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Spreading olivine powder in seawater to enhance alkalinity through weathering reactions
has been proposed as a potential solution to control atmospheric CO2 concentration.
Attention has usually been paid to the chemical properties of seawater after the addition
of olivine within lab and modeling studies. However, both microbial acclimation and
evolution in such manipulated natural environments are often overlooked, yet they are
of great importance for understanding the biological consequences of whether olivine
addition is a feasible approach to mitigating climate change. In this study, an olivine
addition experiment was conducted to investigate variation in bacterial diversity and
community composition in the surface and bottom seawater of a representative marine
ranch area in the Muping, Yantai. The results show that the composition of the particle-
attached microbial community was particularly affected by the application of olivine. The
relative abundance of biofilm-forming microbes in particle-attached fraction increased
after the addition of olivine, while no significant variation in the free-living bacterial
community was observed. Our study suggests that olivine addition would reshape
the bacterial community structure, especially in particle-attached microenvironments.
Therefore, the risk evaluation of alkalinity enhancement should be further studied before
its large-scale application as a potential ocean geoengineering plan.

Keywords: CO2 sequestration, silicate mineral dissolution, seawater alkalinity, enhanced weathering, bacterial
community

INTRODUCTION

Massive fossil fuel combustion has contributed to a significant increase in atmospheric CO2
content, resulting in an increase in pCO2 from 280 to 419 ppm since the industrial revolution1,
causing global warming (Lackner et al., 1995; Lal, 2008). Carbon dioxide removal technologies have
been proposed to limit the mean global temperature increase to 1.5◦C above preindustrial levels

1https://gml.noaa.gov/ccgg/trends/ (accessed May 2021).
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(Oelkers and Cole, 2008; Rogelj et al., 2016), and enhanced
silicate weathering has been suggested as one of these solutions
(Seifritz, 1990; Schuiling and Krijgsman, 2006; Hartmann et al.,
2013). Silicate weathering is a natural process that can remove
CO2 from the atmosphere on a geologically historical time scale
(Cornwall et al., 2013). The removal of atmospheric CO2 could be
stimulated with enhanced weathering of olivine (a type of silicate
mineral) by its application to forests or oceans (Berner et al., 1983;
Schuiling and Krijgsman, 2006). Since the industrial revolution,
the ocean has absorbed one-third of the CO2 emitted by human
activity (Sabine et al., 2004). The oceans have tremendous
potential to remove CO2 and at less risk than does the land
(Kheshgi, 1995; Kantola et al., 2017; Bach et al., 2019). Olivine
added to seawater can enhance buffering capacity and absorb
extra CO2 from the atmosphere. However, little is known about
the impact of mineral dissolution products on microbes in the
ecosystem, which plays a vital role in ocean carbon cycling
(Meysman and Montserrat, 2017; Montserrat et al., 2017).

Microbial utilization and transformation of various forms
of carbon are important regulators of global carbon fluxes
(Jiao et al., 2010; Zhao et al., 2019). Bacteria generally can
be characterized as particle-attached (PA) and free-living (FL)
bacteria based on their different life strategies (Azam et al.,
1983; Crump et al., 1999; Zhang et al., 2016). PA bacteria prefer
to attach themselves to the suspended particulate matter and
degrade parts of bioavailable particles into dissolved organic
matter and inorganic nutrients supporting the surrounding
biomass production (Ploug et al., 1999; Bachmann et al., 2018).
The presence of suspended particles and its various quality
can considerably influence the PA bacterial community (Smith
et al., 2013). The addition of olivine powder to seawater
not only releases ions into the surrounding seawater but also
provides particles to attach to. However, the interaction between
olivine particles and PA bacteria communities is not yet clear.
Meanwhile, the accumulation of mineral dissolution products
in the seawater might also influence the FL bacteria suspended
in the water column (Meysman and Montserrat, 2017). In the
context of global warming, the addition of olivine to seawater,
without the effect of olivine on the bacteria, makes the current
study very important.

In this study, industrial-grade olivine was added to natural
coastal seawaters, and the bacterial community was investigated
within 10 days of incubation. The goal of this study is to
understand the following: (1) How do the PA and FL bacterial
communities in the coastal seawater respond to the addition of
olivine? (2) What type of mechanisms underpin the microbial
response to the addition of olivine?

MATERIALS AND METHODS

Experimental Procedure
The natural seawater used in this experiment was from the
Muping Marine Ranch, Yantai, China (Figure 1), where the
maximum depth is ∼22 m, with an averaged tidal current rate
of ∼0.5 m s−1 (Lu et al., 2015; Li et al., 2021). In this ranch, the
abundance and diversity of the bacterial community have been

altered greatly by anthropogenic activities and aquaculture (Li
et al., 2021). Before the experiment, the seawater was collected
in the morning (8:00 to 10:00 a.m.) of August 10, 2019 from
the surface (∼1-m depth) and bottom layers (∼1 m above the
seabed) of the ranch with a Niskin bottle (Sea–Bird). The seawater
collected from each depth was put into three 20-L dark buckets
and transported to the laboratory within 10 h. After returning to
the laboratory, the seawater from each layer was mixed, filtered
with a 200-µm nytex net, and dispended into six 10-L transparent
polycarbonate buckets (Nalgene), three of which were added with
commercially available olivine powder to a final concentration
of 1h (m/m). The remaining buckets were set as the control.
The chemical composition of olivine powder includes MgO (35–
50%), SiO2 (37–42%), 6Fe (≤10%), and CaO (<1%)2, and its
particle size quantiles are D10 = 3.93 µm, D50 = 30.3 µm, and
D90 = 133 µm, determined by a Mastersizer 3000 (Malvern,
United Kingdom).

In total, 12 independent biological cultures were used in this
experiment. To mimic the in situ condition, the surface layer
of seawater with or without the addition of olivine powder was
exposed to natural sunlight, and the bottom layer was kept in
the dark by wrapping the buckets in aluminum foil. Temperature
in the buckets was maintained at 25 ± 1.0◦C (close to field
condition) in a large thermostat-controlled bath. During the 10-
day incubation, the buckets were manually mixed once a day to
make the bacteria and particles suspend homogeneously. On day
0 (before olivine addition) and day 10 (the end of incubation), the
seawater samples from each bucket were collected to determine
the environmental variables and particle-attached and free-living
bacteria compositions, as below.

Dissolved Silicate, pH, and Total
Alkalinity Measurements
Before seawater was collected at the sampling site, the site
temperature and salinity were measured using a Water Quality
Monitor (Seabird, United States). In the laboratory, on day 0 and
day 10 of incubation, an aliquot of 250-ml seawater was taken
from each bucket with or without olivine addition and filtrated
with a syringe to avoid exposure to air. The filtration was collected
to measure dissolved silicate (DSi) concentration, pH, and total
alkalinity (TA).

For DSi measurement, duplicate 15-ml filtration samples were
dispensed into 15-ml tubes and stored at−20◦C for later analysis.
The DSi was measured with an automatic nutrient analyzer
(SEAL AA3, German) with the molybdate blue method (Hansen
and Koroleff, 1999). The uncertainty in DSi measurements
was± 0.1 µmol kg−1.

For pH measurements, an aliquot of 40-ml filtration
was immediately dispensed into a borosilicate glass without
headspace. The pH was then measured with a Fisher pH-
meter (Star A211) equipped with an Orion combined electrode
(8157BNUMD). Before measuring, the pH meter was calibrated
with NIST buffers (pH = 4.01, 7.00, 10.01 at 25◦C). The
uncertainty in pH measurements was± 0.01.

2http://www.fqgls.com/about_t_2.html
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FIGURE 1 | Map of Muping Marine Ranch (Yantai) with a star (F) showing the sampling area. Samples were collected from the surface and bottom of the sea on
August 10, 2019.

For TA measurements, an aliquot of 120-ml filtration was
dispensed into high-density polyethylene bottles, preserved with
0.02% saturated HgCl2 solution, and pre-stored in the dark
at room temperature. The TA concentration was measured
through Gran titration with an automatic titration system (T960,
HANON). The certified reference materials (batch 178) from the
Dickson lab were used for quality control. The uncertainty in TA
measurements was± 2 µmol kg−1.

DNA Extraction and Sequencing
On day 0 and day 10, a 500-ml seawater sample was collected
from each bucket with or without the olivine addition.
The collected seawater was firstly filtrated through a 20-
µm nylon sieve and then sequentially filtrated through 3-
and 0.2-µm pore size polycarbonate membrane filters (47-
mm diameter; Millipore) for microbe collection at a negative
pressure of <0.01 MPa. The bacteria that settled on the
membrane filter of 3-µm pore size were defined as the
particle-attached fraction (PA, 3–20 µm), while those that
settled on the filter of 0.2-µm pore size were defined as
the free-living fraction (FL, 0.2–3 µm). The DNA of bacteria
from both the 3- and 0.2-µm filters were extracted using a
DNeasy PowerSoil Kit (Qiagen, Germany) according to the
manufacturer’s protocol.

Amplicon sequencing of the microbial community in
the DNA extraction was performed by Tianjin Novogene
Bioinformatic Technology Co., Ltd. (Tianjin, China). The
PCR products of one replicate of the olivine-added group
in surface seawater are not enough for sequencing, so this
part of the data is excluded from the data processing. The
V3–V4 region of the bacterial 16S rDNA gene was amplified

using the primer pair 341F (5′-CCTAYGGGRBGCASCAG-
3′) and 806R (5′-GGACTACNNGGGTATCTAAT-3′) (Zhang
et al., 2016), and sequencing was performed on an Illumina
Hiseq 2500 pe250.

Data Analysis
Sequences were denoised and clustered using amplicon
sequencing variants (ASVs) according to the SILVA database
(V138) using Qiime2 (Bolyen et al., 2019). All the sequences
assigned to chloroplast and mitochondrion origins were removed
from the dataset. Normalized rarefaction was performed, and
all data were rarefied to 7,989 sequences per sample because
sequencing depth influences diversity analysis. Statistical analyses
were conducted in the R software (R Core Team, 2013). Alpha
diversity was estimated with the Shannon–Weiner diversity
index, and the significance of bacterial α-diversity was tested
using Student’s t-tests. Principal coordinates analysis (PCoA)
was carried out with a Bray–Curtis (BC) distance matrix using
the “vegan” package, and information on chemical parameters
was added to the PCoA plot using envfit to explore correlations
between changes in bacterial community composition and
environmental factors (Oksanen et al., 2020). Analysis of
similarities (Anosim) using BC distance matrices was used
to test the significance of the grouping based on the PCoA
ordination. Similarity percentage analysis (SIMPER) was used
to identify the major classes primarily responsible for the
dissimilarity of bacterial community between control and
olivine-added groups. Differences between control and olivine-
added groups were analyzed by t-tests, and the confidence level
was set at 0.05.
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RESULTS

Olivine Dissolution in Seawater
The temperature in the field was 25.2± 0.2◦C and 24.6± 0.2◦C in
the surface and bottom layers of the sampling sites, respectively,
while the salinity was 31.55± 0.16 and 31.78± 0.04, respectively.
Accordingly, the initial DSi was 9.1 ± 0.9 and 10.0 ± 0.6 µmol
kg−1, the pH was 8.07 ± 0.03 and 7.99 ± 0.03, and TA was
2410 ± 23 and 2386 ± 7 µmol kg−1, respectively (Figure 2).
The temperature, TA, and pH in the surface layer were higher
than in the bottom layer, while the salinity and DSi were lower in
the surface layer.

The 10-day incubation caused no significant changes of
seawater DSi, pH, and TA compared to the control for both
the surface and bottom layers (Figure 2). In the olivine-added
group, however, the DSi, pH, and TA were markedly increased in
both layers (p < 0.01 in all cases). Adding the olivine increased
the seawater DSi by 8.6 ± 0.1 µmol kg−1 from 9.1 ± 0.9 to
17.7 ± 0.8 µmol kg−1 in the surface water within 10 days of

FIGURE 2 | Changes of dissolved silicate concentration (A,B) DSi, µmol
kg−1, pH (C,D), and total alkalinity (E,F) µmol kg−1 in initial and 10-day
incubated seawater with or without olivine addition, from the surface (A,C,E)
and bottom layers (B,D,F) of the sampling site. The vertical bar indicates the
standard deviation (N = 3), and different letters indicate significant differences
(p < 0.05).

incubation, and by 9.3 ± 0.6 µmol kg−1 from 10.0 ± 0.6 to
19.2 ± 0.9 µmol kg−1 in the bottom water (Figures 2A,B).
Meanwhile, the olivine addition increased the pH by 0.09 ± 0.02
in the surface (from 8.07± 0.03 to 8.16± 0.02) and by 0.14± 0.02
in the bottom (from 7.99 ± 0.03 to 8.13 ± 0.01) (Figures 2C,D),
and increased the TA by 177 ± 4 µmol kg−1 (from 2410 ± 23 to
2587 ± 24 µmol kg−1) and 185 ± 4 µmol kg−1 (from 2386 ± 7
to 2572± 3 µmol kg−1), respectively (Figures 2E,F).

Response of the Bacterial Community to
Olivine Addition
The PA bacterial diversity and richness of the control groups
showed a small range of variation over time (4.23–4.39 in
surface seawater incubation and 3.82–4.28 in bottom seawater
incubation). That of the olivine-added groups increased slightly
(4.23–4.86 in surface seawater incubation and 3.82–4.59 in
bottom seawater incubation) (Figures 3A,B). Similar to the
PA bacteria, the FL bacterial diversity and richness of both
the control and olivine-added groups changed little over time
(Figures 3C,D). Moreover, there were no significant differences
in bacterial diversity and richness between the two groups after
10 days of incubation for both FL and PA fractions according to
the t-test (p > 0.05).

Variation in the bacterial community composition was
evaluated by using PCoA of the Bray–Curtis distance. Analysis
indicated the distinctiveness of the PA bacterial community
after olivine addition (Supplementary Figures 1A,B). The first

FIGURE 3 | Changes of Shannon–Weiner index of the particle-attached (A,B)
PA, 3–20 µm and free-living (C,D) FL, 0.2–3 µm bacterial communities in
initial and 10-day incubated seawater with or without olivine addition, from the
surface (A,C) and bottom layers (B,D) of the sampling site. The vertical bar
indicates the standard deviation (N = 3), and different letters indicate
significant differences (p < 0.05).
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two constrained axes together explained 47.34 and 51.49% of
the variation in the PA bacterial community in the surface
and bottom water incubations, respectively. The bacterial
communities of the control and olivine-added groups were
separated along the chemical properties after 10 days of
incubation (rAnosim = 0.58 in surface seawater; rAnosim = 0.37 in
bottom seawater). The two PCoA axes, PCo1 and PCo2, captured
36.1 and 33.26%, and 17.74 and 21.79% of the total variation
in the FL bacterial community in the surface and bottom
incubations, respectively. The changes of bacterial community
composition over time were primarily separated along PCo1
(Supplementary Figures 1C,D). The FL bacterial community
showed a visible differentiation between day 0 and day 10, but
the FL bacterial community of the olivine-added group on day
10 was not separated from the control group, which clustered
together (rAnosim = 0.07 in surface seawater; rAnosim = −0.07 in
bottom seawater).

The dataset consisted of 29 phyla, of which Proteobacteria,
Bacteroidota, Firmicutes, Actinobacteriota, and Campilobacterota
were the most abundant. Each of these five phyla accounted for
≥1% of the total sequences (all FL and PA libraries together)
(Figure 4). Proteobacteria was the most abundant phylum in both
PA and FL bacterial communities in the control groups on day
10. The sequences affiliated to Bacteroidota and Firmicutes in
the PA fraction responded differently to the addition of olivine
compared with the control in both the surface and bottom

seawater incubations after 10 days. In the surface seawater, the
relative abundance of Firmicutes increased considerably after
adding olivine, and the distribution of the Bacteroidota sequences
did not vary much between the control and olivine-added
groups. In the bottom seawater, Bacteroidota and Firmicutes
became the dominant bacteria, comprising more than 50% of
the bacterial community after olivine addition. Five major phyla
of the FL fraction showed a non-significant difference between
the control and olivine-added groups, and Proteobacteria was
the dominant phylum in both groups. The distributions of
Bacteroidota, Firmicutes, and Actinobacteriota in the control were
similar to those in the olivine-added group.

Similarity percentage analysis analysis identified six classes
primarily responsible for the observed bacterial community
dissimilarities of the PA fraction between the control and olivine-
added groups (Figures 5A,B), and these classes contributed more
than 85% to the overall dissimilarities. In surface seawater, of all
the six classes, two classes of Firmicutes contributed the most to
the overall dissimilarities (36.82%), followed by Proteobacteria
(two classes, 35.91%), Bacteroidota (one class, 6.05%), and
Actinobacteriota (one class, 4.96%). The relative abundances of
classes affiliated with Firmicutes were much higher in the olivine-
added group (12.0–24.4%) than the control group (0.6–2.8%)
(Figure 5A). The observed differences in bottom seawater were
similar to those in surface seawater, and the olivine-added group
in bottom seawater incubation was characterized by high relative

FIGURE 4 | Changes of averaged relative abundance (N = 3) of particle-attached (A,B) PA, 3–20 µm and free-living (C,D) FL, 0.2–3 µm bacterial communities at the
phylum level in initial and 10-day incubated seawater with or without olivine addition, from the surface (A,C) and bottom layers (B,D) of the sampling site. The
standard deviations of bacterial relative abundances are shown in Supplementary Figure 2.
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FIGURE 5 | Contributions of the top six particle-attached (A,B) PA, 3–20 µm and free-living (C,D) FL, 0.2–3 µm bacteria classes to community dissimilarities after
10-day incubations in control and olivine-added seawater from surface (A,C) and bottom layers (B,D) of the sampling site.

abundances of Bacilli, Clostridia (affiliated with Firmicutes),
and Bacteroidia (affiliated with Bacteroidota). For the FL
bacterial community, in surface seawater, Gammaproteobacteria
and Alphaproteobacteria were the two most different classes,
making up more than half of the observed differences,
followed by Acidimicrobiia, Bacteroidia, Actinobacteria, and
SAR324 (Figure 5C). In bottom seawater, the differences in
the FL bacterial community between the control and olivine-
added groups were mainly affected by Gammaproteobacteria,
Campylobacteria, Clostridia, Alphaproteobacteria, Bacteroidia,
and Dehalococcoidia (Figure 5D). Further analysis of the
genera from the classes of PA bacteria that responded to
olivine addition showed that the members of Lactobacillus,
Dubosiella, and Turicibacter from class Bacilli and Clostridium
sensu stricto 1 from class Clostridia were more abundant after
olivine addition (Figures 6E,F). Meanwhile, Bifidobacterium
(class Actinobacteria) and Muribaculaceae (class Bacteroidia)
were enriched in the olivine-added groups (Figures 6C,D,G,H).

DISCUSSION

Olivine weathering in seawater can effectively enhance the
alkalinity of the seawater (Montserrat et al., 2017). Consistent
with previous studies (Hartmann and Kempe, 2008; Hangx and

Spiers, 2009; Renforth and Henderson, 2017), the addition of
olivine in this experiment resulted in a significant increase in pH,
TA, and DSi concentrations relative to the control groups in both
surface and bottom seawater incubations (Figure 2). Previous
studies indicated that the accumulation of dissolution products
and particles might influence the bacterial community (White
and Brantley, 2003; Meysman and Montserrat, 2017). However,
until now the mechanisms behind this have not been clear.

We further explored the variations in the bacterial community
in seawater after adding olivine through the laboratory culture
experiment of natural surface and bottom seawater. PA and
FL bacterial communities responded differently to olivine
addition after 10 days of incubation (Supplementary Figure 1).
The PCoA and analysis of similarities (Anosim) indicated
that the addition of olivine had no evident influence on the
FL bacterial community during the experimental period,
which might be due to the fact that coastal FL bacteria have
adapted to the in situ near-shore environmental fluctuations
(Cornwall et al., 2013; Jing et al., 2013; Liu et al., 2019), and they
were not attached to the olivine particles nor exposed to the
microenvironment formed by olivine dissolution. However, the
analysis of similarities suggested that PA bacterial communities
of the control and olivine-added groups were different after
10 days of incubation. The interaction between olivine particles
and biofilm-forming microbes was considered the main
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FIGURE 6 | Changes of averaged relative abundance (N = 3) of particle-attached (PA, 3–20 µm) bacterial communities that respond to olivine addition at the genera
level, in initial and 10-day incubated seawater with or without olivine addition: (A,B) Proteobacteria (Alphaproteobacteria and Gammaproteobacteria); (C,D)
Bacteroidota (Bacteroidia); (E,F) Firmicutes (Bacilli and Clostridia); and (G,H) Actinobacteriota (Actinobacteria) in the surface (A,C,E,G) and bottom layers (B,D,F,H)
of the sampling site. The standard deviations of bacterial relative abundances are shown in Supplementary Figure 2.

reason for changes in PA bacterial community composition
(Shirokova et al., 2012; Caraballo Guzman et al., 2020). Phyla
Bacteroidota and Firmicutes have an inclination for growth
attached to particles (Fernandez-Gomez et al., 2013; Zhang et al.,
2016; Bachmann et al., 2018). After grinding, olivine has a large

specific surface area and that of ground olivine provides more
opportunities for bacteria to colonize when olivine particles float
in the seawater column (Smith et al., 2013; Rigopoulos et al.,
2015). Similar to our findings, a high proportion of Bacteroidota
was also found on the glass beads (Ogonowski et al., 2018),
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indicating that Bacteroidota can not only attach to polymers but
also colonize inorganic particles. Members of Bacilli, Clostridia,
and Bacteroidia were enriched in the PA fraction after olivine
addition. Previous studies indicated that biofilm formation by
Bacilli conferred antibiotic resistance, and Clostridia could be
found in moving bed biofilm reactor systems (Houry et al.,
2012; Pantaleon et al., 2014). Bacteroidia was identified as the
core microbiome of the polyethylene-associated biofilm in
coastal environments (Tu et al., 2020). The high concentrations
of mineral dissolution products around the particles might
stimulate microorganisms to facilitate biofilm development
to resist environmental stress (Negrete-Bolagay et al., 2021).
The complex structure of biofilms might lead to diffusion
limitation, and the oxygen distribution was strongly influenced
by the biofilm depth. As a result, the anaerobic area formed at
some depth below the biofilm surface, which could facilitate
the cohabitation of anaerobic and aerobic bacteria within
the microbial biofilm (Tay et al., 2002). Strictly or facultative
anaerobic bacterial genera were enriched in the PA fraction
during the 10-day incubation, indicating the possible formation
of an anoxic microenvironment (Figure 6). Lactobacillus,
one of the major PA bacterial taxa in olivine-added groups,
was a genus of facultative anaerobic bacteria that could grow
as biofilms on abiotic surfaces and was enriched in the PA
fraction of all samples. Bifidobacterium was a strictly anaerobic
genus, which was enriched in the olivine-added groups, and
bifidobacterial biofilm formation might be a multifactorial
adaptive phenomenon in response to olivine exposure (de
Vries and Stouthamer, 1969; Liu et al., 2021). The anaerobic
genera Muribaculaceae, Dubosiella, and Turicibacter were also
enriched after olivine addition in the PA fraction, indicating that
micro-anaerobic conditions might form (Licht et al., 2007; Liu
et al., 2020; Park et al., 2021).

The residence time of olivine in the seawater column mainly
depends on the size of the particles (Hangx and Spiers, 2009).
Smaller-size olivine particles remain in the surface layer for
longer. The quality of suspended matter also influences microbial
colonization. It has been reported that the bacterial abundance on
organic and aged particles is higher than that on inorganic and
fresh particles (Kernegger et al., 2009). Inversely, the secondary
production of individual bacteria on inorganic and fresh particles
is higher than that on organic and aged ones (Kernegger et al.,
2009). At the same time, the attachment and remineralization
of organic particulate matter by PA bacteria can retain nutrients
and DOM in the surface layer, which is important in summer
when the thermocline forms and nitrogen and phosphorus
nutrients are limited (Simon et al., 2002; Hangx and Spiers,
2009). Meanwhile, olivine dissolution enriches the DSi pool in the
surface ocean (Bach et al., 2019). The accumulated nutrients can
stimulate planktonic algal blooms to take up more CO2 if olivine
addition conducts in a reasonable time.

CONCLUSION

The dissolution of olivine can effectively raise the alkalinity
and pH of seawater, and thus uptake extra CO2 from

the atmosphere, and mitigate ocean acidification. Our study
showed that the influence of olivine addition on the bacterial
community was mainly on particle-attached bacteria rather than
the free-living bacterial community during the experimental
period. The difference between the particle-attached bacterial
community in the control and olivine-added groups might
be due to environmental stress resulting from the olivine
dissolution, which could stimulate particle-attached bacteria
to facilitate biofilm development. Further investigation on
ecological effects is still needed before large-scale enhanced
weathering through the dissolution of olivine, even though it is
feasible and effective.
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