes; Leu, leukocytes; TJ, tight junctions.

and development of abnormal barrier-related events (edema
formation, neuroinflammation, insufficient clearance of brain
metabolites). Paradoxically, even BBB breakdown associated
with enhanced BBB permeability is a key property of aged
brain, targeted drug delivery to the brain tissue remains an
unresolved problem in gerontology (Erdő et al., 2017). Thus,
reconstruction of ‘‘aging’’ phenotype of BBB in vitro would
be very useful in a huge area of experimental and clinical
applications.

BRIEF OVERVIEW OF BBB MODELS
IN VITRO: CURRENT OPPORTUNITIES
AND CHALLENGES

BBB modeling in vitro is a rapidly developing area of research
which covers study of intercellular communications and
development of BBB, establishment of barrier properties pivotal
for BBB controlled permeability, development of new scaffolds
for the growth of BMECs and application of modern analytical
techniques for screening barrier permeability for selected
drug candidates and drug delivery systems. In the majority of
cases, the following factors are critical for obtaining the fully
competent BBB/NVU models in vitro. First of all, nature of
cellular constituents of the model (mature cells isolated from
brain issue, or undifferentiated cells of embryonic origin further
subjected to proliferation and desired differentiation in vitro
or induced pluripotent stem cells (iPSCs)-derived cells) is of
great importance. Cells of different origin may have very specific
properties in relation to the characteristics of real BBB (i.e., level
of fenestration of endothelial cells, perivascular morphology
of astroglial cells (ACs), or degree of cell differentiation).
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Second, establishment of monolayer or multilayer analog of the
barrier should be taken into the consideration according to the
general task of modeling. As an example, in vitro monolayer
endothelial barrier might be sufficient for some screening
procedures in experimental neuropharmacology but is almost
useless for studying barriergenesis or complex intercellular
communications within the NVU. Third, still there is no
appropriate artificial analog of the BM underlying endothelial
cells layer in cerebral capillaries, therefore, production and
application of (bio) scaffolds or permeable membranes optimal
for endothelial cells functional activity are highly recommended.
Fourth, stability of the model and its structural and functional
integrity should be achieved and easily maintained in vitro.
Such barrier properties provide reliable experimental data
and guarantee reproducibility of results obtained. Fifth, recent
progress in microfabrication technologies allows designing
microfluidic models and microphysiological systems that
resemble many of the crucial properties of real BBB in
the context of blood flow-mediated effects on endothelial
cell layer, and finally, a model should allow some desired
manipulations with the cells or microenvironment in order
to reconstruct conditions typical for different phases of brain
development or brain pathologies. As an example, one may
manipulate with the expression profile of BBB/NVU cells,
may include non-NVU cells or stem cell-derived cells into
the model, or expose the model to the action of exogenous
physical, chemical or biological factors (Lippmann et al., 2011;
Khilazheva et al., 2015; Ruck et al., 2015; Kuvacheva et al.,
2016).

In sum, technology of BBB modeling in vitro consists of
the following steps: (1) selection of appropriate cells (primary
cultures, cell lines, stem/progenitor cells-derived cells) known
as components of NVU/BBB (i.e., endothelial cells, PC,
astrocytes etc.) with the special focus on the origin and
properties of endothelial cells (i.e., BMECs, human umbilical
vein endothelial cells (HUVECs) etc.); (2) reconstruction of
NVU/BBB microenvironment by seeding the cells in the
appropriate medium and in the designed microarchitecture
(i.e., 2D model, 3D model, spheroid model, or models with
contacting or non-contacting cells in a transwell) on scaffolds
supporting their growth and interactions (i.e., gelatin, polylactic
acid, biopolymers etc.) in static or microfluidic conditions;
(3) model validation by the assessment of barrier’s structural
and functional integrity and selective transport activity:
measurements of transendothelial electric resistance (TEER)
which reflects the integrity of endothelial layer and paracellular
permeability, analysis of expression of tight junction and
adhesion proteins (i.e., zonula occludens 1 (ZO1), junctional
adhesion molecule (JAM), occludins, claudins (CLDNs), vascular
endothelial cadherins (VE-cadherins) etc.), influx and efflux
transporters like glucose transporters (GLUT), monocarboxylate
transporters (MCT), P-glycoprotein (Pgp), receptors for
advanced glycation end products (RAGE), transferrin receptors;
and evaluation of the barrier’s permeability for various molecules
and complexes (i.e., liposomes, dextrans, dyes, labeled ligands
etc.); and (4) application of the model to the given research
tasks (i.e., assessment of drug transport or cells trafficking,

analysis of intercellular communications or angiogenesis-related
events).

Currently, there are various BBB models in vitro that
can be classified according to their general properties:
(1) monocellular/monolayer models (consisting of BMECs)
vs. multicellular/co-culture models (including BMECs, PC,
ACs etc.); (2) static models (with stationary extracellular
fluid) vs. microfluidic models (with controlled flow of fluid
mimicking natural blood flow in cerebral microvessels);
(3) brain cell-derived models (i.e., based on BMECs and
astrocytes) vs. non brain cell-derived models (i.e., based
on HUVEC or other cells lines) according to the origin of
cells included into the model; and (4) models obtained from
primary cultures vs. those obtained from the established cell
lines. Also, BBB models in vitro might be restricted to the
exact stage of ontogenesis (i.e., BBB model derived from
antenatal or neonatal brain cells to study early events in
barriergenesis) or to some pathological conditions (i.e., BBB
model specific for neurodegeneration or neuroinflammation;
Garberg et al., 2005; Helms et al., 2016; Bosworth et al., 2018;
Figure 2).

It is obvious that advantages and disadvantages of either BBB
in vitro model arise from their principal characteristics. For
instance, widely-used transwell models allow testing intercellular
communications but properties of scaffolds have a special
significance, whereas spheroid cultures require no scaffolds but
they do not reconstruct natural architecture of the barrier
(Ruck et al., 2015), microfluidic models are assumed to be
optimal for studying drug pharmacokinetics and allow desired
reconfiguration of fluid flow within the device but they are rather
expensive and possess high technical requirements (Bonakdar
et al., 2017).

FIGURE 2 | Scheme illustrating general approaches to establishment and
validation of BBB in vitro models consisted of neurovascular unit cells isolated
from the whole brain or cerebral microvessels, or differentiated from
stem/progenitor cells, induced pluripotent stem cells (iPSCs) and
neurospheres (NS). Three major types of BBB models are shown
schematically, including transwell system, 3D model. Right panel shows
current opportunities in the assessment of BBB in vitro model’s integrity and
functional competence. TEER, transendothelial electric resistance; NS,
neurosphere; MNCs, bone marrow-derived mononuclear cells; EC, endothelial
cells; IHC, immunohistochemistry.
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Diversity of BBB models allows performing pre-clinical
screening of drug candidate and studying barriergenesis,
transport machinery, and pathological conditions associated
with the dysfunction of the NVU (Stanimirovic et al., 2015).
Even ‘‘ideal’’ BBB models in vitro do not exist yet, however,
several attempts to produce renewable, controlled, scalable
and fully functional BBB models have been realized. As an
example, BBB models based on cells originated from embryonic
or adult stem cells became to be rather popular. In such
protocol, BMECs or astrocytes are differentiated from immature
stem cells, then they are phenotyped to get the populations
with characteristics of desired cell type, and are further
co-cultured under appropriate conditions (Malinovskaya et al.,
2016). Very recent achievements in modeling BBB in vitro
have been connected with the application of human iPSCs-
based protocols for getting BMECs, PC and other perivascular
cells representing high degree of similarity to natural BBB
(Bosworth et al., 2018; Ribecco-Lutkiewicz et al., 2018). One
can expect that further progress in the establishment of
BBB models in vitro might be done with the application
of gene-targeted strategies to modify expression of proteins
directly involved into the regulation of BBB integrity. For
example, Cre-Lox protocol has been successfully used for the
disruption of Smad proteins acting downstream of TGF-β
receptors in cerebral endothelial cells (Li et al., 2011) or for
the inactivation of β-catenins involved in the stabilization of
endothelial tight junctions (Liebner et al., 2008). Therefore,
these protocols might be further applied for creating novel BBB
models with target modification of barrier properties in vitro.
Analogous prospects arise from the application of precise gene
editing technologies, i.e., clustered regularly interspaced short
palindromic repeats (CRISPR)/Cas9-based protocol enabling
manipulation with functional properties of BBB/NVU cells
(Zhou et al., 2018), or optogenetic approaches either in vivo and
in vitro.

Development of microphysiological systems containing
BBB in vitro model opens new stage in the establishment
of functionally competent BBB in vitro. Combination of
microfluidic technology and establishment of multi-tissue
ensembles (i.e., neurons, liver cells, placenta cells etc.) allows
studying complex inter-tissue communications relevant for
various (patho) physiological conditions, performing drug
screening, and creating novel test-systems for the development
of drug delivery protocols (Brown et al., 2015; Phan et al., 2017;
Edington et al., 2018).

PROPERTIES OF BBB/NVU
CONSTITUENTS IN AGING BRAIN

Phenomenon of brain aging is in the focus of neurobiologists
and neurologists. Aging is a risk factor for specific types
of neurodegeneration, i.e., in Alzheimer’s disease (Guerreiro
and Bras, 2015), however, pathological brain aging itself
represents aggravated or completely altered program of natural
senescence caused by exogenous and endogenous factors. It
is interesting, that regardless type of aging, neuroplasticity

reserve seems to be preserved in various brain areas (Cotelli
et al., 2012), even it is still debated whether pathological
neurodegeneration is a type of excessive aging process (Ghosh
et al., 2011). Moreover, some other factors could affect
brain physiological and pathological aging. It was found that
volumes of subcortical structures were much more preserved
in physiological aging women comparing to men (Kiraly
et al., 2016), thus suggesting that—at least in humans—male
brains might be more susceptible to aging. However, some
contradictory data exist as well (Greenberg et al., 2008). In
pathological aging, i.e., in Alzheimer’s disease development,
female brains seem to be more susceptible to acquiring
senescent phenotype (Zhao et al., 2016), presumably, due to
specific features of metabolism or because of alterations in
signaling pathways coupled to receptors of growth factors and
neurosteroids.

Anyway, chronic neurodegeneration in aging brain is always
accompanied by the phenomenon of vascular aging (Donato
et al., 2015). It is a complex gradual process resulting in NVU
dysfunction, impairment of neurogenesis and angiogenesis. As
an example, in retina, progressive vascular damage in aging
rats is a multistep process consisting of thickening of the
basal capillary membrane, disorganization of PC cytoskeleton
at the earliest stage followed by microvessel remodeling and
angiogenesis at the latter stage (Hughes et al., 2006). Endothelial
cells, PC, and perivascular astroglia are implicated in the
pathogenesis of cerebral vascular aging. Interestingly enough,
brain vascular aging and endothelial leakage in humans may start
in hippocampal microvessels, thereby preceding hippocampal
atrophy and cognitive decline (Montagne et al., 2015). It should
be also noted that hippocampus demonstrates the highest levels
of amyloid-induced hyper vascularization and leaky BBB in
Alzheimer’s type of neurodegeneration (Desai et al., 2009;
Biron et al., 2011), suggesting that accelerated cerebral vascular
aging and neurodegeneration-mediated angiopathy could have
causative relationship with the activity of adult neurogenic
niches responsible for hippocampus-supported learning and
memory: active neurogenic events correspond to the sites
of elevated BBB permeability (Lin et al., 2015; Pozhilenkova
et al., 2017). As a result of endothelial, PC and astroglial
impairments, brain aging is always associated with reduced
cerebral capillary blood flow and altered gliovascular local
control of microcirculation (Desjardins et al., 2014), BBB
breakdown (Elahy et al., 2015), and disturbed synaptic plasticity
evident as long-term potentiation (LTP) deficits in brain
regions with pathological BBB permeability (Blau et al.,
2012).

Endothelial dysfunction is a hallmark of normal aging.
Senescent endothelial cells are characterized by higher
susceptibility to oxidative stress, reduced proliferation and
sensitivity to the action of pro-angiogenic factors, excessive
cell death (apoptosis and autophagy), compromised ability
to prevent blood coagulation events, limited availability and
impaired response to vasodilating factors and propensity to
support chronic inflammatory process.

BMECs have some important characteristics that make
them dramatically susceptible to the above-mentioned processes,
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FIGURE 3 | Senescence-associated changes contribute to BBB/NVU
impairment in aging. BMECs and perivascular cells serve as a source of
cytokines, reactive oxygen species (ROS) and proteases affecting BBB
permeability, energy production and metabolism in the barrier cells as well as
excitability and synaptic plasticity of neighboring neurons. These events lead
to progressive loss of barrier properties, metabolic alterations in affected cells
(i.e., ATP and nicotinamide adenine dinucleotide (NAD+) depletion), initiation
and progression of apoptosis or autophagy, and development of
neuroinflammation. As a result, vicious circle is established leading to further
changes in BBB structural and functional integrity.

particularly, they possess high number of mitochondria (Kluge
et al., 2013) and demonstrate strong intercellular coupling
provided by tight junctions, adherence junctions and connexin
channels (De Bock et al., 2011; Luissint et al., 2012; Dejana
and Orsenigo, 2013). As an example, oxidative stress is a
well-known marker of aging, whereas oxidative stress-induced
thiol oxidation, phosphorylation, nitration and carbonylation
of tight junction proteins result in BBB breakdown (Rao,
2008; Enciu et al., 2013). These mechanisms have been shown
in D-galactose-induced mouse brain aging (Lei et al., 2013)
and were implicated in obesity-promoted cerebrovascular aging
in mice (Tucsek et al., 2014). In aged mice, deficit in
tight junction coupling is accompanied by leaky BBB and
neuroinflammatory events; the latter is not caused by significant
leukocytes recruitment into the brain tissue (Elahy et al.,
2015).

Senescent cells are usually characterized by overproduction
of cytokines and proteases, excessive DNA damage response,
mitochondrial dysfunction and reactive oxygen species (ROS)
generation. All these mechanisms are tightly coupled and
potentiate each other. As an example, excessive production of
ROS supports development of neuroinflammatory response
(El Assar et al., 2013) culminating in the establishment of
so-called senescence-associated secretory phenotype (SASP)
evident in endothelial and perivascular cells (Chen et al.,
2002). Endothelial oxidative stress is associated with prominent
activation of poly (ADP-ribose) polymerase needed for DNA
repair, thereby resulting in nicotinamide adenine dinucleotide
+ (NAD+) depletion and endothelial cell death (Pacher et al.,
2002). Additionally, in the aged brain, altered processing
of amyloid precursor protein in endothelial cells leads to

amyloid beta (Aβ) accumulation and its deposition in cerebral
microvessels (Muche et al., 2017). Progressive accumulation
of Aβ in brain microvessels results in the development of
cerebral amyloid angiopathy (CAA) and supports persistence
of SASP in NVU cells. All these events are always accompanied
by mitochondrial dysfunction, insufficient ATP production,
accelerated mitophagy and aberrant mitochondrial biogenesis
in BMECs, PC and perivascular glial cells (Caja and Enríquez,
2017; Karnewar et al., 2018). Finally, SASP-associated matrix
metalloproteinase and cytokines release dramatically disrupts
endothelial monolayer integrity and ultimately leads to
BBB hyperpermeability, microvessel remodeling and loss
of neurovascular control (Goligorsky and Hirschi, 2016;
Figure 3).

In cerebral endothelium, aging-related events also include
elevated VEGF signaling and lowered NO availability in
senescent BMECs resulting in vessels hyperpermeability and
hypervascularity (Oakley and Tharakan, 2014). Whether or
not VEGF action in the aging brain corresponds to the
altered expression of its alternative isoforms that may either
increase or decrease BBB permeability, support or suppress
angiogenesis (Woolard et al., 2009) remains to be evaluated.
Besides, aging affects activity of several transporters expressed
in BMECs. Particularly, glucose uptake via GLUT is reduced
in the aging rat microvessels (Mooradian et al., 1991), thereby
suggesting functional link between aging-associated cerebral
glucose hypometabolism and BBB impairments. Aβ clearance
through BBB was found to be altered in aging rats due
to abnormal expression of low-density lipoprotein receptor-
related protein-1 (LRP-1) and Pgp in BMECs (Silverberg
et al., 2010). Aberrant expression of Pgp in aging human
BBB results in disturbed cerebral pharmacokinetics of several
drugs known as Pgp substrates (van Assema et al., 2012).
Thus, aging-affected BMECs are characterized by progressive
loss of permeability controlling mechanisms resulting in
deregulated cerebral metabolism of endogenous molecules and
xenobiotics.

PC dysfunction and loss are often seen in chronic
neurodegeneration and, particularly, in aging. Age-dependent
vascular damage in pericyte-deficient mice preceded chronic
neurodegeneration and cognitive decline (Bell et al., 2010).
Expression of senescence markers in brain PC—β-galactosidase
activity and p16 (INK4a)—was associated with compromised
BBB integrity in senescence-prone mice (Yamazaki et al., 2016).
In the rat frontal cortex and hippocampus, age-related changes
in PC microstructure include elevation of mitochondria number,
and this phenomenon is much more prominent comparing to
BMECs (Hicks et al., 1983). Thus, loss of PC coverage could
be partially compensated by stimulated metabolic activity
in remaining cells. Indeed, even excessive PC loss can be
effectively counteracted in the brain without evident changes
in BBB permeability in mice (Villaseñor et al., 2017). PC
always show prominent structural plasticity and their distal
processes are rather dynamic (Berthiaume et al., 2018) but
whether such properties are maintained in normal aging of
BBB remains to be clarified. In sum, aging-related changes
in cerebral PC mainly caused by their excessive cell death
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and microstructural rearrangements in the remaining cells
might be partially compensated at the earliest stages of BBB
breakdown.

Astroglia is affected in aging because of oxidative stress and
development of local inflammation. As a result, neuron-astrocyte
metabolic coupling and astrocyte-endothelial interactions are
impaired, thereby leading to aberrant neuronal activity and
BBB breakdown in a region-specific manner (Rodríguez et al.,
2014). Aging-associated progressive telomere shortening and
development of SASP occur in astroglial and endothelial cells
(Bitto et al., 2010; Chinta et al., 2013; Morgan et al., 2018),
thus contributing to local production of pro-inflammatory
cytokines. Besides that, astrocytes in the aging mouse brain
are very sensitive to the stimulatory action of activated
microglia (Clarke et al., 2018), thereby contributing to
the establishment of pro-inflammatory microenvironment
in the perivascular area. In aging mice, alterations in
paravascular drainage mechanisms provided by glymphatic
system were associated with abnormal AQP4 polarization,
thereby suggesting aberrant astroglial activity (Kress et al.,
2014). Recent transcriptomic analysis of multiple mice
brain regions showed that aging astrocytes up-regulate genes
encoding proteins that are required for synaptic remodeling
and astroglial activation (Boisvert et al., 2018). Moreover,
senescent mouse astrocytes demonstrate higher ability to
contribute to synapse elimination and show clear brain regional
specialization (Boisvert et al., 2018). However, it should be
taken into consideration that there is a shortage of data
obtained precisely in perivascular astroglia in aging brain,
therefore, the question exists whether the observed aging-
associated changes in astrocytes could be safely extrapolated on
particular NVU ACs whose end-feet are tightly connected with
BMECs.

Astrocytes are well-known producers of lactate in active
brain regions, and this metabolite could be used by neuronal
cells to support their extremely high energetic needs, or
could be transported and/or utilized by BMECs to control
their mitochondrial activity and angiogenesis-related events
(Salmina et al., 2015b). In aging, glycolytic activity of
astrocytes may be dramatically compromised: aging ACs
show reduction of glycolysis, stimulation of mitochondrial
biogenesis and activation of mitochondrial ATP production
leading to impaired neuron-astrocyte metabolic coupling and
local glucose hypometabolism (Jiang and Cadenas, 2014).
These events, probably, result from the establishment of
local pro-inflammatory microenvironment within the NVU,
since inflammation-affected cells usually activate mitochondrial
biogenesis in order to compensate for mitochondrial damage
(Piantadosi and Suliman, 2012). Such mechanism could be linked
to mitophagy-associated activation of NLRP3 inflammasomes
whose activity results in interleukins (IL-1β, IL-18, IL-
33) release and inhibition of glycolysis (Tschopp, 2011).
Elevated levels of brain lactate is a hallmark of aging-
related neurodegeneration, particularly, at the presymptomatic
stage in mice (Ross et al., 2010), so, exact molecular
mechanisms of deregulated lactate production and transport
in the aging brain remain to be assessed. Thus, aging

results in astroglial activation and, presumably, impairment
of astroglia-supported intercellular communications within the
NVU with long-lasting effects on BBB permeability and
angiogenesis.

Microglial effects on BBB in aging is poorly understood.
Actually, microglial cells are not considered as an obligatory
component of the NVU, however, numerous studies reveal
prominent role of activated microglia in controlling BBB
permeability due to secretion of cytokines, chemokines, ROS and
several metabolites (da Fonseca et al., 2014; Dudvarski Stankovic
et al., 2016; Osipova et al., 2018). Microglia may directly
interact with brain microvessels, particularly, with endothelial
tip cells governing angiogenesis, thus suggesting the regulatory
role of activated microglial cells in cerebral barriergenesis
and angiogenesis. Microglia-released interleukins, TNF and
ROS potentiate BBB breakdown and elevate paracellular
permeability of the barrier, thereby resulting in edema formation
and leukocytes trafficking in the affected brain regions. So,
microglial activity in a close vicinity to the BBB results
in promotion of angiogenesis (hypervascularity) and elevated
permeability of newly formed microvessels. It may have a
relation to the appearance of numerous microvessels with
leaky BBB in Alzheimer’s disease manifested by pronounced
neuroinflammation in mice (Biron et al., 2011) as well
as to the delayed angiogenesis and impaired microvessel
permeability in post-stroke aged rats and humans (Buga et al.,
2014).

Age-dependent activation of microglia is a widely-recognized
phenomenon (Spittau, 2017), therefore, it is obvious that aging-
associated alterations in BBB permeability could be partially
caused by microglial cells. One can describe this mechanism
as an example of low-grade chronic neuroinflammation
with all the corresponding attributes: microglial cytotoxicity,
complement activation, phagocytosis, development of cytokine
storm, excessive clearance of cellular debris in the loci of
excessive apoptosis, microglial M2 → M1 polarization with
the corresponding changes in cell metabolism (Chan-Ling
et al., 2007; Cerbai et al., 2012). However, very recent data
suggest that in addition to cytotoxic and pro-inflammatory
phenotype, cortical microglial cells in aged mice may also
acquire immunotolerogenic properties (Zöller et al., 2018). In
general, priming and even uncontrolled activation of microglia
correspond to the progression of brain aging whereas severity of
such changes associates with neurological deficits and behavioral
abnormalities (Norden and Godbout, 2013).

BM contributes a lot to the functional integrity of
the BBB, and its role might be compromised in aging,
i.e., due to elevated release of MMP-2 and MMP-9 from
activated ACs, microglia or PC. MMPs degrade BM
proteins, thereby contributing to BBB breakdown (Lee et al.,
2012), but they also important for microvessel remodeling
and neoangiogenesis. Some data suggest that aging and
Alzheimer’s type of neurodegeneration might be associated
with significant thickening of the barrier BM (Marques
et al., 2013; Yamazaki and Kanekiyo, 2017), but whether it is
important for BBB dysfunction seen in the aged brain is not
clear yet.
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MECHANISMS AND MARKERS OF CELL
SENESCENCE: APPLICATIONS FOR NVU
STUDY IN BBB MODELS IN VITRO

Probably, the most reliable way to get an NVU/BBB model
resembling properties of aging brain tissue might be in
obtaining of cells from the aged animal followed by their growth
in vitro within the multi-cellular ensemble (endothelial cells
and perivascular cells) mimicking NVU microenvironment.
However, this approach is difficult to execute because
proliferation and establishment of appropriate and functionally
competent intercellular contacts are very limited in the culture
of cells isolated from the aged brain tissue (Salmin et al., 2017).
But very recent findings suggest that neurogenic potential of
cells in physiological aging might be well preserved (Boldrini
et al., 2018). Therefore, aged brain-derived stem and progenitor
cells might be considered as a potential source of NVU cells.
Another approach is based on the induction of senescence-
specific properties in NVU cells obtained at much earlier
stages of brain development. In this case, appropriate protocols
for inducing and detecting senescence phenotype in cells
within the NVU/BBB models in vitro should be validated and
applied.

Proinflammatory changes in the microenvironment of
senescent cells. At the cellular level, senescence is characterized
by cessation of cell proliferation and establishment of so-called
SASP resulting in release of proinflammatory cytokines,
chemokines growth factors, MMPs and other proteases,
serpins, soluble or shed receptors and their ligands, membrane-
derived microvesicles into the extracellular space in order to
create microenvironment optimal for senescent cell (Coppé
et al., 2010; Robbins, 2017). Recently, cellular senescence has
been recognized as a cause of chronic neurodegeneration,
i.e., in Alzheimer’s disease, linking neuroinflammation to
non-reversible cell aging and accumulation of non-repairable
alterations. Moreover, some data suggest that aging is also
accompanied by an increase in the number of SASP-expressing
senescent cells of non-neuronal origin (i.e., astrocytes, microglia,
endothelial cells, neural stem cells) in the brain (Chinta et al.,
2015). Therefore, it could be proposed that senescence of
non-neuronal cells in the aging brain could contribute to
progressive impairment of BBB (aging endothelial cells),
insufficient myelination (aging oligodendrocytes), reduced
neurogenesis (aging neural stem cells) and development of
sterile neuroinflammation (aging astroglial and microglial
cells).

Besides, another function of SASP induction might be
found in the promotion of cell plasticity and stemness as
it was shown in the skin: keratinocytes exposed to the
SASP initially elevate expression of stem cell markers and
regenerative capacity in vivo followed by the cell cycle arrest
(Ritschka et al., 2017). Whether or not such mechanism
is operative in the brain, particularly, in neurogenic niches
with prominent vascular scaffold architecture, remains to be
evaluated, but several attempts to produce neuropinflammation-
specific models of BBB have been undertaken. As an example,

endothelial monolayers arranged within tube-like structures
on a microfluidic platform demonstrate SASP-like response to
tumor necrosis factor-alpha (TNF-α) action in vitro (manifested
by the production of 29 cytokines, chemokines and growth
factors) and reproduce some properties of inflammation-induced
BBB leakage (Cho et al., 2015). Therefore, monolayer BBB
models could be used for studying SASP-related changes
affecting barrier integrity. The same effect could be achieved
by stimulating secretory activity of perivascular astroglia which
leads to enhanced release of cytokines and chemokines, thereby
supporting its paracrine action at BMECs (Osipova et al., 2018).
Particularly, being stimulated with the mixture of IL-1β and
TNFα, astrocytes in vitro produce upto 30 cytokines, chemokines
and soluble mediators, such as complement, growth factors,
adhesion molecules, serpins, etc. in a time-dependent manner
(Choi et al., 2014). If BBB model is reconstituted consequently
with different cell types, preliminary culture of astrocytes with
IL-1β and TNF-α would produce SASP-resembling conditions
in 24 h after treatment in non-toxic concentrations. Another
protocol is based on genetic manipulation with signaling
molecules upstream the pro-inflammatory cytokines secretion.
Particularly, elevated expression of nuclear factor-kappa B
(NF-κB) in PC leads to release of monocyte chemoattractant
protein-1 (MCP-1) and IL-8 that are able to stimulate endothelial
cell proliferation in skeletal muscle (LaBarbera et al., 2015).
Thus, the same approach could be tested in BBB models
in vitro. In sum, detecting changes in cell secretome specific
for SASP is a good marker of cellular senescence, whereas
targeting SASP is recognized as an approach to eliminate
senescent cells and to prevent aging (Watanabe et al., 2017).
Induction of SASP phenotype in BMECs, PC or astroglia is a
tool for modeling BBB with the properties specific for aging
brain.

Inflammasome activation and insulin resistance (IR) in
senescent cells. Activation of cell senescence program is
always associated with inflammasome induction, particularly, in
endothelial cells of large vessels where ROS-driven expression of
cryopyrin, NOD-like receptor 3 (NLRP3) inflammasomes well
explains elevated release of major pro-inflammatory cytokine
IL-1β and acquisition of senescent phenotype (Yin et al.,
2017). The same is true for the development of peripheral IR
characteristic for so-called inflamm-aging (Bauernfeind et al.,
2016). Expression of NLRP3 inflammasomes accompanied
by increased expression of MMP-2 and reduced TEER was
registered in the BBB in vitro model exposed to poly(I:C; Małecki
et al., 2017), but whether such approach might be useful in
establishing BBB model specific for the aging brain remains
unclear.

Brain cells are equipped with various components of insulin
signaling machinery. Alzheimer’s type of neurodegeneration
is believed to be a particular case of IR and impaired glucose
tolerance in the brain tissue (Thambisetty et al., 2013). IR
results in aberrant transport and reception of insulin in the
brain tissue, thereby contributing to abnormal processing of
amyloid precursor protein and excessive Aβ accumulation,
altered metabolism of glucose and secondary changes in lactate-
driven mechanisms (neuron-astrocyte metabolic coupling,
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angiogenesis; Willette et al., 2015; Neth and Craft, 2017). In
humans, brain aging is associated with progressive loss of
insulin receptors (Frölich et al., 1998), and very recent studies
suggest that vulnerability of different brain regions to Aβ toxicity
corresponds to their sensitivity to local insulin action (Mullins
et al., 2017).

Link of cellular senescence and IR has been demonstrated
in several cell types, i.e in hepatocytes (Aravinthan et al.,
2015), cardiomyocytes (Boudina, 2013). Thus, taken into the
consideration that aging is often accompanied by IR, and it is
true for brain (Baranowska-Bik and Bik, 2017), one may assume
that induction of IR in NVU cells could make them more
sensitive to the action of aging-promoting factors in vitro. It
should be noted that IR prevents effective repair of endothelial
layer and suppresses reparative angiogenesis, thereby promoting
vascular aging (Avogaro et al., 2013). Thus, disruption of
insulin sensing and signaling in NVU cells would help achieving
senescence-prone phenotype for study BBB breakdown in aging
brain.

Depleted NAD+ levels in senescent cells. Glucose intolerance in
microvessel endothelial cells results in altered glucose uptake and
acceleration of their senescence due to suppression of activity
of NAD+-dependent histone deacetylases sirtuins (SIRTs;
Mortuza et al., 2013). Interesting to note, that elevation of
NAD+ levels in endothelial cells by up-regulating nicotinamide
phosphoribosyltransferase (Nampt) delays acquiring the
senescence phenotype and promotes angiogenesis (Borradaile
and Pickering, 2009). Thus, manipulating NAD+ bioavailability,
i.e., via NAD+-glycohydrolases CD38 or CD157, might be a
way to change cell’s sensitivity to the action of aging-promoting
factors in vitro (Chini, 2009; Camacho-Pereira et al., 2016;
Chini et al., 2018), whereas supply of nicotinamide riboside
as NAD+ precursor would efficiently elevate intracellular
NAD+ levels (Dellinger et al., 2017) and delay cellular
senescence (Zhang H. et al., 2016). CD38 and CD157 serve
as receptors and enzymes with NAD+-converting activity
that have been initially recognized as important regulators
of immune cells functional activity (Malavasi et al., 2006).
Later, it was confirmed that both the enzymes are widely
expressed in the brain being predominantly found in neurons,
astrocytes, and microglia (Ceni et al., 2003) where they take
part in the action of neurotransmitters, coordinate neuron-
astrocyte metabolic coupling, regulate local immune response.
In particular regions of the brain (hypothalamic area and
pituitary) CD38 controls NAD+ metabolism and neurosecretory
activity required for oxytocin secretion which regulates various
neurobehavioral responses, i.e., interpersonal communications,
parental behavior, decision making (Lopatina et al., 2011,
2012; Higashida et al., 2012; Salmina et al., 2012; Akther
et al., 2013). Expression of CD38 and CD157 is controlled by
pro-inflammatory cytokines, retinoic acid, cell proliferation
or differentiations status, and availability of their own ligand
NAD+ (Malavasi et al., 2008). In endothelial cells, inhibition
of CD38 preserves nitric oxide (NO) synthase activity and
NO generation, whereas activation of CD38 leads to NADPH
depletion, thereby contributing to endothelial dysfunction
in the heart (Reyes et al., 2015). Presumably, analogous

mechanisms might be active in BMECs since production
of NO is greatly compromised in cerebral microvessels in
chronic neurodegeneration (Salmina et al., 2015a). CD38 is also
expressed in retinal PC being up-regulated by pro-inflammatory
cytokines, whereas application of anti-CD38 antibodies
resulted in PC injury (Li et al., 2012). Very recent data
revealed expression of CD157 in endothelial cells and it
function as an angiogenesis-regulating molecule in various
tissues, including brain (Wakabayashi et al., 2018). It is
tempting to speculate that aberrant expression of CD38 and
CD157 in BMECs and cerebral PC might affect NAD+ levels
and acquisition of senescence phenotype in BBB in vitro
models.

Oxidative stress is another mechanism causing cell senescence
in vitro. Partially it is explained by oxidant-induced acute
depletion of intracellular NAD+ pool due to excessive activation
of poly(ADP-ribose)polymerase required for efficient DNA
repair. Thus, it is not surprising that one of the methods to induce
cell senescence in BBB models in vitro is application of oxidants
like H2O2. However, efficacy of H2O2 may differ depending on
cell types and previous passages of cells (particularly, endothelial
cells) that affect cell cycle and their sensitivity to the action
of genotoxic agents (Yamazaki et al., 2016). However, this
approach might be very effective in getting phenotypic changes
characteristic for aging BBB.

Glycolysis provides partial regeneration of NAD+ pool in the
cells, therefore glycolytic activity of NVU cells would have an
impact on their aging dynamics. Metabolic profiling of senescent
fibroblasts has shown elevated activity of glycolysis that can be
explained by mitochondrial dysfunction in aging cells (James
et al., 2015). Similar effect has been observed in senescent
astrocytes where up-regulation of glycolysis corresponded to
the degree of mitochondrial overactivation, ROS production,
and inflammatory response of astroglia (Cohen et al., 2017).
Thus, elevated glycolytic flux might be a part of cell protective
mechanism to prevent NAD+ depletion and to delay cell aging.

Recently, we found that activation of GPR81 lactate receptors
in BMECs in vitro resulted in mitochondrial biogenesis and
was accompanied by reduced expression of MCT-1 and CD147
(Khilazheva et al., 2017). Mitochondrial biogenesis is driven
by DNA damage in senescent cells and results in elevated
production of ROS and cell cycle arrest (Correia-Melo et al.,
2016). Thus, enhanced rate of glycolysis in senescent cells
could lead to massive efflux of lactate to the extracellular
space where it acts at GPR81 receptors and stimulates
mitochondrial biogenesis in BMECs. The latter results in
excessive production of ROS, DNA damage, and induction of
DNA-damage response (DDR) which is a hallmark of aging
cells.

DDR in senescent cells. One of experimental approaches
to induce senescence of cultured cells is based on their
exposure to gamma-irradiation which can induce reparable
or irreparable DNA damage (James et al., 2015). This method
is effective since another important feature of senescent cells
is an induction of DDR which is a prerequisite for SASP
and is triggered by genomic lesions. It is generally accepted
that senescent cells accumulate the phosphorylated form
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of histone H2AX (γ-H2AX) which marks sites of DNA
double strand breaks (DSBs) and is required for maintaining
genome integrity (Turinetto and Giachino, 2015). Telomere
shortening seen in senescent cells leads to the loss of telomere-
bound inhibitors of ATM and other kinases involved in
H2AX phosphorylation, therefore, DDR is spontaneously
activated (so-called replicative senescence induced by
telomere attrition; d’Adda di Fagagna, 2008; Maicher et al.,
2012).

In the brain, accumulation of γ-H2AX mainly occurs
in neurons and glial cells, but some cerebral endothelial
cells demonstrate presence of this marker as well (Barral
et al., 2014). Hippocampal astrocytes show high levels of
γ-H2AX expression in Alzheimer’s type of neurodegeneration
(Myung et al., 2008), endothelial cells need in γ-H2AX
for their proliferation in hypoxia-driven neoangiogenesis
(Chavakis et al., 2009). H2AX−/− mice demonstrate impaired
endothelial cell proliferation (but not pericyte dysfunction)

associated with reduced angiogenesis (Economopoulou
et al., 2009). In neurons, phosphorylation of H2AX with
ATM and DNA-PK occurs in physiological brain activity:
glutamatergic stimulation of neurons or exposure to novel
environment result in topoisomerase II-dependent DSBs and
appearance of γ-H2AX witnessing immediate early genes
expression (i.e., c-fos, npas4, egr1) in activated neuronal
cells (Suberbielle et al., 2013; Madabhushi et al., 2015). Thus,
phosphorylated H2AX might be a good marker of DSBs
and/or telomere shortening but not a specific marker of
cellular senescence due to its presence in functionally active
non-damages cells (Bernadotte et al., 2016). However, location
of γ-H2AX in genome could be helpful in discriminating
exogenous and endogenous mechanisms of its induction
(i.e., ionizing radiation and activation of transcription,
respectively). For example, sub-telomeres are less responsive
to external DNA damage than to endogenous stress (Seo et al.,
2012).

TABLE 1 | Main molecular mechanisms and markers of aging-associated alterations in neurovascular unit (NVU).

Aging-associated alterations
in NVU

Pathophysiological events in NVU Molecular markers Reference

Endothelial dysfunction
Oxidative stress ROS overproduction, NADPH oxidase

activity
Freeman and Keller
(2012); Sohrabji et al.
(2013)

Apoptosis Specific DNA fragmentation,
phosphatidylserine exposure

Hoffmann et al. (2001)

Impairment of tight junctions,
adherence junctions, connexin channels

Altered expression of Cx43, Cx40,
CLD5, ZO1, JAM

Lei et al. (2013); Elahy
et al. (2015)

Hyperpermeability, hypervascularity Elevated expression of VEGF, MMP2,
MMP9, decrease of TEER, increased
permeability for dyes, dextrans,
liposomes

Biron et al. (2011); Zhang
et al. (2017)

Reduced proliferation Decreased expression of Ki67, PCNA Katsimpardi et al. (2014)

Astroglial dysfunction Altered metabolism and morphology Aberrant lactate production Jiang and Cadenas
(2014); Goodall et al.
(2018)

Local glucose hypometabolism Decreased expression of GLUT4, IRAP,
low lactate levels

Mosconi (2013);
Camandola and Mattson
(2017)

Neuroinflammation, Inflamm-aging SASP phenotype (expression of
inflammasomes, RAGE, HMGB1, IL-1β,
IL-18, IL-33, TNFα, other cytokines and
chemokines)

Fu et al. (2014); Chinta
et al. (2015)

Pericyte dysfunction Pericytes loss Reduced number of pericytes,
decreased expression of PDGFR

Bell et al. (2010); Winkler
et al. (2010)

Microglial activation and
dysfunction

Neuroinflammation, Inflamm-aging SASP phenotype (overproduction of
cytokines, chemokines, ROS), signs of
M2 → M1 polarization (expression of
Arg1, CD206, and Ym1 vs IL-1β,
TNF-α, IL-6, CD16/32, CD86, CD40,
iNOS)

Norden and Godbout
(2013); Solano Fonseca
et al. (2016)

Neuronal dysfunction Neuronal loss Neurogenesis impairments, decreased
expression of NeuN, DCX, excessive
expression of cell death (apoptosis,
autophagy) markers

Sun et al. (2013)

Local insulin resistance and
corresponding metabolic alterations

Altered expression and activity of insulin
receptors, GLUT, IRS, PI3K, Akt,
GSK3β

Akintola and van Heemst
(2015)

Synaptic dysfunction Low expression of PSD95,
Synaptophysin

Morrison and Baxter
(2012); Mostany et al.
(2013)

Frontiers in Aging Neuroscience | www.frontiersin.org 9 August 2018 | Volume 10 | Article 234

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Osipova et al. Specific for Aging BBB Model in Vitro

In sum, various experimental approaches should be
considered when BBB model is established in vitro for
studying numerous functional and morphological alterations
in aging brain. Manipulations with the cell expression
profiles and activity of senescence-associated molecular
machinery within NVU/BBB would allow designing and
development of BBB in vitro models resembling many of
aging-coupled phenomena. Table 1 summarizes up-to-
date data on main molecular mechanisms and markers
of aging-associated alterations in NVU cells that are
critical for BBB in vitro modeling and controlling the BBB
integrity.

CONCLUSION AND FUTURE PROSPECTS

As it is clearly seen from above data, the following approaches
could be applied in order to induce senescent phenotype in
BBB cells in vitro: (1) induction of SASP and inflammasome
activation; (2) induction of IR; (3) manipulating NAD+ levels;
(4) induction of DDR associated with γ-H2AX accumulation;
and (5) promotion of mitochondrial biogenesis, glycolytic
changes and aberrant production of lactate.

It is clear that application of ‘‘standard’’ BBB in vitro
models to study barrier alterations in the aging brain could be
possible if cellular components of the BBB are obtained from
the brain of aged animals or animal strains with accelerated
aging, i.e., possessing genetically encoded impairments in the
signaling of growth hormone/IGF-1, mTOR, sirtuins, suffering
from weak antioxidant defense, prone to metabolic alterations,
demonstrating prominent inflammatory response or alterations

in DNA repair mechanisms, as excellently reviewed in Liao
and Kennedy (2014). However, establishment of BBB models
using cells isolated from aged animals is usually connected with
several technological problems (low rate of cell proliferation,
high levels of spontaneous cell death etc.). So, in some cases
induction of senescence phenotype should be done in non-aged
cells already introduced into the in vitro BBB model (or just
prior the reconstitution of the desired multi-cellular ensemble).
Therefore, careful phenotyping of cells is absolutely needed
for getting correct data on BBB/NVU impairments in the
aging brain. Development and application of adequate ‘‘aging’’
BBB in vitro models would provide further progress in the
exploration of brain aging phenomenon, development of novel
drug candidates, personification of preventive and therapeutic
strategies in patients with age-dependent brain disorders.
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