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Abstract
With the spotlight on cancer immunotherapy and the expanding use of immune
checkpoint inhibitors, strategies to improve the response rate and duration of
current cancer immunotherapeutics are highly sought. In that sense,
investigators around the globe have been putting spurs on the development of
effective cancer vaccines in humans after decades of efforts that led to limited
clinical success. In more than three decades of research in pursuit of targeted
and personalized immunotherapy, several platforms have been incorporated
into the list of cancer vaccines from live viral or bacterial agents harboring
antigens to synthetic peptides with the hope of stronger and durable immune
responses that will tackle cancers better. Unlike adoptive cell therapy, cancer
vaccines can take advantage of using a patient’s entire immune system that
can include more than engineered receptors or ligands in developing
antigen-specific responses. Advances in molecular technology also secured
the use of genetically modified genes or proteins of interest to enhance the
chance of stronger immune responses. The formulation of vaccines to increase
chances of immune recognition such as nanoparticles for peptide delivery is
another area of great interest. Studies indicate that cancer vaccines alone may
elicit tumor-specific cellular or humoral responses in immunologic assays and
even regression or shrinkage of the cancer in select trials, but novel strategies,
especially in combination with other cancer therapies, are under study and are
likely to be critical to achieve and optimize reliable objective responses and
survival benefit. In this review, cancer vaccine platforms with different
approaches to deliver tumor antigens and boost immunity are discussed with
the intention of summarizing what we know and what we need to improve in the
clinical trial setting.
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Introduction
Cancer vaccines have been extensively researched in both ani-
mal models and humans over the past 30 years across many 
different types of cancer. With continued attempts to develop 
effective cancer vaccines, several agents are licensed or were 
granted Orphan Drug Designation. However, the limitation in 
demonstrating clinical response has led to US Food and Drug  
Administration (FDA) approval of only one agent, sipuleucel-T, 
a cancer vaccine that is used to treat metastatic castration- 
resistant prostatic cancer in a limited group of nearly asymptomatic 
patients, indicating an apparent unmet need1.

Cancer vaccines are highlighted in the era of cancer immuno-
therapy as they can induce immune responses in “cold” tumors 
that do not appear immunogenic on their own, potentially  
converting them to “hot” tumors amenable to checkpoint block-
ade therapy. Hot tumors are defined as ones in which the tumor 
itself has induced an immune response of infiltrating T cells that 
are not able to function because of various checkpoints such as  
PD-1, CTLA-4, LAG3, TIM3, TIGIT, or other immunoregu-
latory mechanisms involving regulatory cells (regulatory  
T cells, myeloid-derived suppressor cells (MDSCs), M2 mac-
rophages, regulatory natural killer (NK) T cells, and so on) or  
regulatory cytokines (transforming growth factor-beta [TGFβ]),  
interleukin-10 (IL-10), and IL-13)2,3. A cold tumor is one that is 
not sufficiently immunogenic to induce such infiltrating T cells 
on its own, or has excluded these cells. Without a T-cell response, 
checkpoint blockade has no immune response to augment.  
Cancer vaccines can fill this gap by inducing T-cell immunity 
that then can be made more effective by overcoming the inhibi-
tory signals through checkpoint blockade4–9 or other methods to 
overcome other immunosuppressive mechanisms. For example, 
blockade of TGFβ has been found to complement the effect of  
PD-1 blockade in enhancing cancer vaccine efficacy10, perhaps 
because it allows entry of T cells into the tumor11,12. Anti-TGFβ 
proved safe in a phase I clinical trial and even showed some 
evidence of clinical activity in patients with melanoma13,  
so it could be combined with anti-PD-1. Thus, understanding 
the difference between the cancer vaccine platforms is crucial in  
maximizing the synergistic effect with other immunotherapeutics 
and anti-cancer therapies.

Shared tumor antigens versus neoantigens
For most of their history, cancer vaccines have focused on “shared” 
tumor antigens, meaning antigens that are common to most  
cancers of a given histological type14,15. A decade ago, a working 
group was assembled to develop a list of the highest-priority 
shared tumor antigens16. These include antigens like hypogly-
cosylated MUC1, Wnt1, HER2, MART1, gp100, and tyrosinase. 
Many of these have shown promising early results but none has 
been licensed yet as a vaccine. For example, hypoglycosylated 
MUC1 was found to be a tumor antigen common to many  
adenocarcinomas17, and clinical trials have shown promise18. 
HER2 is known to be a surface antigen that is also a driver 
oncogene product constitutively signaling the cell to divide. 
Monoclonal antibody therapy against HER2 is a mainstay of  
treatment for HER2+ breast cancer and some other HER2- 
expressing cancers, but no vaccine that induces such antibodies 
is clinically available. However, peptide vaccines targeting HER2 

have been successful in inducing immunity in patients with 
breast and ovarian cancer19,20. An ongoing trial of a dendritic 
cell (DC) vaccine transduced with an adenovirus expressing 
the extracellular and transmembrane domains of HER2, which  
cures mice of HER2+ tumors by inducing antibodies, is result-
ing in some complete and partial responses and stable disease 
in close to 50% of vaccinated patients with advanced metastatic 
HER2-expressing cancers who have failed standard therapies 
(Maeng et al., manuscript in preparation). Another shared  
antigen, TARP21, expressed in about 95% of prostate cancers of 
all Gleason types and about 50% of breast cancers, has shown 
promise as a peptide vaccine in HLA-A*0201+ patients with 
stage D0 prostate cancer by reducing the tumor growth rate 
as measured by prostate-specific antigen (PSA) slope in about  
74% of vaccinated patients at 1 year22.

In the past 5 years or so, neoantigens have been found to  
represent a substantial portion of tumor antigens. These are  
antigens that are created by point mutations, insertions, deletions, 
or translocations that produce novel amino acid sequences 
present only in the tumor and not normal cells. Some fraction 
of these can be presented by HLA molecules of the patient and 
thus constitute neoepitopes of neoantigens. It was found that 
the response rate to checkpoint inhibitors correlated with the 
number of such mutations (tumor mutational burden) or predicted  
neoepitopes4. For this reason, multiple groups are developing 
strategies to identify such neoepitopes in each patient’s cancer 
and then synthesize a personalized vaccine to treat his or her 
cancer23. One of the first attempts at making a neoepitope  
vaccine, before the term was coined, was the targeting of mutant 
epitopes created by point mutations in Kras or p53 that commonly 
occur in cancers. In a vaccine trial of such personalized mutant  
ras and p53 peptides, the cancer patients who made an inter-
feron-gamma (IFNγ) T-cell response to their own mutant  
peptide vaccine had a median overall survival more than a year 
longer than patients who did not make such a T-cell response24.  
Now that the technology to rapidly identify such mutations 
has matured, more such approaches are under way. It should 
also be noted that not all neoantigens are of equal quality for  
the induction of anti-tumor immunity; variation in quality depends 
on factors such as affinity for the patient’s HLA molecules,  
frequency of relevant T-cell receptors (TCRs) in the repertoire  
(which may be affected by cross-reactivity with microbial  
antigens), and expression levels in the tumor25–28.

Vaccine platform types
Developing preclinical models for cancer vaccines has been  
difficult as immune systems of animals and humans are  
different; more importantly, mouse tumor models do not often 
mimic the human disease that presents clinically when already  
established. Despite the challenges, each translation of cancer  
vaccines to the clinical setting has yielded a deeper understand-
ing of each platform. In this article, we will focus on those 
with successful translation to clinical trials, reviewing the  
historical changes to develop vaccines that are more effective.

Cancer vaccines can be categorized in a few different ways. One 
way to classify cancer vaccines is based on the biologic formu-
lation or antigen source of the vaccine: nucleic acids, peptides, 
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recombinant proteins, microbial vectors, whole tumor cells either 
autologous or allogeneic, manipulated antigen-presenting cells 
(APCs), and other artificial systems (Figure 1). The other major  
way is based on the type of cancer antigens, the methods of 
antigen selection, or uniqueness of the antigen (for example, 
shared versus neoepitopes). There have been controversies 
about whether an oncolytic virus should be considered a cancer  
vaccine or not. Strictly speaking, oncolytic viruses that are intended 
to induce direct cytopathic effects as the main mechanism of 
action are different from cancer vaccines, even though some of the  
post-treatment immune reactions might initiate similar immu-
nologic cascades, turning the tumor cells into “endogenous  
vaccines”29. The route and mode of delivery are also important 
topics but should be addressed in the context of an individual  
vaccine formulation to understand why certain routes may or may 
not work better for a particular vaccine or formulation.

1. Nucleic acid/DNA/mRNA vaccines
The use of nucleic acids with the hope of developing gene  
therapies to correct any mutations or deficiencies or vaccines to 
induce specific antibody or T-cell responses against a pathogen 
(prophylactic vaccines) or a tumor antigen (cancer vaccines) 

was one of the highlighted fields in biomedical advances 
in 1990s. The concept of using non-live vaccines offers an  
opportunity to induce both humoral and cellular immunity without 
any concern of introducing infectious organisms that can poten-
tially cause the illness in the vaccine recipients or unintended  
individuals.

Typically, a DNA vaccine is prepared by inserting the gene 
sequence of interest into a plasmid backbone that needs to be 
expanded and purified for administration via intradermal, subcu-
taneous, or intramuscular routes30. When the plasmid enters the  
residential APCs or surrounding cells (such as myocytes), 
transcription occurs, resulting in expression of the protein of  
interest. The cell machinery provides post-translational modi-
fications to the antigen in a manner similar to that in target cells  
of the vaccine. APCs play a dominant role in the effect of 
DNA vaccines by presenting the processed peptides on major  
histocompatibility complex (MHC) class I molecules either from 
a direct transfection or through cross-presentation of antigens 
taken up by phagocytosis of transfected cells31. Also, secreted 
tumor antigens are processed by the endocytic pathway. Then  
antigen-loaded APCs travel to a draining lymph node (DLN) 

Figure 1. Cancer vaccine platforms and interactions in the immune system. Antigen-specific cancer vaccines come in a variety of 
compositions to deliver the tumor antigen of interest. Compared with cell-based vaccines, the rest of the platforms have the merit of potential 
for simpler manufacturing and flexibility in delivery of the vaccines along with special features of individual platforms. Cell-based vaccines, as 
represented by dendritic cell (DC) vaccines, have an advantage in that investigators can perform targeted loading of the antigen of interest, 
circumvent poor DC maturation in patients with cancer, and manipulate in vivo, but standardizing the manufacturing and quality assessment 
is another hurdle to surmount. As the network of the immune system is unveiled further, more efficient and intelligent design of cancer vaccine 
platforms will expand the territory to use these either by themselves or in combination with other cancer therapy options in this era in which 
cancer immunotherapy has become the fourth pillar in oncology, beyond surgery, chemotherapy, and radiation. IFN, interferon; IL, interleukin; 
MHC, major histocompatibility complex; TCR, T-cell receptor.
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to present the antigen to naïve T cells with co-stimulatory mol-
ecules to induce T-cell expansion, cytokine secretion, or interac-
tion with B cells. If the vaccine is administered intramuscularly, 
transfected muscle cells can also present the peptide-MHC  
complexes, increasing the chances of T-cell expansion, although 
preclinical evidence suggests that the relevant presentation is  
primarily by professional APCs in the DLNs32. Another approach 
is to use DNA priming followed by a boost such as modified  
vaccinia Ankara (MVA) or a canarypox vector, as was researched 
originally in HIV vaccines33,34. Variations in delivery methods, 
including electroporation, that can deliver the plasmid along 
with other elements (such as toxoids or cytokines) and the use 
of xenogeneic DNA to enhance immune response have been 
studied and translated to clinical trials in solid tumors, including 
melanoma and prostate cancer35–39. In veterinary medicine, 
DNA vaccines targeting cancer have been licensed in a number 
of solid tumors. Accumulated information from the animals 
may contribute to the development of next-generation vaccine  
platforms40,41.

Even though DNA vaccines have shown immune responses 
in humans, the potency is still limited. The development of 
novel technologies in the delivery of nucleic acids, such as 
hydrophobic peptide mix, gene gun, or electroporation, can be  
incorporated to enhance the efficiency39,42,43. Large batch manu-
facturing and a long shelf life make a DNA vaccine attractive 
to the community practice setting, not limiting the treatment  
opportunities to cutting-edge research centers, in contrast to 
some other personalized vaccine strategies. The other significant 
benefit of a DNA vaccine is the versatile construction that  
enables the developer to include encoding of optional safety 
features instead of using any intact viral particles. However, 
integration to cellular DNA, the theoretical risk of antibiotic  
resistance due to selection markers in the plasmid, and the  
development of autoimmune conditions due to autoantibody  
production have yet to be addressed. Guidelines from the  
regulatory groups in the European Medicines Agency, the World 
Health Organization, or the FDA are available to address such 
safety concerns about developing DNA vaccines but those 
guidelines are focused on preventive vaccines for infectious  
organisms44–46.

In a study of patients with metastatic melanoma (ClinicalTri-
als.gov identifier: NCT02035956), Sahin et al. analyzed the 
mutated neoepitopes, prioritized by predicted MHC affinity, 
and treated the cancers with up to 10 neoepitope-encoding 
mRNAs47. About 60% of the patients developed de novo immune 
responses and the majority were CD4 responses. Tumor tissue 
sections showed neoantigen-specific killing by vaccine-induced  
T cells. The authors also described objective tumor responses, 
decreased cumulative metastasis, and sustained survival in 
selected patients. This study supports a newer concept of  
cancer vaccines using nucleic acids.

2. Peptides and proteins
Synthetic peptides have been used successfully in the induc-
tion of tumor-specific T-cell responses in clinical settings 
against both microbials and cancer48. The use of peptides  
compared with whole cell lysates or protein has an advantage 
that only the epitopes of interest can be delivered to the immune  

system instead of overloading immunologic pathways with  
irrelevant antigens that might compete with the relevant epitopes 
or might induce autoimmune responses. Also, using only T-cell 
epitopes can avoid the danger of anaphylaxis associated with 
antibody responses by avoiding B-cell epitopes. Sometimes, 
the peptides require modifications to allow enhanced binding  
to MHC molecules to increase the immunogenicity, a proc-
ess called epitope enhancement49. Often, a few amino acids are  
added or mutated to enhance the immunogenicity and modu-
late the amphiphilicity and these changes have been shown 
to either enhance or inhibit anti-tumor T-cell responses50.  
Vaccines using xenogeneic peptide/protein by themselves or 
loaded to DCs can be a further extension of enhanced immuno-
genicity originating from the difference in xenogeneic amino 
acid sequences while having the majority in common40,51.  
Peptides can be encapsulated in particles such as liposomes 
or conjugated to adjuvants to optimize the antigen uptake by 
specialized APCs for the MHC class I and II presentation to  
CD8+ cytotoxic or CD4+ helper T cells, respectively, and such 
technologies have been translated to clinical trials in both  
hematologic (ClinicalTrials.gov identifier: NCT03349450) and 
solid cancers52–56. It is relatively easy to add or substitute pep-
tides for other epitopes compared with adoptive cell therapies 
such as chimeric antigen receptor (CAR) T cells or TCR- 
transgenic T cells, which are harder to adapt to antigen loss or  
alteration57–61. Using synthetic long peptides (SLPs) of 15 to 30 
amino acids has been advocated by some groups who propose 
that professional APC-processed SLP can more efficiently induce 
anti-tumor responses than direct presentation of shorter peptides 
to the cytotoxic T cells, that can be mediated by non- 
professional APCs that lack costimulation62,63. Melief et al. have 
demonstrated such a concept in several clinical trials focused 
on human papilloma virus (HPV)-associated cancers, and vac-
cination using SLP has been widely applied in various solid  
tumors64–70. At the same time, shorter peptide vaccines have also 
been tested clinically in HPV-related disease and have been 
shown to be immunogenic71. Idiotype vaccination in B-cell 
malignancy is another unique concept of targeting tumor-specific  
antigens in the form of idiotype produced uniquely by the malig-
nant B cells or plasma cells72,73. The challenge is the limited 
knowledge in intracellular processing and methods of tracking 
it in humans when the limited data are based largely on animal, 
especially murine, models. MHC class I processing involves 
endoplasmic reticulum aminopeptidases, cytosolic proteasomes,  
and peptidases, whereas MHC class II peptide production and 
processing take place in endolysosomal compartments involving 
cathepsin-like proteases74. The process of cross-presentation 
allows exogenous antigens, which normally go through the MHC 
class II pathway, to be processed via the MHC class I pathway 
to trigger a cytotoxic CD8 T-cell response75. Sometimes, endo-
somal proteases can affect epitope expression during cross- 
presentation76,77.

Clinical trials using shared tumor antigens have been safe and 
immunogenic in many studies but so far have not been success-
ful in showing clinic benefit sufficient for FDA approval. GV1001 
against a telomerase peptide (TeloVac) for advanced pancreatic 
cancer combined with chemotherapy failed to show improved 
overall survival in a phase III trial78. Several other phase III  
trials, including studies targeting a MUC1 antigen (tecemotide, 
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START trial) and EGFRVIIII in glioblastoma multiforme 
(rindopepimut, CDX-110, ACT III study), also failed to show 
improvement in overall survival despite high expectations when 
they went into advanced clinical studies79,80. The strategy to  
include multiple epitopes in one vaccine did not result in any  
superior results in advanced pancreatic cancer or renal cell car-
cinoma, indicating the serious need for better strategies to  
overcome several immunologic hurdles to control the cancer. 
Personalized peptide vaccines targeting neoantigens are among 
newer efforts to liberate trammeled immune responses against  
cancer25.

3. Microbial vectors and non-bacterial human pathogens, 
including viruses and helminths
Microbes can function even in necrotic tissues, and the immune 
modulatory effect by the microbes can be an additional benefit 
added to the direct killing of cancer cells. Using bacteria or 
their products in cancer treatment goes back to 1890s, when 
Coley described the accidental finding of an inoperable case of  
sarcoma that improved with erysipelas; that led to treatment with  
inoculation of Streptococcus and Bacillus prodigiosus, now 
known as Serratia marcescens81. In his reports, he described the 
difficulties in inducing meaningful infection from the inocula-
tion, the clinical course after inoculation of “Coley’s toxin”, and 
the regression of inoperable tumor that lasted several years in one 
of the patients. Since then, cancer immunotherapies have used 
various bacteria or their products, such as Clostridium novyi, 
Listeria monocytogenes (Lm), and Salmonella typhimurium82–86.  
Several organisms have been tested either to serve as a vector 
purely to express tumor antigens or in combination with DCs or 
other adjuvants. In addition to those listed above, shigella and 
bacillus Calmette–Guérin (BCG) among bacteria, and vaccinia, 
lentivirus, adenovirus, yellow fever, and HPV among viruses  
are well-known examples of microbial vaccine vectors.

On another front, microbiome research in cancer and immu-
nology has gained momentum in the past decade, leading to 
versatile approaches in using the microbiome, including the  
consideration of normal flora such as Lactobacilli as vectors for 
gynecologic cancer. Besides direct anti-cancer effects of the  
infection, infection of the tumor tissue with facultative anaer-
obes can enhance the antigenicity of tumors that otherwise 
could have been tolerogenic or poorly antigenic while driv-
ing the alteration in the immune subsets in a pro-inflammatory  
microenvironment87,88.

The changes in immune landscape in the use of bacterial  
cancer vaccines are noteworthy. MDSCs, tumor-associated  
macrophages, tumor-entrained neutrophils, and tolerogenic DCs 
are all myeloid cells that are immune-suppressive and found 
during tumor growth in both primary and metastatic lesions. 
Monocytes that are attracted to the tumor generally differen-
tiate into macrophages, typically M2 macrophages that are  
characterized by arginase 1 (Arg1) expression and IL-10 known 
as immunosuppressive markers that contribute to immune  
evasion of cancer, whereas M1 macrophages contributing to  
anti-tumor activity express nitric oxide synthase (NOS2) and 
secret tumor necrosis factor-alpha (TNFα). Injection of attenuated  
S. typhimurium into HER2/neu-expressing CT26 tumors 
in a mouse model showed the shift to mature phenotype in  

macrophages in the tumor or spleen. Injection of attenuated  
Lm to an ID8-Defb29/Vegf-A ovarian carcinoma mouse model led 
to increased macrophage infiltrates in the tumor, favoring an M1 
profile. These findings suggest that bacterial vaccines can repro-
gram the pro-inflammatory nature of cells and influence M1/M2 
phenotype-specific differentiation89. Melanoma cells infected 
with wild-type Lm can differentiate into professional APCs that 
express mature DC markers such as CD11c, CD40, CD83, and 
MHC class II90. These findings suggest how pathogens can stimu-
late the immune function via co-stimulatory molecules involving 
Toll-like receptor (TLR) signaling pathways to activate killer T-
cell and NK cell activities to kill tumor cells. On the other hand, 
tumor-associated neutrophils (TANs) are also of importance in the 
research of cancer vaccines using bacteria. Vendrell et al. reported 
increased recruitment of TANs after the injection of Salmonella 
typhi in a mouse model of breast cancer91. TANs can alter the 
tumor microenvironment (TME) by secreting inflammatory  
cytokines such as IFNγ and TNFα that potentiate the local 
immune infiltrates and systemic response. Salmonella strains 
that are engineered to express such inflammatory cytokines have 
shown enhanced anti-tumor activity in vivo. In regard to T-cell 
responses, injection of attenuated Salmonella species resulted 
in increased Th1 phenotype CD4 T cells in tumor infiltrates, 
slower tumor growth, and improved host survival in mice92.  
These effects were decreased at least in part in a T  
cell–depleted mouse model, suggesting the requirement 
for (presumably cytotoxic) T cells in the mechanism of 
action. Similar observations were reported with Lm and the  
parasite Toxoplasma gondii93. Bacterial vaccines can further 
modulate the TME by decreasing the expression of PD-1 in 
tumor-infiltrating lymphocytes (TILs), inducing central and  
effector memory T cells, and reducing MDSC immunosup-
pressive potential. Several strains of attenuated or aviru-
lent Lm strains such as replication-deficient Lm∆dal∆dat 
(Lmdd) have been tried to activate MHC class I and II path-
ways and also to induce antigen-specific T lymphocytes94.  
Virulence factor listeriolysin O (LLO) protein is known to boost 
the immune reaction by inducing IL-12, IL-18, and IFNγ and 
functions as a naturally occurring adjuvant when delivering 
the tumor antigens95 and can improve ratios of CD8+ T cells 
to regulatory T cells96. So far, Lm-based vaccines have been 
brought into clinical trials for several solid and hematologic 
cancers, including HPV-associated cervical cancer, melanoma,  
breast cancer, pancreatic cancer, and lymphoma.

Aside from bacterial or yeast platforms, the viral platform of 
cancer vaccines has its own vast ground. Many attenuated or less 
virulent related viruses targeting as measles, mumps, rubella, 
smallpox, and polio have been used successfully to prevent or 
decrease the severity of viral illness by inducing protective immu-
nity in the history of modern medicine. With the advancement 
of genetic engineering, these viruses can also be modified as vec-
tors to deliver and express the antigens that will elicit immune 
responses even in tumors that are not immunogenic by them-
selves during the natural history of the specific cancer type. 
Viral particles can express in situ molecules that will serve as  
pathogen-associated molecular patterns to increase the possi-
bility that a tumor-associated antigen (TAA) will be presented 
to the immune system. Activation of TLRs is believed to play 
a critical role in increased anti-tumor activity in therapies  
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using viruses97,98. Viral vectors used in cancer vaccines can deliver 
the TAA, with or without co-stimulatory molecules or cytokines, 
that will be processed in the MHC class I pathway and pro-
duce epitopes expressed on the surface of the infected cells with 
MHC I, and/or with MHC class II if an APC is infected. In the 
case of non-lysing virus, delivery of a TAA alone might not  
generate enough signals for tumor cell killing. With non-lysing 
virus, co-delivery of a co-stimulatory molecule or cytokines 
can increase the chance of recruitment of professional APCs. 
In either case, replicating viruses at the injection site cause pro-
inflammatory responses mimicking the immune response against 
infecting virus in non-cancerous tissues that can result in cancer  
cell death.

Adenoviruses, especially replication-incompetent Ad2 and 
Ad5, have been popular to deliver TAAs with or without co-
stimulatory molecules99. However, the majority of adults have  
developed immunity from long-term environmental exposure 
to adenoviruses, and the immune response and clinical effect 
were minimal because of pre-existing immunity at least in part.  
Poxviruses have the advantage as pre-existing immunity against  
poxvirus exists only in patients who were exposed to  
vaccinia virus. Viral tropism of the members of this family to 
directly infect APCs is another advantage100. MVA is a pro-
prietary agent that was produced by more than 500 culture  
passages of vaccinia in chicken embryo fibroblasts. During 
the passages, MVA became highly attenuated as it lost many  
poxviral genes and replicative potential in most mammalian 
cells. A recombinant MVA-expressing human 5T4 (MVA-h5T4),  
called TroVax for metastatic castration-resistant prostate cancer, 
and a recombinant attenuated vaccinia virus (rVV) vaccine or 
fowlpox virus (rFV) against human carcinoembryonic antigen 
(c-VV-CEA) with or without a triad of co-stimulatory adhesion 
molecules (TRICOM) are great examples that were tested in the 
clinical setting101,102. The TRICOM vector expresses three co- 
stimulatory molecules—CD54 (ICAM-1), CD58 (LFA3), and 
CD80 (B7.1)—co-expressed in the recombinant virus, and the 
triple combination was found to be more effective than any  
single one of these molecules103. Examples of intelligently 
designed heterologous prime-boost strategy can again be found 
in a vaccinia prime–fowlpox boost, PANVAC encoding CEA 
and MUC1 alongside TRICOM104. Because the vaccinia vector 
induces immunity against itself but not against the fowlpox  
vector, which also does not induce immunity to itself, it is  
possible to achieve a better response by priming first with the  
vaccinia vector and then boosting repeatedly with the fowlpox  
vector. Thus, a heterologous prime boost can be more effective 
than a homologous prime boost105. PROSTVAC used priming 
with rVV-PSA-TRICOM followed by rFV-PSA-TRICOM to 
deter any neutralizing antibody responses and facilitate antigen- 
specific T-cell responses106. Despite promising phase II 
results, a phase III randomized trial of PROSTVAC as a single  
agent did not meet its endpoints to show improved overall sur-
vival in planned interim analysis in patients with minimally 
symptomatic metastatic castration-resistant prostate cancer,  
and combination trials are ongoing107,108.

4. Dendritic cell–based vaccines
DC-based vaccines have several advantages despite their inher-
ent logistic problems109,110. DC maturation is often defective 
in patients with cancer and this is due in part to cytokines such 

as vascular endothelial growth factor (VEGF), which induces 
STAT3 expression and inhibits maturation111–113. Thus, antigen 
presentation can be defective in these patients, resulting in poor 
induction of T-cell responses. DC vaccines can overcome this  
problem in patients with cancer by starting from DC precur-
sors, such as elutriated monocytes, which then are matured 
in vitro, away from the negative influences of the cancer  
environment22,114. A second related advantage is that the 
DCs can be matured in vitro to induce higher levels of co- 
stimulatory molecules or MHC molecules or both, making them 
more immunogenic109,115. A third advantage is that viral vectors 
can be used to transduce the DCs to express tumor antigens  
without neutralization by pre-existing anti-viral antibodies116.

Even though DC-based vaccination has been a popular plat-
form to elicit immune responses, there is no consensus on how 
to optimize the preparation for consistent or durable responses. 
Also, handling individual patient’s cells can be an obstacle in  
reducing the cost and simplifying the delivery process. To tackle 
this issue, understanding the biology of DCs is essential. DCs 
are a heterogeneous group of specialized APCs from the same 
bone marrow progenitors as monocytes, called monocyte and DC  
progenitors, that differentiate into three major subsets of DCs: 
CD1c DCs, which are predominant; CD141+ DCs; and plasma-
cytoid DCs (pDCs)117–119. The first two are called conventional 
DCs (cDCs). pDCs play a major role in viral infections by 
rapid cross-presentation of antigens and production of up to  
1000-fold more type I IFNs (α and β). Human DCs lack lineage 
markers but express MHC class II. Whereas cDCs can be  
found in almost all peripheral tissues, including lymphoid 
organs, pDCs are discovered mostly in T-cell areas of lymphoid 
organs, such as lymph nodes, spleen, bone marrow, Peyer’s 
patches, tonsils, thymus, and liver. DCs can activate or negate 
anti-tumor T-cell responses by affecting killer or regulatory 
T–cell activation120. Mobilized CD34 precursors can be differ-
entiated into monocyte-derived DCs (MDDCs) that yield several  
different types of myeloid cells, including all three major 
types of DCs, as a consequence of working with higher  
levels of progenitor cells. It may be important to manipulate  
each subset individually to improve immunogenicity121, and some 
groups use bead-selected DCs. For example, in some studies,  
Langerhans-like DCs induced with IL-15 were found to be 
more effective at eliciting CD8+ T-cell responses122. Moreover,  
activation of Langerhans cells with a cytokine combination 
could induce immunity against HPV that then could be boosted 
with a therapeutic vaccine123. Similarly, the BATF3-expressing  
DC subset may be critical for cross-priming and for reacti-
vating a memory anti-tumor response124. On the other hand,  
immature DCs have been found to induce regulatory T cells125.

The first and only FDA-approved cell-based therapy for  
metastatic prostate cancer, sipuleucel-T, contains a variety of 
cells, including B cells, monocytes, DCs, and NK cells, that 
are cultured and processed in the presence of prostatic acid  
phosphatase (PAP) fused with granulocyte-macrophage colony-
stimulating factor (GM-CSF) for 2 days following leukapheresis 
in designated apheresis centers1,126. Patients receive up to three  
doses of freshly prepared products at 2-week intervals. The 
most commonly used method is to differentiate the mono-
cytes from peripheral blood mononuclear cells (PBMCs) into 
DCs, so-called MDDCs. PBMCs that are monocyte-elutriated 
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with or without CD14 bead selection are differentiated into 
immature CD14−CD83− DCs by culturing in IL-4– and GM- 
CSF–supplemented culture media usually for 3 to 5 days  
followed by antigen loading for 24 to 48 hours. DCs then can 
be matured with lipopolysaccharide (LPS) and IFNγ or with a 
cytokine cocktail22,109. Matured DCs are harvested for the delivery. 
However, owing to the labor-intensive and costly manufacturing  
process, aliquoting and freezing individual doses and use of 
automated closed culture systems are being actively investi-
gated. For allogeneic sources of DCs, cDCs of umbilical cord 
blood origin can be one option to meet the need for unre-
lated healthy donors. However, the immune functions of the 
DCs in umbilical cord are questioned and the use of HLA-half 
matched allogeneic DCs has not been successfully translated  
to the clinic yet127,128.

Several ways have been adopted for antigen loading. As DCs 
are professional APCs, loading with synthetic peptides, pro-
tein, tumor cell lysates, and RNAs and even direct infection 
with microbes are viable options. APCs fused with tumor  
cells, whether from an autologous or allogeneic source, were the  
prototype of cancer vaccine from the 1990s, when the approach 
was first described129,130. Despite high production costs due to  
patient-specific therapies, there have been continued efforts to 
translate DC vaccines to clinical trials in both solid and hemato-
logic cancers114,131–133. Using whole lysates of either autologous 
or allogeneic tumor cells can lead to the presentation of multiple 
epitopes for a prolonged period, enabling longer antigen pres-
entation that will allow both CD4 and CD8 T-cell responses. 
Wild-type or attenuated pathogens can serve as vectors to carry 
the genes encoding TAA to be expressed in DCs. Transfection 
of the nucleic acids encoding TAAs can induce potent TAA- 
specific T-cell responses at least in vivo. For example, mRNA  
can be transfected by electroporation (renal cell carcinoma,  
ClinicalTrials.gov identifier: NCT01582672; advanced melanoma, 
phase II, ClinicalTrials.gov identifier: NCT01302496) or a 
cationic lipid such as DOTAP134–136. Alternatively, retroviral  
transduction has been used to facilitate and prolong stable 
TAA expression. Viral vectors such as lentivirus or adenovirus 
have been employed in several preclinical and clinical studies 
with DC vaccines because of the advantage of transducing  
non-dividing cells137–139. In regard to the issue of adequate involve-
ment of CD4 cells to enhance CD8 cell response in DC-based  
vaccines, adding other antigens such as keyhole limpet hemo-
cyanin (KLH) as a target for helper T cells that can facilitate the  
antigen presentation and migration to the DLNs is an option22,115.

As the manufacturing and quality control of the DC vaccines 
are highly variable, development of large-scale studies is  
limited and the interpretation of smaller-scale studies is often 
difficult140–142. Also, there is no consensus in measuring the  
correlatives to evaluate the vaccines. How and what cytokines or  
markers should be measured and in which samples? For exam-
ple, is measuring the cytokine from the serum or by intracellular  
cytokine staining a better indicator of DC functions or activa-
tion? Analysis of the activation of vaccinated DCs showed a 
relationship with clinical benefit, and associated predictive 
markers of the most effective DCs have been reported115. 
Given the limited consensus, ground-breaking developments in  
manufacturing, quality control, and optimized delivery of the  

vaccine to overcome the hurdle of cross-priming and TME are  
still needed.

A whole allogeneic pancreatic cell line secreting GM-CSF, 
called GVAX, is another strategy to use DCs in vivo that  
stimulate the accrual and function of APCs to the vaccine site. 
This strategy can potentially involve all DC subsets, not only 
the subsets in the apheresis product, and result in increased  
T-cell infiltration and development of tertiary lymphoid struc-
tures even in a so-called “non-immunogenic” tumor such as 
pancreatic cancer or prostate cancer143,144. This method has the 
merit of not involving the labor-intensive and expensive ex vivo 
manufacturing process. However, a phase IIb study of a com-
bination of GVAX and a mesothelin-expressing live-attenuated 
listeria vaccine CRS-207 did not show improved overall  
survival145,146.

Cancer vaccines in prophylaxis of cancer
Current data support the concept that cancer vaccines can 
induce more efficient immune responses and improved control 
of disease when the tumor burden is not overwhelmingly 
high, because targeting low tumor burden avoids immune  
suppressive effects of tumor cells and the cumulative impacts of  
cytotoxic therapies on immune function. In this sense, investiga-
tion of cancer vaccines in the prophylactic or preventive setting 
is reasonable, in both primary and secondary prevention147–151.  
However, because a prophylactic vaccine is used for healthy 
people rather than cancer patients who have exhausted other 
therapies, it is critical to avoid inducing autoimmune responses 
or other adverse effects. Thus, choice of antigens unique to 
tumors that are not expressed in normal tissue is essential.  
Intralesional delivery of a DC vaccine into ductal carcinoma  
in situ targeting HER2/neu showed a decline or disappearance  
of HER2/neu expression152. Prophylactic vaccines in high-risk 
patients with Lynch syndrome or colorectal cancer with  
microsatellite instability (MSI) are under study. NCT01885702 is 
studying autologous DC vaccines loaded with CEA and specific 
frameshift-derived neoantigen peptides in patients with either 
colorectal cancer that is MSI-unstable or carriers of a germline 
MMR-gene mutation with no signs of cancer, who are HLA-A2.1+. 
Analysis of the blood from enrolled patients showed antigen- 
specific T cells against several neoepitopes, including epitopes 
from germline mutations, in immune function–related genes 
such as TGFβ receptor and caspases, supporting the rationale 
of a prophylactic role of cancer vaccines in high-risk patients, 
although final results are not yet posted. In addition, a con-
siderable body of evidence suggests the sharing of some 
tumor antigens, such as hypoglycosylated MUC1, with other  
inflammatory diseases150,153. For example, epidemiologic studies  
suggest a reduced risk of breast cancer in patients with a history  
of mastitis. Clinical studies to test this hypothesis are under way.

Vaccine delivery–related issues: routes of 
administration, accessibility of cancer vaccines, and 
schedule
Several routes of injection have been studied. Unlike vaccina-
tion against infectious organisms, the mucosal route has rarely 
been used. Most vaccines have been studied using a parenteral 
route, primarily subcutaneous, intradermal, or intramuscular, 
with less favor for intravenous delivery because of low immune 
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response and concerns about direct organ toxicity or anaphy-
laxis. Intratumoral injection has been studied predominantly 
in melanoma and brain tumors often with local conditioning 
with cytokine or toxoid but also in several solid tumors in case 
of vectors of lytic or direct cytopathic potential29,154,155. The  
immunologic properties and expected mechanism of immune 
activation have led investigators to individual choice among  
subcutaneous, intradermal, intramuscular injection, and intra-
venous infusion. In theory, intravenous infusion of DCs can 
deliver DCs to secondary lymphoid tissue rapidly and intra-
tumoral injection has an advantage of modulating the TME. 
However, intradermal delivery of DCs was most effective  
in animal models156,157. In general, relatively few DCs were 
detected in the DLNs when they were intradermally or intra-
tumorally administered. Direct injection into a single or  
multiple lymph nodes did not show any improvement compared 
with intradermal injection. Other systemic or local intervention, 
including cytokine or TLR agonist administration to improve 
the DC and T-cell homing or enhance local inflammation, might  
be helpful158. Overall, the chemical and immunologic nature of 
the vaccine composition that can result in local tissue damage 
or altered immunologic cascade should be considered to deter-
mine the optimal route and the depth of injection to maximize 
safety and immunogenicity. Vaccine route may also affect the 
balance between responses of circulating versus tissue-resident  
memory T cells, as both may be necessary for efficacy124,159,160.

Other than the vaccine platform–specific route of administra-
tion, there are issues related to vaccine delivery. Availability 
of cancer vaccines is one of those. Some vaccines are facility- 
dependent in their manufacturing or delivery, and it is hard 
to expand their use to the community setting outside cutting-
edge research facilities. To expand the use of cancer vaccines  
successfully, the vaccine platform should be designed with the  
widening of accessibility in mind. Optimum interval spacing or 
doses of cancer vaccines are largely unknown because of a lack 
of information from clinically successful cancer vaccines in  
contrast to vaccines against infectious organisms.

Summary
During the past 30 years of modern cancer vaccine develop-
ment, various vaccine platforms have been tried in clinical  

trials based on successful preclinical models. Sources of tumor  
antigen can be synthetic (nucleic acids or peptides), viral, or 
microbial vectors or autologous or allogeneic tumor cell–derived  
cells, tumor cell lysates or RNA. Some platforms use infectious 
organisms to present the tumor antigen to APCs in vivo, whereas 
some researchers use DCs in vitro for antigen loading. Co- 
stimulatory molecules and cytokines have been tried, but no 
clear consensus has been made on the optimal choice. However,  
a prioritized set of immunomodulatory molecules to use as 
vaccine adjuvants has been developed by a National Cancer  
Institute working group161. The majority of the vaccines that 
were successful in inducing immunologic anti-tumor response 
could not match that success in the clinical response, indicat-
ing the need for improved vaccine platforms and probably  
combinations with checkpoint inhibitors or other methods to  
block immune suppression by cancer.

Conclusions
Cancer immunotherapy has established its position as the 
fourth pillar of anti-cancer therapy, complementing surgery, 
chemotherapy, and radiation. Following monoclonal antibod-
ies against tumor antigens, checkpoint inhibitors, and adoptive 
cell therapy, cancer vaccine research is poised to achieve more 
breakthrough discoveries. Synergistic effects in combination 
therapy with other strategies will be critical when current data 
clearly indicate that the vaccine alone is not sufficient to control  
clinically advanced cancers. Not all tumors are immunogenic 
by themselves (“cold tumors”), and the use of cancer vaccines 
to turn the tumor “hot” by inducing immune responses that 
then can be amplified by blockers of negative regulatory immu-
nologic signals will make “cold” tumors more susceptible to 
checkpoint blockade and other inhibitors of immunoregulatory 
mechanisms. Cancer vaccines can contribute to overcoming the  
current issues of lower-than-desired response rates and efficacy in 
current cancer immunotherapy regimens.
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