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More than 500 million people worldwide are infected each year by any of the four-
dengue virus (DENV) serotypes. The clinical spectrum caused during these infections
is wide and some patients may develop neurological alterations during or after the
infection, which could be explained by the cryptic neurotropic and neurovirulent
features of flaviviruses like DENV. Using in vivo and in vitro models, researchers
have demonstrated that DENV can affect the cells from the blood–brain barrier
(BBB) in several ways, which could result in brain tissue damage, neuronal loss, glial
activation, tissue inflammation and hemorrhages. The latter suggests that BBB may be
compromised during infection; however, it is not clear whether the damage is due to
the infection per se or to the local and/or systemic inflammatory response established
or activated by the BBB cells. Similarly, the kinetics and cascade of events that
trigger tissue damage, and the cells that initiate it, are unknown. This review presents
evidence of the BBB cell infection with DENV and the response established toward it
by these cells; it also describes the consequences of this response on the nervous
tissue, compares these evidence with the one reported with neurotropic viruses of the
Flaviviridae family, and shows the complexity and unpredictability of dengue and the
neurological alterations induced by it. Clinical evidence and in vitro and in vivo models
suggest that this virus uses the bloodstream to enter nerve tissue where it infects the
different cells of the neurovascular unit. Each of the cell populations respond individually
and collectively and control infection and inflammation, in other cases this response
exacerbates the damage leaving irreversible sequelae or causing death. This information
will allow us to understand more about the complex disease known as dengue, and its
impact on a specialized and delicate tissue like is the nervous tissue.

Keywords: blood–brain barrier cells, breakdown, severe dengue, neurological manifestations, pathogenesis

INTRODUCTION

Febrile illness caused by the dengue virus (DENV) is the most important arthropod-borne disease
in the world. In the last four decades dengue cases have increased by 30-fold due to the adaptive
nature and wide-spread localization of the mosquito vector (Chretien et al., 2015). This increase
has also been caused by human migration, chaotic, and rapid urbanization, and deforestation in
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underdeveloped tropical countries (Arunachalam et al., 2010).
Even though dengue is a well-known disease, its clinical
manifestations are changing. Nowadays, an increasing number of
dengue cases present damage in organs such as brain, liver, heart,
or kidneys, an interesting and important feature that has been
reported in some cases, but that has been very difficult to relate
with the virus given the late onset of these complications. These
changes have leaded the World Health Organization (WHO)
to include organ damage in the diagnostic criteria for severe
cases of dengue (World Health Organization [WHO], 2009).
Neurological manifestations, for example, may occur during or
after acute infection, may be transient or irreversible (Bopeththa
and Ralapanawa, 2017), and may affect both the central (Ng and
Sadarangani, 2017) and peripheral nervous systems (Mota et al.,
2017). Questions that still need to be answered include: how the
DENV enters into the nervous system, where the susceptible
cells are located, what kind of cell/tissue responses occur, and
what kind of cell/tissue signaling is responsible for nervous
tissue damage. It has been proposed that studies on blood–brain
barrier (BBB) cells could greatly add to our understanding of
the neurotropism, neuro-susceptibility, and neuropathogenesis
associated with the DENV.

DENV BIOLOGY AND PATHOGENESIS

Dengue virus belongs to the Flavivirus genus which is part of the
Flaviviridae family. There are four different serotypes (DENV1 to
DENV4) that infect and produce disease in humans. This virus
has an icosahedral capsid, a lipoproteic envelope, and a positive,
single stranded RNA genome that codes for three structural
proteins (C, capsid; M, membrane; and E, envelope) and
seven non-structural proteins (NS1, NS2A, NS2B, NS3, NS4A,
NS4B, and NS5) (Pierson and Diamond, 2013). The envelope
(E) glycoprotein is involved in virus entry into target cells,
mainly monocytes, macrophages, hepatocytes, and endothelial
cells (EC) using membrane receptors (Grove and Marsh,
2011; Cruz-Oliveira et al., 2015). The non-structural proteins
promote RNA translation (NS3) and transcription/replication
(NS2B/NS3 and NS5), modulate the innate immune response
(NS4A and B) (van Cleef et al., 2013), and play a role
in the virion assembly and release (Miller et al., 2007;
Pierson and Diamond, 2013).

The epidemic cycle is human–mosquito–human, and the
main vectors are the Aedes aegypti and Aedes albopictus females
(Bhatt et al., 2013). After a mosquito bite, the inoculated
saliva/virus is transported via skin dendritic cells toward the
lymphatic nodes where it infects monocytes, replicates, and
spreads to the blood and other organs (Pierson and Diamond,
2013). Most infected people do not have symptoms (Endy
et al., 2011; Castellanos J. et al., 2016), but others develop
subtle symptoms such as fever and malaise. Some patients
present muscle and bone pain, high fever, ocular headache,
abdominal pain, thrombocytopenia, and mucosal bleeding. This
is classified as dengue with warning signs. Around 10% of
patients may develop severe signs and symptoms include severe
hemorrhages, massive plasma leakage with edema, and severe

organ dysfunction. This is diagnosed as severe dengue which may
lead to death (World Health Organization [WHO], 2009).

In addition to clinical signs and symptoms, a case
confirmation is necessary and should be determined through
serology or molecular tests. However, the sensibility and
specificity of tests depends on which day of illness they are
undertaken (Guzman and Harris, 2015). Unfortunately, neither
clinical following nor laboratory tests allows for the accurate
prediction of the outcome in each case.

Disease severity is explained by different factors such as age,
nutrition status, genetic background (Guzman et al., 2002; Sierra
et al., 2007; Guzman and Harris, 2015), and the infecting virus
serotype or genotype (Cologna et al., 2005; Martina et al., 2009).
The most prominent factor which leads to severe dengue fever
with complications is having a second or third infection with a
different DENV serotype (Descloux et al., 2009; Ohainle et al.,
2011; Guzman and Harris, 2015). However, a role for NS1 protein
has been described, for example activating the complement
system or eroding EC glycocalyx (Puerta-Guardo et al., 2016).

The immune response during infection activates monocytes
and macrophages (Puerta-Guardo et al., 2013), dendritic cells
(Luplertlop et al., 2006), T cells (Lühn et al., 2007), and
mastocytes (St John et al., 2013) which release large amounts of
cytokines and chemokines to affect, for example, EC (Avirutnan
et al., 2006; Trung and Wills, 2010). Synergic immune cell
responses lead to cytokine storms, plasma leakage, and organ
failure. Therefore, dengue severity depends on the individual
response to infection, which has several types of clinical
presentations and, frequently, has no correlation with immune
markers; this makes accurate diagnosis or prognosis very difficult.

DENGUE WITH NEUROLOGICAL
MANIFESTATIONS

As stated above, most DENV infections are asymptomatic
or mild, but in less likely cases with severe presentation,
signs can begin either early or late and involve different
systems and organs such as gastrointestinal, hepatic, renal,
cardiovascular, respiratory, musculoskeletal, and neurological
(Gulati and Maheshwari, 2007; Puccioni-Sohler et al., 2012).
Symptoms and signs in the nervous system have been published
since 1976 (Sanguansermsri et al., 1976), however, recently there
has been an increase in case reports, experimental in vivo and
in vitro research, meta-analysis, and reviews which show great
concerns about these signs and the change in the clinical picture
over the last few years.

Neurological alterations occur in both males and females
and in every age group in endemic areas. Any of the four
DENV serotypes may be involved, although DENV2 and
DENV3 are the most frequently identified by RT-PCR or viral
isolation (Hapuarachchi et al., 2015). Nevertheless, neurological
manifestations as consequence of DENV infection are still
reported as infrequent and given the diversity of clinical
manifestations, neurological signs can be quite subtle (Wilder-
Smith et al., 2019). Nervous system alterations may or may
not be reversible and may take several days or months for
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complete recovery, as an example, Table 1 summarizes some of
the most interesting clinical reports of patients that presented
neurological manifestations after or during DENV (Table 1), or
other flavivirus (Supplementary Table S1) infection.

The nervous alterations could be classified following certain
criteria, such as: (i) direct tissue infection (encephalitis,
meningitis, myositis, myelitis, rhabdomyolysis; (ii), signs related
with systemic or metabolic imbalance (encephalopathy, stroke)
and (iii) early or late post-infection sequelae (transverse
myelitis, Guillain-Barré syndrome – GBS-, acute disseminated
encephalomyelitis) (Murthy, 2010). A detailed description of
neurological complications during dengue infection was recently
published (Li et al., 2017).

According to this evidence, nervous tissue damage could be
caused directly by the virus and/or the immune response, which
was originally established to get rid of the virus. However, it is
not clear how the virus enters the central nervous system (CNS),
which cells are infected and respond, and how equilibrium
is reached (or not) after injury. So far, the most probable
DENV entry route to the CNS is the hematogenous route
(Lanteri and Busch, 2012; Velandia and Castellanos, 2012;
Guzman and Harris, 2015), therefore, the BBB plays an important
role in favoring the neuroinvasion and neurotropism of the
virus. Alteration in its functioning can help to understand the
morphological and physiological consequences of the arrival
of the virus to the brain. These aspects and the evidence on
BBB participation in flavivirus neurological findings have been
presented in this document.

BLOOD–BRAIN BARRIER (BBB)
CHARACTERISTICS

Brain capillary structures carry oxygen and nutrients to nervous
cells (Obermeier et al., 2013). EC lining these vessels have a
primary role in permeability regulation and with other cells, form
highly organized barriers between the vascular space and nervous
tissue parenchyma (Zhao et al., 2015). The neurovascular unit
(NVU) consists of the aforementioned capillary EC, pericytes,
astrocytes, microglial cells, and neurons joined by close direct
and indirect interactions that maintain and regulate brain
homeostasis (Abbott et al., 2006; Cardoso et al., 2010). Despite
the high selectivity for solutes and molecules, sometimes bacteria,
parasites, and viruses can pass through the BBB and invade
nervous tissue (Zhang et al., 2015); in these cases, the local or
systemic immune response contributes to altering NVU integrity
(Hou et al., 2016).

Some viruses can reach the nervous parenchyma in different
ways: (i) entering of infected leukocytes; (ii) axonal transport;
and (iii) olfactory bulb epithelium infection. Other virus entry
involves EC, (iv) inter-endothelial tight junction disruption and
(v) EC infection and basolateral release (Miner and Diamond,
2016; Tohidpour et al., 2017). The latter two ways as well as
the passing through of infected monocytes may be the most
critical routes used by DENV to reach the CNS. For example,
Hapuarachchi et al. (2015) reported a fatal case due to DENV4
infection. Importantly, the patient presented an accelerated

neurological damage and although the virus was detected in
serum, the viral titer was higher in cerebrospinal fluid (CSF),
suggesting a rapid virus entry through BBB (Hapuarachchi et al.,
2015). Below, we present the in vivo and in vitro evidence on
the single participation of each of the NVU cells and the whole
structure participation in CNS infection by DENV. We also
recapitulate evidence of BBB cells infection by other important
flaviviruses (Supplementary Tables S2, S3).

ENDOTHELIAL CELLS

Plasma leakage is the central phenomenon in severe dengue (SD)
cases. It is caused either by EC homeostasis alteration due to
direct DENV infection or because EC are a target of inflammatory
mediators secreted by either them or by other infected cells
(Avirutnan et al., 1998). The first report of EC infection due to
DENV used serotype 2 and primary cultures of rabbit cava vein
and human umbilical vein EC (Andrews et al., 1978). Despite the
existence of many studies, until recently the molecular events and
specific receptors involved in DENV binding and entry to EC
were unclear (Yang et al., 2016).

Dengue virus entry can occur in a receptor-mediated binding
with or without clathrin participation manner, but in immune
cells it also uses virion-IgG complex to bind Fc-gamma
receptors to infect these cells (Wei et al., 2003; van der Schaar
et al., 2008). This could also be a mechanism used in EC
(Cruz-Oliveira et al., 2015).

Regarding the latter, using a virus overlay protein binding
assay (VOPBA) in ECV304 cells, it was possible to identify three
new cell membrane proteins of 29, 34, and 43 kDa, which binds
to a recombinant E protein, suggesting that these proteins may
be important for DENV entry and internalization in these cells
(Wei et al., 2003).

Later, integrin β3 was also identified as an EC receptor
to DENV, since protein knockdown reduced viral entry by
approximately 90% (Zhang et al., 2007). Similarly, HMEC-
1 cells upregulate protein disulfide isomerase (PDI) during
infection. Silencing its expression reduces the number of infected
cells and the production of new virions (Wan et al., 2012).
Recently, it was shown that the Rod domain of the intermediate
filament vimentin, which is exposed at the EC surface, may
interact with domain III of the DENV envelope protein. This
indicates a role in the binding of the virus to the endothelium
(Yang et al., 2016).

Additional evidence shows that DENV binding to EC induces
Rho-associated coiled-coil-containing kinase (ROCK) activation
and vimentin reorganization, which induces endoplasmic
reticulum redistribution for more efficient virus replication and
assembly (Lei et al., 2013). Membrane sugars and proteoglycans,
such as heparan sulfate proteoglycan, act as virus-binding
molecules, given that treatment with heparin or heparan-,
chondroitin-, and dermatan-sulfate inhibited the infection up to
60% (Dalrymple and Mackow, 2011). Finally, evidence exists of
the following molecules as EC receptors to DENV: DC-SIGN,
ICAM-3, CD14, mannose receptor (CD206), heat shock proteins
(HSP70 and HSP90), glucose-regulated protein (GRP78), and
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laminin receptor (Dalrymple and Mackow, 2014). However, their
direct participation remains to be investigated.

Although, in vitro it is possible to evaluate and quantify DENV
infection in EC, infection and replication is often not detected
in vivo. In some cases, antigens or viral RNA have been detected
in EC from brain biopsies of dengue fatal cases -particularly EC’s
from the inferior olive nucleus, medulla (Calvert et al., 2015) and
cerebellar granular layer (Ramos et al., 1998), other reports, had
shown viral RNA or proteins in EC from liver and lung (Jessie
et al., 2004; Póvoa et al., 2014), suggesting viral replication in
these cells (Basu and Chaturvedi, 2008).

There is no consensus about the effect of DENV on EC.
Some reports have found no morphological changes in EC after
infection (Srikiatkhachorn and Kelley, 2014). However, apoptotic
EC were detected in the lungs, guts, and brains of Cuban patients
who died due to DENV infection (Limonta et al., 2007). In
another study, ECV340 cells infected with DENV2 had a 7–40%
increase in the number of apoptotic cells at 48 h post infection
(p.i.) (Avirutnan et al., 1998). A similar result was reported after
using an HMEC-1 line after infection with a DENV2 clinical
isolate. Apoptosis was detected and activated by the cleavage of
caspase 3 and poly (ADP-ribose) polymerase 1 (PARP-1) by the
viral protease complex NS2B/NS3 (Vásquez et al., 2009).

Rodents are not naturally susceptible to DENV infection,
delaying the implementation of suitable animal models to study
infection and pathogenesis (Yauch and Sheresta, 2008). Viremia
and clinical signs in non-human primates are mild (Zompi
and Harris, 2012). This leads to the use of immunodeficient,
humanized, or modified mice (Wu-Hsieh et al., 2009; Plummer
and Shresta, 2014), or the production of adapted virus to specific
hosts, with the purpose of implement models to study the
disease, antiviral, or vaccine development (Puccioni-Sohler and
Rosadas, 2015). These infection models have advantages and
flaws but are frequently used to better understand dengue disease
(Srikiatkhachorn and Kelley, 2014).

Using mouse models, the nervous tissue infection has been
evaluated. A previous work reported BBB damage in Balb/c
mice inoculated intracerebrally (i.c.) with DENV2. Researchers
found Evans blue leakage and radiolabeled erythrocytes in
brain parenchyma, a phenomenon explained by the increase
of cytokines (Chaturvedi et al., 1991). Recently, we established
a DENV neuroinfection model inoculating the neuroadapted
D4MB-6 strain intraperitoneally (i.p.) in 2- and 7-day-old
Balb/c mice. This adapted strain (DENV4 mouse brain
passaged six times) reaches the CNS and induces severe
brain cytoarchitectural changes, leukocyte infiltration, and BBB
dysfunction associated with EC activation (Velandia-Romero
et al., 2012). A similar finding in adult mice was reported
recently, and viral replication occurred in EC from the
cortex, hippocampus, and cerebellum detected by the NS3
expression, concomitant with BBB disruption (Solomão et al.,
2018). In this case, the DENV2 was isolated from a patient
with confirmed encephalitis, suggesting that natural DENV
strains are neurotropic and neurovirulent, able to evade the
immune system, and invade the brain efficiently through BBB
ECs, leading to replication in the brain parenchyma which
induces nervous injury.

Dengue virus-infected EC are low in most in vitro experiments
using either primary cultures or cell lines (Calvert et al., 2015).
The proportion of DENV-4-infected mouse brain microvascular
EC (MBEC) cultured in our laboratory were 7 and 12% at 24
and 48 h p.i. respectively, but the neuroadapted D4MB-6 strain
infected half of the cells at 48 h p.i. (Velandia-Romero et al.,
2016). These differences between models may be explained by the
presence of heparin in some media cultures for EC which may
inhibit the infection. Infection percentages also depend on DENV
strain or the concentration of NS1 in the inoculation media,
since this protein forms complexes with HSPG competitively,
inhibiting the EC infection (Calvert et al., 2015). In fatal cases, the
likelihood of finding viral proteins or RNA depends on the time of
tissue collection, because in later periods the virus may be cleared
making detection impossible (Srikiatkhachorn and Kelley, 2014).

The apparent low susceptibility of EC to DENV infection
observed in post-mortem samples contrasts with the profound
effect that the infection has on these cells, in particular on the
BBB. This suggests that other factors, such as inflammatory
molecules, amplify the effects of DENV and alter the endothelial
tissue and other cells of the NVU (Calvert et al., 2015).

Endothelial cell activation due to infection was reported
based on the expression or secretion of sVCAM-1 and sICAM-
1 (Cardier et al., 2006), which has also been detected in the
membrane of HMEC-1 and LSEC (Peyrefitte et al., 2006). The
D4MB-6 neuroadapted strain after the infection of MBEC also
induced VCAM-1 and ICAM-1 expression, as well as PECAM-
1 and E-selectin (Velandia-Romero et al., 2016). Interestingly,
the immune mediators secreted by infected EC depends on the
serotype used, i.e., DENV1 induced interleukin (IL) -6, TNF-α,
chemokine (C-X-C motif), ligand 1 (CXCL1), CCL2, CCL5, and
CCL20 (Soe et al., 2017). All of these molecules are associated
with endothelial hyperpermeability and change the coagulatory
balance related to hemorrhages and disseminated intravascular
coagulation seen during severe dengue (Srikiatkhachorn and
Kelley, 2014). However, DENV2 infection induced monocyte
chemoattractant protein 1 (MCP-1), matrix metalloproteinases
(MMP), and macrophage migration inhibitory factor – MIF –
(Lima-Juniora et al., 2013).

PERICYTES

These cells surround the EC and are immersed in the basal
membrane of microvessels and capillaries. Pericytes have a crucial
role in the maturation and function of the BBB since they
interact with both EC and astrocytes inside the NVU (Yamakazi
and Mukouyama, 2018). To our knowledge, there have been no
reports on DENV infection or susceptibility to it of pericytes,
although Japanese encephalitis virus (JEV), another Flavivirus, is
known for infecting them and affecting the BBB function.

Japanese encephalitis virus is responsible for most encephalitis
cases in Asia, with around 68,000 cases reported each year, 30%
of which result in fatal outcomes (Thongtan et al., 2012). This
virus was isolated for first time in 1935 (Solomon et al., 2003;
Mishra et al., 2008) and is transmitted via Culex spp. mosquitoes.
Fever, headaches, meningeal irritation, and an altered state of
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consciousness are the primary signs and symptoms (Thongtan
et al., 2010). During infection, 30–50% of patients may present
paralysis, loss of speech, and behavioral changes (Chen et al.,
2000; Thongtan et al., 2012).

Several molecules have been proposed as cell receptors to JEV,
including HSPG, HSP70, and HSP90B, vimentin, CD4, laminin
receptor, and α5β3 integrin. However, the pericyte molecule
involved in the infection is not yet known (Nain et al., 2016).

Even though EC obtained from brain microvascular vessels
are susceptible to JEV, the in vivo BBB function and integrity
is not affected during infection. However, EC cultures exposed
to JEV-infected pericyte supernatants experienced an increase
in permeability and loss of trans-endothelial electrical resistance
(TEER). These changes in function were related to the presence
of IL-6, MMP-2 and -9, and the proteasomal degradation of the
zonula occludens protein – ZO-1 – (Chen et al., 2014), which
is an important scaffold protein, whose interaction with others
tight junctions proteins (TJP) and the actin filaments of the EC
are crucial for the maintenance of endothelial barrier function
and the regulation of vascular permeability (Garcia-Ponce et al.,
2015). Together, these findings suggest that the immune response
of the pericytes play a central role in endothelial dysfunction
during JEV infection (Chang et al., 2017).

Recently, it was reported that the Flavivirus ZIKV infects
retinal pericytes and retinal EC in addition to pigmented
epithelium cells (Roach and Alcendor, 2017). Interestingly,
pericytes replicate ZIKV more efficiently than EC, but they do
not die during infection. Both cell types, after 4 days p.i., secreted
high levels of RANTES, a chemokine that favors the retina
inflammation and ocular injury that occurs in ZIKV infection
(Roach and Alcendor, 2017). In this work, it is suggested that
the virus enters in a hematogenous way, through EC from retinal
arteries and capillaries. This is because both pericytes and EC are
susceptible to infection and able to replicate the virus, allowing it
to spread to other eye cells. These findings suggest that pericytes
may play a role in BBB, permitting the infection and secreting the
immune mediators that modify the barrier physiology.

ASTROCYTES

These cells are the main components in the architecture and
function of the CNS. In addition, to providing metabolic support
to neurons, astrocytes can also regulate neuronal activation and
function (Abbott et al., 2006), as they store information and
regulate the synaptic transmission participating in the tripartite
synapsis with pre- and post-synaptic neurons (Perea et al.,
2009). Astrocytes modify the EC and BBB function (McConnell
et al., 2017) due to their permanent contribution to nervous
system defense and recovery after an infection, or physical or
metabolic damage (Zorec et al., 2018). For example, astrocytes
express pathogen-associated molecular patterns (PAMP) and Toll
receptors (Krasowska-Zoladek et al., 2007; Suh et al., 2009) that
recognize bacteria and viruses (Kigerl et al., 2014) in addition to
MHC-I and II (Dong and Benveniste, 2001) to recognize and
present antigens. These cells also secrete at least 200 different
molecules immunomodulators, hormones, and growth factors

(Verkhratsky et al., 2016). This means that after a stimulus they
respond with cell activation (astrogliosis or astrocytosis) and
promote neuroinflammation. There are few studies on DENV
infection effect on astrocytes, and those that are available provide
contradictory evidence. For example, Balb/c astrocytes (Type I
and II) were exposed to three different strains of DENV2 and
one of DENV4 and no infection was reported after 15 days p.i.
(Imbert et al., 1994). Similarly, GFAP positive astrocytes were not
infected after the i.p. inoculation of the neuroadapted D4MB-
6 dengue strain (Velandia-Romero et al., 2012), and neither
viral protein nor RNA were detected in astrocyte cultures at
48 h p.i. (Velandia-Romero et al., 2016). Despite this, in vitro
astrogliosis post viral inoculation was confirmed evaluating the
cells morphological changes.

Astrocytes infection with DENV has been reported in fatal
human biopsy cases (Bhoopat et al., 1996), like the one
reported in Mexico (Ramos et al., 1998). However, in every
case, regardless of whether the astrocytes were infected or not,
researchers reported the early and robust response to infection as
astrogliosis, which was maintained even after nervous tissue viral
clearance. Therefore, astrogliosis could be involved in long-term
complications presented in some patients (Lee et al., 2016).

During the activation process, astrocytes change function,
morphology, and biochemistry (Middeldorp and Hol, 2011),
induced by local signals that depend on the localization
and duration of the harmful stimulus or aggression (White
and Jakeman, 2008). Astrocytes in injured tissue secrete pro-
inflammatory molecules such as IL-6, TNF-α, and interferon β

(Boonnak et al., 2011; Burkert et al., 2012).
Significant astrogliosis and progressive cell hypertrophy with

longer and thicker astrocytic processes may be induced by strong
or continuous stimuli (Eng et al., 2000). These morphological
changes are associated with the overexpression of cytoskeleton
proteins such as GFAP, vimentin, and nestin (Buffo et al., 2010),
which are essential for cell proliferation process and glial scar
formation (Sofroniew, 2009).

Rhesus macaques inoculated with intravenous or
subcutaneous injections of DENV2 experienced a reduction in
the number of astrocytes in the frontal lobe compared to non-
infected control monkeys. However, cytoplasmic enlargement
and an increase in the number and length of astrocytic end-feet
in white matter were found (Lee et al., 2016). Generalized
astrogliosis was seen in 2-, 7-, and 14-day-old Balb/c mice
infected with the neuroadapted strain D4MB-6, finding large
numbers of GFAP+ cells that were larger in size, more branched,
and with greater fluorescence intensity. The latter results were
related with the evidence of paralysis, which is a sign of neural
impairment along with the histopathological evidence of neuron
infection and efficient viral replication in these cells. Interestingly,
the older mice (14 days old) were refractory to infection and
showed no neurological symptoms. Nevertheless, they had
astrocytic activation with the same changes, demonstrating that
the immune and physiological development of these individuals
determines their susceptibility to DENV infection, favoring brain
virus clearance (Velandia-Romero et al., 2012).

On the other hand, it has been shown that astrocytes
are susceptible to the West Nile Virus (WNV) and that
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they can become viral reservoirs because WNV persists
for up to 114 days after infection in astrocytes without
inducing cell death (Diniz et al., 2006). This virus shares
some characteristics with DENV and JEV and currently
is a concern in many countries experiencing permanent
outbreaks (Solomon and Mallewa, 2001). In addition to
infection in Langerhan’s cells and keratinocytes, after the initial
replication, WNV infects neurons, astrocytes, microglial cells,
and EC, leading to a massive recruitment of inflammatory cells
toward the brain parenchyma (Hussmann and Fredericksen,
2014; Winkelmann et al., 2016). Clinically, the infection is
characterized by meningitis, encephalitis, and acute flaccid
paralysis. In severe cases it can cause the death of the patient
(Hussmann and Fredericksen, 2014).

Another factor to consider during infection and glial
activation is the brain lymphatic system (BLS) (Louveau et al.,
2015; Sandrone et al., 2019), represented by the classic lymphatic
vessels in the dura mater, and the canals formed by the walls of
the veins and astrocytic endfeet (called the glymphatic system)
(Iliff et al., 2012; Yang et al., 2013; Louveau et al., 2015).
Importantly, the function of this structure is to drain debris
and interstitial macromolecules from the brain (Aspelund et al.,
2015). Additionally, BLS allows the circulation of T lymphocytes,
which in response to infection can be protective or pathogenic
(Louveau et al., 2015).

In fact, the drainage of viral antigens from the parenchyma
to the CSF (made by the glymphatic system), and from there to
the lymphatic vessels, can contribute to suppression or control
of the T cells response in the periphery (McGavern and Kang,
2011; Louveau et al., 2015). This would explain the tolerance and
little activity of the extra neural immune system during some
nervous system infections with virus like HIV (Tan et al., 2012),
MCMV (Torti et al., 2011) and parasites like Toxoplasma gondii
(Landrith et al., 2015). Interestingly, although it is known that the
lymphatic system is supremely important during the dispersion
of DENV in the periphery (Yam-Puc et al., 2016), its participation
in the dispersion of the virus within the nervous system by
recirculating the virus that might be present in the CSF is not
known or evaluated. Similarly, its role in the control of infection
and its contribution to the evasion of the response within nervous
tissue is unknown.

MICROGLIAL CELLS

According to their mesodermal origin, microglial cells are
immune cells of the CNS (Ginhoux and Prinz, 2015) which
express macrophage markers such as F4/80, Fc receptors, and
CD11b. During brain injury, microglial cells become reactive
and secrete inflammatory mediators similar to those produced
by macrophages (Lannes et al., 2017). Microglia establishes
bidirectional communication with neurons, astrocytes and
pericytes, which is a determining factor during development and
brain function in adults. In pathological conditions, an early
reaction of microglia inducing and regulating the astrocytes
function occurs (Jha et al., 2018). These cells are susceptible to
DENV, possibly due to the expression of previously reported viral

receptors such as, HSPG, CD14, DC-SIGN, GRP78, HSP70 and
HSP90, β3 integrin, mannose receptor, and C-type lectin domain
containing 5A (CLEC5a), and others (Thongtan et al., 2012), just
like it has been described in the murine microglial cell line BV2,
previously reported as susceptible to all four DENV serotypes
(Bhatt et al., 2015).

After binding to a receptor, clathrin-mediated endocytosis
is used to internalize the DENV (Jhan et al., 2017) and start
replication, an event that triggers cell activation, leading the
morphological change from round cells to multipolar cells, and
the secretion of inflammatory molecules. These changes can
be observed in vitro in BV2 cells (Bhatt et al., 2015), and in
the brain of young mice infected with neuroadapted D4MB-
6 strain, where infected microglial cells were also observed
frequently in the analyzed tissue (Puccioni-Sohler and Rosadas,
2015). Interestingly, each DENV serotype infection induces
different responses in BV2 microglial cells. DENV1 induces a
cytokine profile related with changes in vascular permeability,
while DENV2 alters the oxidative stress-mediated apoptotic
response, and DENV3 establishes an anti-inflammatory and
antiviral mediators profile. On the other hand, mediators induced
by DENV4 could have a significant role in the alteration of BBB
function, mainly by enhancing the secretion of MMP (Bhatt et al.,
2015). Infection with DENV2 and DENV4 caused the activation
of rat microglial cells (HAPI), but serotype 4 induced a higher
ROS production and greater cell death compared to DENV2 or
even JEV (Suwanprinya et al., 2017), suggesting a noxious role in
brain inflammation and neurotoxicity.

The response of microglia may be essential to protect DENV-
infected mice, as the animals treated for macrophage/microglia
depletion with clodronate liposomes showed higher viral RNA
and protein expression as well as more severe neurological signs.
The reduction of microglial cells in the brain was also related
with lower IFN-γ and IL-12 secretion and less infiltrated TL CD8
cells (Tsai et al., 2016). Taken together, these results support that,
despite microglial cells susceptibility to DENV infection, their
response contributes to delay nervous tissue damage, and like it
happens during infections with JEV, microglial cells may play the
role of Trojan horse, transporting the virus and serving as viral
reservoirs for up to 16 weeks (Nain et al., 2016).

GLIAL ACTIVATION

Microglial and astrocytic cells are the essential pillars of the
immune response during a viral infection in the CNS (Ramesh
et al., 2013; Bhatt et al., 2015). Overall, after the pathogen
is recognized, astrocytes and microglial cells trigger two types
of events: (i) an activation of the innate immune response in
neighbor cells, amplifying the signal, and (ii) a favoring of the
changes in BBB permeability, contributing to blood leukocyte
migration to the brain parenchyma, and helping in the adaptive
immune response (Jhan et al., 2017). As part of the response,
mediators such as IL-6, IFN-γ, GM-CSF, IL-1, and TNF-α
are secreted. These induce changes in BBB permeability and
together are the necessary stimuli to differentiate and induce
proliferation of monocytes, astrocytes, microglial cells, and EC
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(van Kralingen et al., 2013). The production of chemokines
and the induction of adhesion molecule expression facilitate
T cells entering and surviving, and the proliferation of B
cells in the tissue (van Kralingen et al., 2013). As part of a
general response, during infection, astrocytes and microglial cells
secrete anti-inflammatory and neuroprotector molecules that
induce suppression and neural protection. The expression of
co-stimulatory molecules such as B7 and B40 of the adaptive
immune response (Farina et al., 2007) is a key mediator to
diminish the damage in nervous tissue (Miljkovic et al., 2007).

NEURONS

In addition to their role in information processing, neurons
contribute to regulating the other nervous system cell functions.
These cells secrete VEGF and establish physical contact with
NVU cells during development to regulate their activity and
stimulate BBB growth and branching (Ruhrberg and Bautch,
2013). Once the vascular network is established, the cytoplasmic
processes of neurons and astrocytes control the vessels lumen
diameter, releasing vasoactive substances such as nitric oxide
(Gotoh et al., 2001), acetylcholine (Scremin et al., 1973),
neuropeptide Y (Abounader et al., 1995), and somatostatin (Cauli
et al., 2004; McConnell et al., 2017), demonstrating the principal
role of neurons in BBB homeostasis.

Peripheral DENV infection and replication induces a
“cytokine storm” which affects many tissues and even modifies
brain homeostasis and neurological signs without direct
infection. Neuronal infection has been detected in tissues
obtained from fatal cases (Ramos et al., 1998; Nogueira et al.,
2002; Guzman and Harris, 2015), however, there have been
documented cases of infections and neurological alterations
such as loss of consciousness, sensory or motor dysfunction and
analgesia in the early post-infection times (Shweta et al., 2014).

Animal models of dengue infection have shown neuronal
infection and nervous tissue injury (Hotta et al., 1981). One
of the first works describing viral antigens in neurons after
intracerebral inoculation also detected proteins of the virus in
neuronal axons. Ultrastructural descriptions showed neuronal
necrosis and nuclear clefts (Sriurairatna et al., 1973).

Approximately 40% of primary cultured Balb/c neurons were
infected using a MOI 5 (Salazar et al., 2013) and experiments in
the mouse cell line Neuro-2a showed viral internalization after
2 h post inoculation. The virus was detected using a plaque
assay after 24 h p.i. (Ho et al., 2017), reinforcing the evidence
for some DENV neurotropism, although the neuronal molecules
responsible for the infection promotion remain unknown.
Using VOPBA experiments there has been identified a 65 kDa
protein which binds specifically to DENV (Ramos-Castañeda
et al., 1997). Interestingly, in vivo and in vitro dopamine
receptor-blocking induced a reduction of neurological symptoms
in mice and diminished the number of infected neurons
(Simanjuntak et al., 2014). A similar finding was observed
in Neuro-2a cells (expressing D2R) and mouse hippocampal
neurons (expressing D1, D2, and D5 receptors) since treatment
with metoclopramide reduces the infection, suggesting the

participation of dopaminergic receptors in DENV infection
(Ho et al., 2017). This work also demonstrated that Neuro-2a
cells treated with an inhibitor of clathrin-mediated endocytosis
(chlorpromazine) or an inhibitor of clathrin-independent
endocytosis (Pitstop-2) induces a significant infection reduction,
replication, and virus release, indicating the participation of both
endocytosis systems (Hou et al., 2016), such as those previously
reported by van der Schaar et al. (2008).

Despite many authors proposed that DENV should not be
considered as a neurotropic or neurovirulent flavivirus, there is
evidence of CNS entry by hematogenous and axonal transport
routes (Chaturvedi et al., 1991; Mc Minn, 1997). However,
the DENV neurotropism and neuroinvasion determinants are
still little known (Velandia-Romero et al., 2012). A monocyte-
released free virus could infect EC in brain capillaries and reach
the parenchyma by passive diffusion or transcytosis (Mc Minn,
1997; Liou and Hsu, 1998; Chantick et al., 2016) and infect
neurons and microglial cells, like occurs with other Flaviviruses
(Ludlow et al., 2016). However, axonal transport used by many
neurotropic viruses, such as herpes, rabies, JEV, and WNV, may
travel inside the axons as nude capsids or in vesicles until
they reach the neuronal soma in the brain and spread to other
areas using the axonal transport (Hunsperger and Roehrig, 2009;
Salinas et al., 2010; Ludlow et al., 2016).

Immunodeficient neonatal mice inoculated with DENV2
showed viral particles in both myelinic and amyelinic fibers
of pre- and post-synaptic neurons by electronic microscopy at
5 days p.i., suggesting an axonal spreading of DENV in the brain
and spinal cord (An et al., 2003). The neuroadapted D4MB-
6 strain used in our laboratory inoculated intraperitoneally
or by footpad injection in 3-day-old Balb/c mice produced
encephalitis and paralysis.

Once the virus reaches the brain, DENV induces paralysis,
myelitis, and transverse myelitis in addition to unconsciousness
and behavioral changes, indicating the neuronal involvement
during infection. Neuronal apoptosis appears to be responsible
for neurological manifestations, at least in infected mice, as
hippocampal and cortical neurons die during infection, many
of them undergoing apoptotic changes (Deprès et al., 1996). In
this regard, the neuroadapted D4MB-6 strain induced a high
proportion of TUNEL positive cells in the brain parenchyma
(Velandia-Romero et al., 2012), similar to the findings in
adult C57/BL6 mice which were intracerebrally inoculated
with DENV3. They suffered behavioral changes associated with
hippocampal neuron apoptosis mediated by caspase-3 (Silva de
Miranda et al., 2012), presumably related to high levels of TNF-α
secretion by neurons or glia (Jhan et al., 2018). It is not clear if at
least part of the death seen in neurons is due to a bystander effect
rather than direct infection.

Neuronal death and apoptosis have been frequently reported
in cultures, showing a pattern of chromatin condensation
by electronic microscopy and DNA fragmentation (TUNEL
positive) (Ludlow et al., 2016). This finding also occurred
in N18 mouse neuroblastoma cells, which showed additional
arrest in the G1 cell cycle phase (Su et al., 2001). Recently
Ho et al. (2017), described cell death, proliferation arrest, and
morphological changes in Neuro-2a cells after DENV2 infection
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using a high MOI (Ho et al., 2017). Although these results are
obtained in mouse neuroblastoma cells, we recently reported
that DENV2 infection in SH-SY5Y human neuroblastoma cells
induces cell death, expression, and secretion of TNF-α as well
as DNA fragmentation and Annexin V translocation, suggesting
similar responses among species and validating these models
(Castellanos J. E. et al., 2016).

CONCLUSION

Dengue pathogenesis is complex and sometimes may appear as
nervous system damage, with neurological signs and symptoms.
Clinical evidence, as well as evidence in cells and animals,
suggests that DENV may enter the CNS via the hematogenous
route and infect both neurons and microglial cells, before
eventually infecting the EC of BBB. These infected cells,
when activated, prevent virus spread and help to control their
deleterious effects. This response appears to be adequate in
most human cases and controls infection and inflammation
with minor or no sequelae; however, some cases result in
severe disease or death. The studies in cells and mice show
apoptotic neuronal death associated with direct infection due
to inflammatory mediators or excitotoxicity. Glial cell and
EC responses during infection indicate that soluble molecules,
cytokines, and chemokines such as RANTES, TNF-α, IL-6, IL-10,
and MCP-1 among others, favor leukocyte infiltration, worsening
brain inflammation. This response is standard for a neurotropic
Flavivirus such as JEV and WNV and indicates a putative
neurotropic feature of dengue. Immune responses in the nervous
system may also be responsible for the loss of barrier function,
allowing a massive infiltration of infected/activated monocytes
that enhance viral spread and tissue injury, establishing a

vicious circle of high permeability, greater infiltration, greater cell
infection, and greater inflammation.
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