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Abstract
In this paper, the dynamics of a non-autonomous tabu learning two-neuron model is investigated. The model is obtained by

building a tabu learning two-neuron (TLTN) model with a composite hyperbolic tangent function consisting of three

hyperbolic tangent functions with different offsets. The possibility to adjust the compound activation function is exploited

to report the sensitivity of non-trivial equilibrium points with respect to the parameters. Analysis tools like bifurcation

diagram, Lyapunov exponents, phase portraits, and basin of attraction are used to explore various windows in which the

neuron model under the consideration displays the uncovered phenomenon of the coexistence of up to six disconnected

stable states for the same set of system parameters in a TLTN. In addition to the multistability, nonlinear phenomena such

as period-doubling bifurcation, hysteretic dynamics, and parallel bifurcation branches are found when the control

parameter is tuned. The analog circuit is built in PSPICE environment, and simulations are performed to validate the

obtained results as well as the correctness of the numerical methods. Finally, an encryption/decryption algorithm is

designed based on a modified Julia set and confusion–diffusion operations with the sequences of the proposed TLTN

model. The security performances of the built cryptosystem are analyzed in terms of computational time (CT = 1.82),

encryption throughput (ET = 151.82 MBps), number of cycles (NC = 15.80), NPCR = 99.6256, UACI = 33.6512, v2-
values = 243.7786, global entropy = 7.9992, and local entropy = 7.9083. Note that the presented values are the optimal

results. These results demonstrate that the algorithm is highly secured compared to some fastest neuron chaos-based

cryptosystems and is suitable for a sensitive field like IoMT security.
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1 Introduction

The tabu learning neuron (TLN) was proposed firstly by

Beyer and Ogier [1] based on the Hopfield neural network

(HNN) for solving non-convex optimization problems.

Tabu learning applies the concept of tabu search [2, 3] to

neural networks by continuously increasing the energy

surface in a neighborhood of the current state, thus

penalizing states already visited. References [4, 5] studied

the dynamic behaviors of the one- and two-neuron-based

tabu learning neural network to find out what the state

trajectory of the tabu learning neural network looks like.

Because the tabu learning method, unlike other methods,

does not consist of forcing the state of the network to

converge to an optimal or near-optimal solution, but rather,

the network conducts a search in the solution space. The
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results of their work showed periodic, chaotic solutions and

the existence of Hopf bifurcation. Reference [6] demon-

strated the existence of a Pitchfork bifurcation, a Flip

bifurcation, and a Neimark–Sacker bifurcation in a discrete

one-neuron-based TLN model, when the control parameter

exceeded the critical value. Chen and Li [7] have proposed

in their works the circuit design for the implementation of a

single tabu learning neuron. They also proposed circuits for

the case of an autonomous two-neuron-based TLN and

exhibited the periodic, chaotic solutions without carrying

out in-depth studies on their dynamics. Results similar to

[6] were obtained by investigations conducted by Ref. [8]

on a tabu learning neuron model with two delayed neurons.

Recently, Ref. [9] revealed complex activities such as

chaotic/periodic spiking/bursting firing patterns and coex-

isting bi-stable firing patterns in a case of TLN to an

autonomous neuron, following digital investigations with a

compound activation function. These results were con-

firmed during the implementation of the circuit in which an

approximation of this difficult to implement activation

function was performed. Subsequently, [10] showed the bi-

stability in a one-neuron-based tabu learning neuron model

that they were able to validate experimentally through an

FPGA-based implementation.

Little work in the literature has conducted an in-depth

study of the dynamics of tabu learning neuron. It is reason

enough for us to carry out detailed investigations on the

dynamics of this model to better understand its behavior. In

this article, we will conduct a study focused on the analysis

of the dynamics of a non-autonomous two-neuron-based

tabu learning neural network. The interesting thing about

this study is that it is accomplished by involving the

compound activation function used by [9] in the study of a

single-neuron TLN model.

This made it possible to obtain interesting phenomena

there because the activation function plays an important

role in the appearance of complex phenomena in neural

networks. As such, the results of the work obtained by

several authors [11–32] carried out on various models of

Hopfield neural networks with two, three neurons, or even

more testify to the importance that the activation function

plays in the appearance of complex behaviors in neural

networks in general. It will be interesting for us in this

work to see the contribution that this compound activation

function will have on the non-autonomous two-neuron-

based tabu learning neuron model submitted to our

analysis.

Nowadays, new researches are developed to propose

modern encryption algorithms for confidential data

including medical images [33]. A chaotic system is a major

tool in this prominent research domain due to ergodicity,

deterministic dynamics, unpredictable behaviors, nonlinear

transformation, and sensitivity dependence of the system

[34–37]. For instance, Gao and collaborators [34] designed

an encryption algorithm based on Chen hyperchaotic sys-

tem. A simple diffusion-confusion encryption scheme is

developed in their work. Zhou and co-workers [37] used

1-D chaotic map to establish the encryption key for both

color and gray images. Analysis of the proposed

scheme showed a high-security level. As strong crypto-

graphic technics are developed, cryptanalysis is also

growing. Another idea of chaos encryption is to use the

discrete output of the neural network to increase the

security of the process. In this line, Xing and collaborator

[36] designed an encryption scheme using both the

sequences of the Lorenz attractor and the discrete output of

the perceptron model. Experimental results show a high-

security algorithm. Lakshmi and co-workers [35] design an

encryption algorithm based on HNN. The technique uses a

simple diffusion confusion algorithm, and security against

some existing attacks is achieved.

A variety of encryption methods can be found in the

literature and classified either as spatial domain or fre-

quency domain encryption algorithms [34–37]. The first

method directly considers the pixel of the original image

without any transformation. The second method applies a

mathematical transformation on the original image to

compute some coefficients based on image pixels. Trans-

form domain-based algorithms seem to be more efficient

and robust than the spatial domain. The above-mentioned

techniques combining both chaos and neural network in

cryptography rely on spatial domain algorithms. In this

paper, we will use a modified Julia set and the discrete

sequences of the proposed TLN to transform the pixels of

the plain image. Then, the sequences of a simple TLN will

be applied for encryption. Besides, the main characteristic

of the model addressed in this work is summarized in

Table 1. The main contributions of this work include:

(a) Introduce a novel two-neuron-based tabu learning

model,

(b) Use nonlinear analysis tools to prove that the newly

introduced model exhibits more complex behaviors

than the previously presented one (see Table 1)

(c) Provide PSPICE simulations of the electronic circuit

of the proposed model to further support the

presented results.

(d) We design a robust and simple encryption/decryption

algorithm using the chaotic sequence of the proposed

tabu learning two-neuron model.

(e) The performance analysis indicates that the proposed

encryption scheme is secured with regard to some

well-known attacks.

(f) An idea of real-time implementation of our algo-

rithm is provided such as an application of the
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Fig. 1 Existence of different nonlinearities compound activation function, due to g and r2 constants in (a) and (b), respectively

Fig. 2 Function curve described by Eq. 9 and their intersection points with respect to parameters d1; d2ð Þ; equilibrium points varying with

respective parameters d1 and d2 in (a) and (b), respectively

Table 1 Summary of some recent work addressed on tabu neural networks

Works Number of

neurons

Activation function type Number of coexisting

attractors

Implementation Application

Chen and Li

[7]

1 f ðujÞ ¼ tanh uj
� �

0 SPICE simulation environment No

2 f ðujÞ ¼ tanh 5uj
� �

Bao et al. [9] 1 f ðxÞ ¼ gx exp � gx
r

� �2h i
2 Multisim circuit simulations and

hardware experiments

No

Zhu et al. [10] 2 f ðujÞ ¼ tanh guj
� �

2 Hardware experiments FPGA-based No

This present

Work

2 f ðxjÞ ¼ gxj exp � gxj
r

� �2h i
6 PSPICE circuit simulations Yes

Neural Computing and Applications (2021) 33:14945–14973 14947

123



Table 2 Equilibrium points states, their eigenvalues and stabilities for some values of the learning rate d1

d1 Equilibrium points States P0;1;2;3;4;5;6 Eigen values k1;2;3;4 Stabilities

0.196 P0 0; 0; 0; 0ð Þ 39.1284 ? 0.0000i

-0.2528 ? 1.3851i

-0.2528 – 1.3851i

-0.0228 ? 0.0000i

Unstable saddle-focus

P1;2 �0:2687;�0:0960;�0;�0:0288ð Þ 3.9097 ? 0.0000i

-0.1000 ? 0.0000i

-0.1000 – 0.0000i

-0.0236 ? 0.0000i

Unstable saddle point

P3;4 �0:0960;�0.0949;�0.0187,� 0.0314ð Þ 4.1681 ? 0.0000i

-0.1156 ? 0.4435i

-0.1156 – 0.4435i

-0.0216 ? 0.0000i

Unstable saddle-focus

P5;6 �0:0015;�0:0944;�0.0289,� 0.0329ð Þ 3.8262 ? 0.0000i

-0.2981 ? 1.4708i

-0.2981 – 1.4708i

-0.0216 ? 0.0000i

Unstable saddle-focus

0.2089 P0 0; 0; 0; 0ð Þ 39.1284 ? 0.0000i

-0.2527 ? 1.4317i

-0.2527 – 1.4317i

-0.0229 ? 0.0000i

Unstable saddle-focus

P1;2 �0:2687;�0:0960;�0;�0:0288ð Þ 3.9097 ? 0.0000i

-0.1000 ? 0.0000i

-0.1000 – 0.0000i

-0.0236 ? 0.0000i

Unstable saddle point

P3;4 �0:0969;�0.0951;�0.0185;�0.0311ð Þ 4.1363 ? 0.0000i

-0.1146 ? 0.4432i

-0.1146 – 0.4432i

-0.0217 ? 0.0000i

Unstable saddle-focus

P5;6 �0:0014;�0.0946;�0.0288;�0.0325ð Þ 3.7723 ? 0.0000i

-0.3012 ? 1.5205i

-0.3012 – 1.5205i

-0.0217 ? 0.0000i

Unstable saddle-focus

0.25 P0 0; 0; 0; 0ð Þ 39.1286 ? 0.0000i

-0.2527 ? 1.5710i

-0.2527 – 1.5710i

-0.0233 ? 0.0000i

Unstable saddle-focus

P1;2 �0:2687;�0:0960;�0;�0:0288ð Þ 3.9097 ? 0.0000i

-0.1000 ? 0.0000i

-0.1000 – 0.0000i

-0.0236 ? 0.0000i

Unstable saddle point

P3;4 �0:0992;�0:0952;�0:0180;�0:0307ð Þ 4.0986 ? 0.0000i

-0.1121 ? 0.4420i

-0.1121 – 0.4420i

-0.0220 ? 0.0000i

Unstable saddle-focus

P5;6 �0:0011;�0.0948;�0.0285,� 0.0318ð Þ 3.7051 ? 0.0000i

-0.3090 ? 1.6670i

-0.3090 – 1.6670i

-0.0220 ? 0.0000i

Unstable saddle-focus
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proposed cryptosystem in the Internet of Medical

Things (IoMT).

The next section of this article will be organized as

follows: In Sect. 2, the mathematical model is described,

the equilibrium points are illustrated graphically, and the

determination of the characteristic equation from the

Jacobian matrix is also presented. In Sect. 3, the dynamic

behaviors associated with a control parameter under the

presence of the stimulus are revealed numerically by

bifurcation diagrams and dynamic evolution in the

parameter space as well as phase portraits. In Sect. 4,

analog analyses are performed in Pspice to verify compli-

ance with digital simulations. The cryptosystem based on

IoMT is designed and experimented in Sect. 5. A com-

parative analysis in terms of encryption/decryption per-

formance is presented in Sect. 6. Finally, in Sect. 7 the

conclusions of this work are summarized.

Table 2 (continued)

d1 Equilibrium points States P0;1;2;3;4;5;6 Eigen values k1;2;3;4 Stabilities

0.28 P0 0; 0; 0;0ð Þ 39.1287 ? 0.0000i

-0.2527 ? 1.6653i

-0.2527 – 1.6653i

-0.0234 ? 0.0000i

Unstable saddle-focus

P1;2 �0:2687;�0:0960;�0;�0:0288ð Þ 3.9097 ? 0.0000i

-0.1000 ? 0.0000i

-0.1000 – 0.0000i

-0.0236 ? 0.0000i

Unstable saddle point

P3;4 �0:1007;�0.0951;�0.0177,� 0.0309ð Þ 4.1241 ? 0.0000i

-0.1107 ? 0.4409i

-0.1107 – 0.4409i

-0.0222 ? 0.0000i

Unstable saddle-focus

P5;6 �0:0010;�0.0948;�0.0283,� 0.0317ð Þ 3.7089 ? 0.0000i

-0.3136 ? 1.7651i

-0.3136 – 1.7651i

-0.0222 ? 0.0000i

Unstable saddle-focus

Fig. 3 Bifurcation diagrams show the local maximum of x1 in term of the learning d1 (rate control parameter) in (a) and his corresponding

Lyapunov spectrum in (b)
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2 Preliminary model description

2.1 Mathematical model involving composite
activation function

The form of two-neuron-based HNN [38, 39] is given by

Eq. (1):

_xi ¼ �aixi þ
X2

j¼1

bijf ðxjÞ þ Ii ð1Þ

where ai are the positive constants, xi ¼ x1; x2½ �T is the state

vector of neurons,f ðxjÞ ¼ f ðx1Þ; f ðx2Þ½ �T is the vector of

activation function, and bij represents a synaptic weight

matrix 2� 2 describing the strength of the connections

Fig. 4 Projection of symmetrical chaotic attractors on different planes. These attractors are obtained for d1 ¼ 0:25 and by changing sign of the

initial conditions 0; 0;�0:1; 0ð Þ

Fig. 5 Enlargement of bifurcation diagram of Fig. 3a in the range

0:154� d1 � 0:304
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between the two neurons of the network and Ii ¼ I1; I2½ �T is

the stimulus can be constant or sinusoidal. The TLN model

[1, 10, 40] for two neurons is described by Eq. (2):

_xi ¼ �aixi þ
X2

j¼1

bijf ðxjÞ þ yi þ Ii

_yi ¼ �ciy� dif ðxiÞ

8
>><

>>:
ð2Þ

With yi ¼ y1; y2½ �T being the vector of the tabu learning

neuron variables, ci and di are the positive constants that

represent the memory decay rate and the learning rate. The

activation function considering in Eq. 1 is described in

Eq. 3. This activation function was used by [9] in his work

on the tabu learning neuron model with one neuron. The

graphical representation of the compound activation func-

tion given in Eq. 3 is shown in Fig. 1a and b for different

values of constants g and r, respectively. In Fig. 1a for

r2 ¼ 0:2, the compound activation function curve becomes

flat when the value of constant g is decreases, which cor-

responds to a fast response of neurons. On the other hand in

Fig. 1b when, the compound activation function curve is

dilated, this implies an increase in response range of neu-

rons. In other words by acting on the constants g and r2, it
is possible to modify the speed and the limits of the

response of neurons, respectively. This makes the com-

pound activation function (3) much more flexible than the

hyperbolic tangent type activation function, of which we

can only adjust the response speed of neurons by acting on

its activation gradient as indicated in [11, 19].

f ðxjÞ ¼ gxj exp � gxj
r

� �2
� �

ð3Þ

with g[ 0 and r[ 0 represented in Fig. 1. From these

diagrams, it can be seen that the crossover point of the

neuron activation function strongly depends on these

important parameters, namely g and r.

Fig. 6 Enlargement of bifurcation diagram of Fig. 5 in the range 0:1881� d1 � 0:1969

Fig. 7 Enlargement of bifurcation diagram of Fig. 5 in the range 0:279� d1 � 0:281
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The mathematical model of the TLTN corresponding to

the configuration of the synaptic weight matrix 2� 2 is

given by Eq. (4):

_x1 ¼ �a1x1 þ b11f ðx1Þ þ b12f ðx2Þ þ y1 þ I1
_x2 ¼ �a2x2 þ b21f ðx1Þ þ b22f ðx2Þ þ y2 þ I2
_y1 ¼ �c1y1 � d1f ðx1Þ
_y2 ¼ �c2y2 � d2f ðx2Þ

8
>><

>>:
ð4Þ

Fig. 8 Representation the phase portraits of the coexistence of four

different attractors in x1; x2ð Þ plane, showing: period-4 limit cycles

(low and upper), chaotic attractors (low and upper), and its

corresponding cross section of basin with respective colors in �.

These attractors are obtained for d1 ¼ 0:196 and for initial conditions

x1ð0Þ; x2ð0Þ; y1ð0Þ; y2ð0Þð Þ ¼ 0; 0;�0:28; 0ð Þ and 0; 0;�1:44; 0ð Þ,
respectively
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where
b11 b12
b21 b22

� �
¼ �0:1 2:8

�0:1 4

� �
ð5Þ

with a1 ¼ 0:1, a2 ¼ 0:1, c1 ¼ 0:1, c2 ¼ 0:1,

I1 ¼ Im sinð2pF1sÞ, I2 ¼ 0, Im ¼ 0:2, F1 ¼ 0:2, g ¼ 10 and

r2 ¼ 0:2: ð6Þ

2.2 Equilibrium points related to parameters

The equilibrium points of system (4) are obtained by

making its left-hand member equal to zero at s ¼ 0; this

enables to solve the set of equations given in (7):

Fig. 9 Representation the phase portraits of the coexistence of four

different symmetric chaotic attractors (a, b) in plane and its

corresponding cross section of basin with respective colors in �.

These attractors are obtained for d1 ¼ 0:2089 and for initial

conditions x1ð0Þ; x2ð0Þ; y1ð0Þ; y2ð0Þð Þ ¼ 0; 0;þ0:2=�0:12; 0ð Þ and

0; 0;�0:16; 0ð Þ, respectively
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Fig. 10 Representation the phase portraits of the coexistence of six

different symmetric attractors in x1; y1ð Þ plane, showing: period-1

limit cycle (low and upper) in (a), peiod-6 limit cycles (low and

upper) and chaotic attractors (low and upper) and its corresponding

cross section of basin with respective colors in (d). These attractors

are obtained for d1 ¼ 0:28 and for initial conditions x1ð0Þ;ð
x2ð0Þ; y1ð0Þ; y2ð0ÞÞ ¼ 0; 0;þ0:04=�0:072; 0ð Þ, 0; 0;�0:11; 0ð Þ and

0; 0;�0:216;ð 0Þ, respectively

Fig. 11 Influence of the variation in two parameters d1; d2ð Þ, to the dynamical behavior
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0 ¼ �a1x1 þ b11f ðx1Þ þ b12f ðx2Þ þ y1
0 ¼ �a2x2 þ b21f ðx1Þ þ b22f ðx2Þ þ y2
0 ¼ �c1y1 � d1f ðx1Þ
0 ¼ �c2y2 � d2f ðx2Þ

8
>><

>>:
ð7Þ

After developments and arrangements of the system (7),

Eq. 8 is obtained.

xn2e ¼
a1

a2b12
b22 �

d2
c2

� 	
xn1e �

f ðxn1eÞ
a2b12

b11 �
d1
c1

� 	
b22 �

d2
c2

� 	
� b12b21

� �

yn1e ¼
�d1
c1

f ðxn1eÞ

yn2e ¼
�d2
c2

f ðxn2eÞ

8
>>>>>>>>>>><

>>>>>>>>>>>:

ð8Þ

The equilibrium points Pn ¼ xn1e; x
n
2e; y

n
1e; y

n
2e

� �
(trivial

and non-trivial) are obtained by expression (9) which is

graphically solved using a MATLAB function [12–14, 28]:

Remark that n 2 N is the numbering index of equilib-

rium points xn1e, which corresponds to the graphical inter-

sections with the abscissa of the solution curve represented

by Eq. (9):

Sðx1eÞ ¼ �a1x1e þ b11f ðx1eÞ þ b12f ðx2eÞ �
d1
c1

f ðx1eÞ ð9Þ

where

x2e ¼
a1

a2b12
b22 �

d2
c2

� 	
x1e

� f ðx1eÞ
a2b12

b11 �
d1
c1

� 	
b22 �

d2
c2

� 	
� b12b21

� �

ð10Þ

when the learning rate d2 ¼ 0:3, the curve of Fig. 2a shows

three and seven intersections with the X-axis for

d1\0:0283 and d1 [ 0:0283, respectively. In Fig. 2b, we

get seven intersections for the learning d2\0:3 and three

intersections for d2 [ 0:3 with the X-axis when we fix the

learning rate d1 ¼ 0:0283. The two curves (Fig. 2a, b) have

five intersections with the X-axis, for the critical values

d1; d2ð Þ ¼ 0:0283; 0:3ð Þ. Let us specify that the number of

the intersection of the solution curve with the X-axis

coincides with the number of the equilibrium point. Thus,

the intersection of three, five, and seven of the solution

curve with the X-axis denotes the presence of three, five,

and seven equilibrium points, respectively, in the model

(4). From this observation, it is easy to choose which

parameter should be modified to obtain a significant effect

on the dynamics of the model (4).

The Jacobian matrix derived from Eq. (4) for equilib-

rium points Pn¼0;1;2;3;4;5;6 is given in (11):

J ¼

�a1 þ b11g1 b12g2 1 0

b21g1 �a2 þ b22g2 0 1

�d1g1 0 �c1 0

0 �d2g2 0 �c2

2

664

3

775 ð11Þ

The characteristic equation associated with (11), speci-

fied in Eq. (12), is obtained from the MATLAB software:

detðJ � kI4Þ ¼ a4k
4 þ a3k

3 þ a2k
2 þ a1k

1 þ a0 ¼ 0 ð12Þ

Fig. 12 Influence of the variation in two parameters d1; gð Þ, to the dynamical behavior
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Fig. 13 Synthesized circuit of the approximate activation function using hyperbolic tangent modules
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a4 ¼ 1

a3 ¼ a1 þ a2 þ c1 þ c2 � b11g1 � b22g2

a2 ¼ a1a2 þ a1c1 þ a1c2 þ a2c1 þ a2c2 þ c1c2 þ d1g1 þ d2g2

� a2b11g1 � a1b22g2 � b11c1g1

� b11c2g1 � b22c1g2 � b22c2g2 þ b11b22g1g2 � b12b21g1g2

a1 ¼ a1a2c1 þ a1a2c2 þ a1c1c2 þ a2c1c2 þ a2d1g1 þ a1d2g2

þ c2d1g1 þ c1d2g2 � a2b11c1g1

� a2b11c2g1 � a1b22c1g2 � a1b22c2g2 � b11c1c2g1 � b22c1c2g2

� b11d2g1g2 þ b22d1g1g2

þ b11b22c1g1g2 � b12b21c1g1g2 þ b11b22c2g1g2 � b12b21c2g1g2

a0 ¼ a1a2c1c2 þ a1c1d2g2 þ a2c2d1g1 þ d1d2g1g2 � a2b11c1c2g1

� a1b22c1c2g2 � b11c1d2g1g2

� b22c2d1g1g2 þ b11b22c1c2g1g2 � b12b21c1c2g1g2

8
>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð13Þ

where gj ¼ f 0ðxjÞ ¼ gþ 2g
gxj
r

� 	2
" #

exp � gxj
r

� 	2
" #

j ¼ 1; 2½ �
ð14Þ

The coefficients of the characteristic polynomial (12) are

all nonzero. The parameters d1; d2ð Þ will be d2 ¼ 0:3 and

d1 ¼ tuneable in the rest of the document unless otherwise

indicated. For some discrete values of the control param-

eter d1, the equilibrium points and Eigenvalues are deter-

mined, with their stabilities in Table 2. Based on the results

displayed on that table, the first condition to have self-

excited dynamics from the TNL neuron model is verified

since all the equilibria are unstable.

Fig. 14 Capture in Pspice of the approximation of the compound

activation function given in Fig. 13, effectively validating the

numerical results of Fig. 1a
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Fig. 15 Analog circuit of non-autonomous tabu learning neuron with two neurons
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Fig. 16 Representation in Pspice of the complexity of symmetrical chaotic attractors for Rd ¼ 38 kX in different planes. These attractors were

obtained for initial conditions V X1ð0Þ;X2ð0Þ; Y1ð0Þ;ð Y2ð0ÞÞ ¼ 0; 0;�0:9; 0ð Þ

14958 Neural Computing and Applications (2021) 33:14945–14973

123



           V(X1)

-200mV 0V 200mV 400mV
V(X2)

110mV

120mV

130mV

140mV

           V(X1)

-400mV -200mV 0V 200mV
V(X2)

-130mV

-120mV

-110mV

           V(X1)

-200mV 0V 200mV 400mV
V(X2)

110mV

120mV

130mV

140mV

           V(X1)

-400mV -200mV 0V 200mV
V(X2)

-140mV

-130mV

-120mV

-110mV

a (i) a(ii) 

b(i) b(ii)
 

Fig. 17 Representation in Pspice of the coexistence of four symmetrical attractors for Rd ¼ 51 kX in: a period-4 limit cycles (Low and Upper)

and b chaotic attractors (Low and Upper). These attractors were obtained for initial conditions V X1ð0Þ;X2ð0Þ;Y1ð0Þ;ð Y2ð0ÞÞ ¼ 0; 0;�0:1; 0ð Þ and
0; 0;�0:9; 0ð Þ, respectively

Fig. 18 Visualization of a the traditional Julia set for c = - 0.745429 and b the modified Julia set for c =—0.745429 and a = 25
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Fig. 19 Structure of the secure IoMT system
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3 Numerical results

The numerical approach is done based on the nonlinear

dynamical systems analysis tools, namely bifurcation dia-

grams and Lyapunov exponents, the phase portrait, the

basin of attraction, etc. These tools could be implemented

thanks to the Turbo Pascal environment for numerical

calculations and the results of these calculations repre-

sented from the MATLAB environment. The numerical

integrations are based on the 4th-order Runge–Kutta

algorithm for the precision and the speed of convergence

which it offers with an integration time interval

0� s� 5500 choice for an integration time step

Ds ¼ 0:005. The bifurcation diagram plot consists of tak-

ing the local maxima of the neuron state variable when

weeping the control parameter d1, performed on the inte-

gration time interval 5000� s� 5500 for a time step

Ds ¼ 0:005. The plot of the Lyapunov exponent diagram is

done using the Wolf method in the time interval

0� s� 5000 with the time step Ds ¼ 0:005 [41].

3.1 Bifurcation diagrams and phase portraits

The superimposition of the bifurcation diagrams in Fig. 3a

shows the effect induced by the variation in the learning

rate d1 on the dynamics of the model (4) in the range

0� d1 � 1. On this diagram, there is an appearance of the

zones of periodic behaviors, followed by zones of chaotic

behavior and periodic windows separated by chaotic zones

of behavior by complex bifurcations. Note also that the

road to chaos begins through a period-doubling scenario

when the learning rate d1 increases. During his excursion,

there is the appearance of the phenomenon of crisis fol-

lowed by a new doubling of the period toward chaos. This

crisis is due to the fact that our system suddenly switches

from chaotic behavior to regular oscillations from a given

value of the learning rate d1. There are several crisis con-

figurations specified in [42, 43].

According to [42, 43], the crisis occurs because an

unstable fixed point or an unstable limit cycle ‘‘collides’’

with the chaotic attractor as some system control parame-

ters are changed. The diagrams of the Lyapunov spectrum

(Fig. 3b) drawn from the Wolf algorithm [41] confirm

these scenarios of bifurcation observed. The initial condi-

tions used for these diagrams are summarized in Table 2.

For some discrete values of the learning rate d1, some

phase portraits have been represented including limit

cycles and chaotic attractors in different planes. For

example, in Fig. 4, the projections of the symmetric

chaotic attractors are well done in the x1; y1ð Þ, x1; x2ð Þ and
y1; x2ð Þ planes for d1 ¼ 0:28 which exhibits the complexity

of the system. An enlargement of the bifurcation diagram

(a) Plain-Img01 (b) Plain-Img02 (c) Plain-Img03 (d) Plain-Img04

(e) Enc-Img01 (f) Enc-Img02 (g) Enc-Img03 (h) Enc-Img04

Fig. 21 Visual test of the dataset images. It is observed that the plain medical images are no more recognizable after encryption
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(a) Plain-Red-Img01 (b) Plain-Green-Img01 (c) Plain-Blue-Img01 

(d) Enc-Red-Img01 (e) Enc-Green-Img01 (f) Enc-Blue-Img01 

(g) Plain-Red-Img02 (h) Plain-Blue-Img02 (i) Plain-Blue-Img02 

(j) Enc-Red-Img02 (k) Enc-Green-Img02 (l) Enc-Blue-Img02 

(m) Plain-Red-Img03 (n) Plain-Green-Img03 (o) Plain-Blue-Img03 

(p) Enc-Red-Img03 (q) Enc-Green-Img03 (r) Enc-Blue-Img03 
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Fig. 22 Histograms for each plain data set and its corresponding cipher
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(a) Plain-Red-Img01 (b) Plain-Red-Img01 (c) Plain-Red-Img01 

(d) Enc-Red-Img01 (e) Enc-Red-Img01 (f) Enc-Red-Img01 

(g) Plain-Green-Img02 (h) Plain-Green-Img02 (i) Plain-Green-Img02

(j) Enc-Green-Img02 (k) Enc-Green-Img02 (l) Enc-Green-Img02

(m) Plain-Blue-Img03 (n) Plain-Blue-Img03 (o) Plain-Blue-Img03

(p) Enc-Blue-Img03 (q) Enc-Blue-Img03 (r) Enc-Blue-Img03
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Fig. 23 Distribution of

correlation for plain data set and

corresponding cipher
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of Fig. 3a is given in Fig. 5 for the control parameter d1
belonging to the range 0:154� d1 � 0:304. In this figure,

we can see the coexistence of three bifurcation diagrams,

the presence of parallel branches’ and the crisis phenom-

ena. The representation of the bifurcation diagram of Fig. 5

in the range 0:1881� d1 � 0:1969 in Fig. 6 showed clearly

that these parallel branches’ coexist four in number. The

enlargement of Fig. 3 in the interval 0:279� d1 � 0:281

presented in Fig. 7 shows the coexisting of other diagrams

in this region. These diagrams argue the existence of the

phenomenon of multistability in these ranges. The initial

methods and conditions for obtaining these diagrams are

given in Table 3.

3.2 Coexistence of attractors and basins
of attraction

The notion of multistability or coexistence of multiple

attractors is a very important phenomenon in chaotic

dynamical systems. Among others, for the flexibility, it

offers to the system and its adapted applications in infor-

mation engineering [12]. Multistability has caught the

attention of many researchers in recent years [44], because

it encompasses a diversity of many stable states in a

system.

The study of the coexistence of attractors in the HNNs

would allow understanding in depth its dynamical effect on

the aspects of the treatment of the brain information and

the cognitive function [12]. We have exhibited through the

TLTN presented in (4) the coexistence of four (periodic–

chaotic), four (chaotic–chaotic) and six (periodic–chaotic)

attractors, considering the values of the control parameters

d1 ¼ 0:196 d1 ¼ 0:2089 and d1 ¼ 0:28, respectively, pre-

sented in Figs. 8a, b, 9a, b, and 10a–c, respectively. Dif-

ferent types of coexisting attractors and the initial

conditions making it possible to obtain them are specified

in these figures. The basins of attraction corresponding to

the coexistence of four (periodic-chaotic), four (chaotic-

(a) Enc-Img03-Occluded1 (b) Enc-Img03-Occluded2 (c) Enc-Img03-Occluded3 

(d) Enc-Img03-Decrypted1 (e) Enc-Img03-Decrypted2 (f) Enc-Img03-Decrypted3

Fig. 24 Img03 is encrypted, occluded and decrypted with success to illustrate occlusion attacks
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chaotic), and six (periodic-chaotic) symmetric attractors

are shown in Figs. 8c, d, 9c, d and 10d, respectively. On

these attraction basins, each color corresponds to a set of

initial conditions that enable to obtain each coexisting

attractor. These basins of attraction correspond to those of

the self-excited attractors because they intercede with the

open neighborhood of other equilibrium points. In contrast,

hidden attractors have basins of attraction that do not cross

the open neighborhood of the other points of equilibrium.

Note that the coexistence of these four and six attractors is

unprecedented; these numbers have nowhere been reported

in the literature of tabu learning neuron, whose maximum

number so far was two [9, 10]. This demonstrates to the

satisfaction that this considered compound activation

function makes the model (4) more complex and interest-

ing than those already existing using other activation

functions.

3.3 Dynamics of tabu learning neuron
in the parameter space

Figures 11 and 12 show the effect of the variation in two

different parameters particularly the learning rate on the

dynamics of model (4) exposed in the parameter space in

d1; d2ð Þ and g; d1ð Þ planes, respectively.
We can note from Figs. 11a and 12a that the dynamics

of model (4) has two main regions, one periodic (in blue

and red) and one another chaotic (in green and magenta),

where the red and blue colors are used distinguishing

periodic attractors of opposite sign. Likewise, the green

and magenta colors allow distinguishing the chaotic

attractors of the opposite sign. These representations enable

us to confirm that model (4) is symmetrical and its domi-

nant behavior for the composition of these parameters. The

coded colors contained in Figs. 11b, 12b correspond to

values of the maximum exponent of Lyapunov ðkmaxÞ;
these values are indicated on the graduations of the color

bar of the corresponding figures. In these figures, we can

appreciate the expansion and reduction in chaotic puff via

transitions of the zones of periodic behaviors (where

kmax\0) toward areas of chaotic behavior (where

kmax [ 0) and vice versa during the variation in

parameters.

4 Circuit design

In this section, the TLTN model (4) will be studied in the

form of a circuit or an analog simulator in PSPICE. The

analog simulator equivalent to the mathematical model (4)

is set up essentially by electronic components. This rigor-

ous and inexpensive strategy is employed because it has

been used for experimental studies of some models of

dynamic systems [12, 13] or to emulate other complex

systems [22, 45–47].

4.1 Analog circuit synthesis for the TLTN

The nonlinear activation function involving in model (4) is

an exponential and polynomial-mixed nonlinearity, which

is rather complicated and difficult to implement in an

analog circuit form. It is for this reason that [9] proposed an

approximation function using hyperbolic tangent which is

more simple to realize. The equivalent analog circuit pro-

vided for this approximation to realize the nonlinear acti-

vation function of the TLTN model (4) is given in Fig. 13,

which is an equivalent of three hyperbolic tangent modules

with different offsets. More details of this approximation of

the hyperbolic tangent circuit design can be found in the

[9, 11, 48] and his current–voltage characteristic given in

Fig. 14. From this figure, it is obvious that the nonlinear

characteristic is bounded below and above. The analog

circuit of the TLTN model (4) is constituted by referring to

[7, 9]; it consists of four integrators involving three

inverters in feedback loops and two approximation func-

tions shown in Fig. 15.

(a) Dec-Img02 with correct 

key

(b) Dec-Img02 with correct 

key but a1=0.30000000001

(c) Dec-Img02 with correct 

key but x1(0)=0.0000000001

(d) Dec-Img02 with correct 

key but y1(0)=0.1100000001

Fig. 25 Img02 is decrypted with various keys to illustrate key

sensitivity
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Table 3 Methods used to obtain coexisting bifurcation diagrams of Fig. 3 and its enlargements of Figs. 3, 4, 5, 6, 7

Figure Control parameter range Color diagram Scanning direction Initial starting condition

Figure 3 0� d1 � 1 Red Upward 0; 0; 1:5; 0ð Þ
Blue Upward 0; 0;�1:5; 0ð Þ

Figure 5 0:154� d1 � 0:304 Red Upward 0; 0; 1:5; 0ð Þ
Blue Upward 0; 0;�1:5; 0ð Þ
Magenta Downward 0; 0; 1:5; 0ð Þ fixed
Green Downward 0; 0;�1:5; 0ð Þ fixed

Figure 6 0:1881� d1 � 0:1969 Red Upward 0; 0; 1:5; 0ð Þ
Blue Upward 0; 0;�1:5; 0ð Þ
Magenta Downward 0; 0; 1:5; 0ð Þ fixed
Green Downward 0; 0;�1:5; 0ð Þ fixed

Figure 7 0:279� d1 � 0:281 Red Upward 0; 0; 1:5; 0ð Þ
Blue Upward 0; 0;�1:5; 0ð Þ
Magenta Downward 0; 0; 1:5; 0ð Þ fixed
Green Downward 0; 0;�1:5; 0ð Þ fixed
Cyan Upward 0; 0; 0:04; 0ð Þ fixed
Black Downward 0; 0;�0:072; 0ð Þ fixed

Table 4 Chi-square values for each encrypted test data

Images v2 values Decision

R G B Average

Img01 45,603.9531 22,340.4218 28,854.7500 32,266.3750 Non-uniform

Enc-Img01 257.3984 252.0312 243.7656 251.0651 Uniform

Img02 76,521.1546 11,764.2320 57,778.7289 48,688.0385 Non-uniform

Enc-Img02 201.6640 250.4296 279.2421 243.7786 Uniform

Img03 78,081.5000 60,018.4843 68,009.5078 68,703.1640 Non-uniform

Enc-Img03 220.8046 253.7578 270.8437 248.4687 Uniform

Img04 – – – 1,095,300 Non-uniform

Enc-Img04 – – – 261.0249 Uniform

Table 5 Correlation coefficients of each encrypted color test data

Images Plan R G B

Enc-Img01 H - 0.0051 - 0.0033 - 0.0027

V 0.0051 0.0031 0.0045

D - 0.0017 - 0.0024 - 0.0005

Enc-Img02 H - 0.0051 - 0.0026 - 0.0034

V 0.0052 0.0038 0.0021

D - 0.0003 - 0.0014 - 0.0001

Enc-Img03 H - 0.0040 - 0.0043 - 0.0035

V 0.0024 0.0036 0.0038

D - 0.0009 - 0.0033 0.0002
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� 1
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� 1
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>>>>>>>>>>><

>>>>>>>>>>>:

ð15Þ

where X1, X2, Y1 and Y2 denote capacitor voltages C1, C2,

C3 and C4, respectively, with C1 ¼ C2 ¼ C3 ¼ C4 ¼ C ¼
10 nF and R ¼ 10 kX.

The set of Eq. (15) is equivalent to (4) considering the

following equalities:

Table 6 NPCR and UACI of each encrypted test data

Images NPCR (%) UACI (%)

Img01 99.6200 33.6512

Img02 99.6256 33.6147

Img03 99.6098 33.5823

Img04 99.5947 33.6019

Table 7 Global and local entropy of each encrypted test data

Images Global entropy Local entropy

Enc-Img01 7.9990 7.9051

Enc-Img02 7.9989 7.9059

Enc-Img03 7.9992 7.9083

Enc-Img04 7.9978 7.9071

Table 8 Computational time (in milliseconds) for various size test images and comparison with existing works

Algorithm Img01 Img02 Img03

256 9 256 512 9 512 1024 9 1024 256 9 256 512 9 512 1024 9 1024 256 9 256 512 9 512 1024 9 1024

Proposed 2.03 5.18 15.27 1.82 4.07 12.91 3.13 7.28 15.27

[63] 7.79 31.10 124.64 5.82 28.09 120.42 9.80 38.07 129.43

[64] 4.60 18.06 54.35 3.86 12.49 50.15 8.21 27.92 61.02

[65] 1270 5070 20,560 986.05 40,256 17,285 1586 8459 25,785

Table 9 ET and NC computed with 512 9 512 9 3 bytes version of Img01

Algorithm ET (MBps) NC

Proposed 151.82 15.80

[63] 24.06 122.85

[64] 41.52 62.00

[65] 0.14 94.60

Table 10 Comparative analysis for Img01 in terms of computational time (CT), Encryption Throughput (ET), Number of Cycles (NC), NPCR,

UACI, v2-values, entropy and key sequence

Algorithm CT(ms) ET (MBps) NC NPCR UACI Entropy Key sequence

Global Local

Proposed 5.18 151.82 15.80 99.6200 33.6512 7.9990 7.9051 TLN

[63] 31.10 24.06 122.85 99.6340 33.5800 7.9994 7.9153 Arnold map

[64] 18.06 41.52 62.00 99.6093 33.4480 7.9996 7.9073 1-D map

[63] 5070 0.14 94.60 99.6184 33.6157 7.9981 7.9027 Logistic map

[64] NR NR NR 99.6500 33.4600 7.9969 NR CNN

[65] NR NR NR 99.6170 33.4360 7.997 NR HNN

NR refers to Not Reported
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t ¼ sRC; Xi; Yi ¼ xi; yiði ¼ 1; 2Þ;

R1 ¼
R

a1j j ¼ 100 kX; R2 ¼
R

b11j j ¼ 100 kX;

R3 ¼
R

b12j j ¼ 3:571 kX; and

R4 ¼
R

a2j j ¼ 100 kX; R5 ¼
R

b21j j ¼ 100 kX;

R6 ¼
R

b22j j ¼ 2:5 kX

R7 ¼
R

c1j j ¼ 100 kX; R8 ¼
R

c2j j ¼ 100 kX;

R9 ¼
R

d2j j ¼ 3:33 kX

Am ¼ 0:2V; and f1 ¼
F1

RC
¼ 20 kHz

ð16Þ

4.2 Validation by PSPICE analog simulation

The implementations of the circuit design of Fig. 13 and

the analog circuit of Fig. 15 in PSPICE have led to the

results of Fig. 14 and Figs. 16, 17, respectively. The curve

in Fig. 14 is the trace of the approximation of the com-

pound activation function whose circuit design is given in

Fig. 13. This curve was represented by considering

Vi ¼ 5 sinð100ptÞ. By comparing it with that of Fig. 1a

obtained for g; r2ð Þ ¼ 10; 0:2ð Þ, we see that they coincide

which validates the circuit design of Fig. 13 proposed by

[9]. The symmetrical chaotic attractors shown in Fig. 16 in

various planes are obtained through Fig. 15 for Rd ¼ 38 kX
and the initial conditions VðX1ð0Þ;X2ð0Þ; Y1ð0Þ; Y2ð0ÞÞ ¼
ð0; 0;�0:9; 0Þ. These attractors are similar to those

obtained during the numerical investigations in Fig. 4. The

coexisting of four symmetrical chaotic attractors in Fig. 17

was obtained using the analog circuit of Fig. 15 for Rd ¼
51 kX and the initial conditions VðX1ð0Þ;X2ð0Þ;
Y1ð0Þ; Y2ð0ÞÞ ¼ ð0; 0;�0:1; 0Þ;ð0; 0;�0:9; 0Þ. These coex-

isting attractors are close to that of Fig. 6. All these results

were obtained by choosing the Final step: 500 ms; No-Print

Delay: 480 ms; Step Ceiling: 2 ls.

5 Application to secure biomedical images
in IoMT

5.1 Modified Julia set

Julia set is a fractal of complex numbers considered as

input whose output through a quadratic function f ðzÞ ¼
z2 þ c is bounded [49]. Here c is a complex constant. The

function f ðzÞ is initialized and iterated. Setting the real

values of the complex number z as the x pixel index and the

imaginary values of the complex number z as the y pixel

index, the Julia set can be visualized for different values of

the complex constant c.

5.2 Encryption process

An issue of this visualization for the traditional complex

Julia set is illustrated in Fig. 18a for c = - 0.745429. If

ðx; yÞ is the location of pixels in Fig. 18a, the intensity

values of the image representing the modified complex

Julia set are computed as Iðx; yÞ ¼ ½a 	 ðx=yÞ � mod 256

when the values of pixels of Fig. 18a are 0 representing the

red pixel. An issue of the visualization of the image rep-

resenting the modified complex Julia set is illustrated in

Fig. 18b for c = - 0.745429 and a = 25. Internet of

things (IoT) is a new prominent research field where

objects, sensors, and the internet are jointly interconnected

to form a unique system [50]. The main objective of this

interconnection is to solve common life problems. IoT can

be used to provide a set of healthcare services and this is

defined as the internet of healthcare things (IoHT) or the

internet of medical things (IoMT) [51]. One of the most

important services of IoHT is the communication of med-

ical data of patients including medical images. As medical

images contain very confidential data, we provide in this

paper lightweight encryption/decryption technics useful to

secure medical images in the IoMT. Figure 19 presents the

Structure of the secure IoHT system where a medical

sensor is used for medical image acquisition. The acquired

image is encrypted using the structure of Fig. 20 and

transmitted in the IoMT. The receiver uses the decryption

scheme to recover the original image for analysis. The

encryption algorithm can be detailed in the following five

steps, and the decryption procedure is the reverse of the

encryption scheme:

Step 1: Read the original image I at the output of the

acquisition system. This is 256 9 256 9 3 image or

256 9 256 9 1 image. Apply row and column rotation on

each red, green and blue component to obtain R, G and B

matrixes.

Step 2: Using the output matrix of the Julia set J, sub-

stitute the values of each component R, G and B to obtain

SR, SG and SB.

Step 3: Select the initial values (x10, x20, y10, y20, a1; a2;

c1;c2;I2;Im;F1;g;r;b11; b12;b21;b22) as indicated in Eq. 6 for

iterating the presented TLTN model for 256 9 256 9 3

times for color images and 256 9 256 9 1 times for gray

scale images to outcome four real sequences {X1}, {X2},

{Y1} and {Y2}. Then convert the real sequence X1 to

integer as X ¼ fix X1i � 1016 mod 256
� �

.
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Step 4: Perform Bit-XORed-based diffusion process on

the diffused matrixes SR, SG and SB using the sequence X

of the TLTN model.

Step 5: Perform components fusion to obtain the final

encrypted image from SR, SG and SB.

5.3 Performance study of the proposed
cryptosystem

To validate any cryptosystem performance, analysis is

required [52]. In this work, we will use some well-known

metrics such as histogram, chi-square, correlation coeffi-

cients, NPCR, UACI, local and global entropy, occlusion

and key sensitivity to assess the proposed cryptosystem.

Experimentations are performed on a workstation equipped

with Intel CoreTM i7-3630QM, 16 GB RAM, and provided

with MATLAB R2016b. Our dataset consists of three

medical images each of size 256 9 256 9 3 (see Fig. 21)

obtained from various medical image sources including the

COVID-CT database [53] which is the most important

database of COVID-19 Computed Tomography (CT)

images available for the public. Setting the initial seed for

iterating the presented TLTN model as in Eq. 6, Fig. 21

shows that the input medical images are no more recog-

nizable after encryption and can be sent to the transmission

system securely. But we still need to access the security or

performance of the transmitted (encrypted) images given

that visual test is not a sufficient condition of security [54].

5.3.1 Histogram and Chi-square tests

Any good encryption scheme must pass the histogram and

chi-square test to be able to resist the statistical intrusion of

a third party [55, 56]. The histogram of a plain image is

usually distributed randomly, whereas the histogram of the

corresponding cipher is required to be uniform. Figure 22

presents the histograms of the plain and cipher medical

images. It is obvious to observe that the histograms of the

plain image are randomly distributed while the histograms

of the encrypted data are flat. This flatness can be checked

using the Chi-square test. Table 4 provides the issue of Chi-

square values with 0.05 as the weight value. Usually, the

flatness of the histogram is validated if the Chi-square

value of the test sample is less than 293.2478 indicating a

p-value higher than 0.5. Regarding Table 4, the histograms

of various test samples are validated.

5.3.2 Correlation coefficients

If the correlation coefficients of the cipher data are very

close to zero, it is sure that the proposed cryptosystem can

resist all form statistical attacks [57, 58]. The correlation

coefficient is computed by a random selection of 104 pairs

of neighboring pixels in each plan of the image. The fol-

lowing formula is usually applied:

Cmn ¼
PA

x¼1 mx � mð Þ nx � nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPA

x¼1 mx � mð Þ2
PA

x¼1 nx � nð Þ2
q ð17Þ

here mx, nx point out the values of adjacent pixels and

A points out the whole amount of nearby pixel pairs (104).

Table 5 provides the outcome of computations of the cor-

relation coefficients of each encrypted medical image in the

red (R), green (G), and blue (B) components. We can

observe that the correlation coefficients of the cipher data

are very close to zero; consequently, we are sure that the

proposed cryptosystem is able to resist all forms of statis-

tical attacks. The distribution of correlation coefficients for

the plain data set and corresponding cipher is also repre-

sented in Fig. 23. As linear relation is observed for plain

images, it is evident that the pixels of these images are

highly correlated. On the other hand, no linear relation is

observed in the case of cipher images. This simply implies

that there is no correlation between the pixels of the

encrypted images. Consequently, no profitable information

can be retrieved from these encrypted data.

5.3.3 NPCR and UACI tests

To assess the capability of an encryption algorithm to

withstand differential attacks, NPCR (‘‘Number of Pixels

Change Rate’’) and UACI are commonly used [59]. These

metrics evaluate the rate of change in the original image on

its equivalent cipher one. The numerical value of NPCR is

computed as:

NPCR ¼
P

m;n Diffðm; nÞ
D

� 100%;

Diffðm; nÞ ¼
0 if Pðm; nÞ ¼ Cðm; nÞ
1 if Pðm; nÞ 6¼ Cðm; nÞ

� ð18Þ

here D indicates to the complete pixel numbers in the

image. On the other hand, numerical value of UACI is

computed as:

UACI ¼ 100

m� n

Xm

1

Xn

1

IC1 m; nð Þ � IC2 m; nð Þj j
255

ð19Þ

where IC1 and IC2 are two encrypted images obtained from

ciphers images different in just on pixel. m and n are the

dimension of the images.

The outcomes of NPCR and UACI for the experimented

dataset are displayed in Table 6. From these results, the

given encryption approach has a high sensitivity to tiny

pixel changes in the original image. Consequently,

encrypted images are secured against any form of differ-

ential attacks.
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5.3.4 Global and local entropy

To estimate the distribution of the pixel values of each

plane in the image, local and global entropy is commonly

used [60]. Global entropy is computed as:

EðYÞ ¼ �
X2b�1

a¼1

pðyaÞ log2 pðyaÞð Þ ð20Þ

here pðyaÞ represents the possibility of ya and b indicates

the pixel bit level, which is equivalent to the typical

entropy value 8-bit. Local entropy (which is more accurate

than global entropy) can be calculated by evaluating the

average value of global entropy for all non-overlapping

blocks in the image. Table 7 states the outcomes of local

and global entropy values for encrypted images, which

values for the cipher images are very close to 8.

5.3.5 Occlusion analysis

In this work, medical images are transferred securely from

one user to the other. During the transmission process,

encrypted data may be easily infected by losing partial

information (occlusion) [61]. The decryption algorithm at

the receiver side must be able to recover the original image

with minimal loss. To assess the proposed capability of the

proposed cryptosystem to resist occlusion, we made a

cutting block with various sizes of pixels to the ciphered

Enc-Img03 and then decrypt it. Figure 24 presents the

outcomes of the data loss attacks, in which the decrypted

images have good visual quality.

5.3.6 Key sensitivity analysis

A good encryption algorithm is required to be highly

sensitive to the encryption key [62]. To assess the key

sensitivity of the proposed technics, we execute the

decryption procedure for the encrypted image Enc-Img02

with several initial values, in which the outcomes are

presented in Fig. 25.

5.3.7 Complexity analysis of the proposed technics

Complexity analysis is one of the most important measures

to assess the performance of an algorithm. This complexity

can be computed in terms of running speed or the

Encryption Throughput (ET) and the Number of Cycles

(NC) required securing one byte of the plain image. Note

that the encryption time is computed using the ‘‘tic-toc’’

functions of MATLAB while ET and NC are computed as:

ET ¼ Size of the image ðByteÞ
Encryption time ðsÞ ð21Þ

NC ¼ CPU speed ðHzÞ
ETðByte=sÞ ð22Þ

A good encryption algorithm is required to take less

encryption time, less NC, and high ET to be suitable for

real time implementation. Table 8 contains the running

speed of the encryption algorithm while using various size

of test image Img01 (example 512 9 512 9 3 bytes). On

the other hand, Table 8 provides the ET and the NC

computed with 512 9 512 9 3 bytes version of Img01. The

computational workstation is characterized by a 2.4 GHz

processor Intel � core TM i7-3630QM 16 GB RAM and

MATLAB R2016b software. The computational time

increases with respect to the size of the plain image. Note

this computational time also relies on the capacity of the

workstation (the processor and the RAM). Tables 8 and 9

show that an acceptable complexity is obtained, and the

algorithm is competitive with some fastest chaos-based

cryptosystems results of the state of the art.

6 Superiority of the encryption
scheme based on the TLN chaotic
attractor

In this section, a comparative analysis in terms of

encryption/decryption performance and key sequence is

achieved. Table 10 compares complexity, NPCR, UACI,

v2-values, entropy, and key sequence of the present work

with some fastest chaos-based encryption/decryption

algorithms from the literature. This comparative analysis

shows that the proposed cryptosystem has high-security

issues and is competitive with the fastest chaos-based

cryptosystems.

7 Conclusion and future works

This paper was focused on the dynamics of a non-au-

tonomous tabu learning two-neuron model with compound

activation functions. For some discrete values of two

parameters of this compound function, its characteristic

curves have been obtained. The graphical representations

of the equilibria under the variation in the learning rate of

the first and the second as well as their stability have been

investigated. It has been found that the adapting synapse-

based neuron model displays self-excited dynamics. Using

the learning rate of the first neuron as the bifurcation

control parameter, some complex behaviors including

periodic states, chaotic behavior, and periodic windows
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separated by areas of chaotic behaviors are observed using

bifurcation diagrams as well as the graph of the Lyapunov

spectrum as argument. Besides, phenomena such as crisis,

the parallel bifurcations branches, and the uncovered

coexistence of up to six disconnected stable states have

been also captured during our numerical simulations. The

representations of the basins of attraction of some of those

coexisting states have shown that they are all self-excited.

An analog circuit was developed [7, 9, 11, 48], through its

implementation in PSPICE. Some results similar to those

from the numerical approach were given, and good

accordance was observed between both results

[17, 20, 46–48, 66, 67]. Finally, the complex sequence of

random numbers obtained from the dynamical analysis of

the TLTN model was used to design an encryption/de-

cryption algorithm based on a modified Julia set and con-

fusion-diffusion operations. The security performances of

the built cryptosystem were analyzed in terms of Compu-

tational time (CT = 1.82), Encryption Throughput (ET =

151.82 MBps), Number of Cycles (NC = 15.80),

NPCR = 99.6256, UACI = 33.6512, v2-val-
ues = 243.7786, global entropy = 7.9992 and local

entropy = 7.9083 and it was found that the algorithm was

highly secured compared to some fastest neuron chaos-

based cryptosystems thus suitable for IoMT security.

Cluster or clustering analysis is usual for data classifi-

cation. Unfortunately, this idea is out of the scope of this

work and may be taken into consideration for future works.

That is, for future work we can consider an unsupervised

clustering technique to extract meaningful information

from complex data such as medical images and encrypt

only these meaningful data to improve the encryption time.

Let us mention that the aim of the present work is to derive

a robust and simple encryption algorithm based on the

chaotic sequences from the TLTN model useful for com-

plex data such as medical image encryption.
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