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This study employed microbiome and metabolome analysis to explore the fecal
signatures of gout patients. Fecal samples from 52 male individuals (26 healthy
controls and 26 gout patients) were analyzed by 1H NMR spectroscopy and Illumina
Miseq sequencing. The signatures of microbiome showed being up-regulation of
opportunistic pathogens, such as Bacteroides, Porphyromonadaceae Rhodococcus,
Erysipelatoclostridium and Anaerolineaceae. The signatures of metabolome were some
altered metabolites which may involve uric acid excretion, purine metabolism, and
inflammatory responses. Meanwhile, the correlation between discrepant metabolites
and microbial taxa indicated that they could be the combined signatures of gout. This
study suggests that the combined analysis of the fecal microbiome and metabolome
may effectively characterize diseases.
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INTRODUCTION

Human feces are complex and comprised of multiple elements, including proteins, nucleic acids,
metabolites, human cells, and microorganisms. Disorder of any element can be related with the
development of certain diseases. Hence, different human diseases are associated with different
fecal levels of biomarkers. Over the past years, biomarkers of fecal material are gaining increased
attention because they provide a non-invasive method for disease diagnosis. Fecal biomarkers
could be microRNAs (Wu et al., 2014), proteins (Buderus et al., 2015), microorganisms (Narayanan
et al., 2014), and metabolites (Ahmed et al., 2016). Quantification of the above biomarkers between
disease and health may also clarify potential pathways of the pathogenesis of diseases.

The microbiota in the intestinal tract may be a significant fecal biomarker due to its crucial role
in intestinal health, such as the digestion of food, protection of mucosal surfaces, and crosstalk with
the host immune system (Hooper et al., 2012; Nicholson et al., 2012). The dysbiosis signatures of
the fecal microbiota are associated with diseases such as obesity (Sanz et al., 2010), cancer (Zackular
et al., 2014), inflammatory bowel disease (Scher et al., 2015), and ankylosing spondylitis (Costello
et al., 2015). Generally, intestinal dysbiosis can cause fecal metabolites variation because most
of the metabolites are derived from the microbiota (Lee and Hase, 2014), such as short-chain
fatty acids (SCFA), trimethylamine, and amino acids (Smith et al., 2013; Falony et al., 2015).
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The fecal microbiome and metabolome are simultaneously
found to be disordered in colorectal cancer or systemic lupus
erythematosus patients compared to healthy controls (Weir
et al., 2013; Hevia et al., 2014; Rojo et al., 2015). Therefore,
the combined fecal microbiome and metabolome signature may
provide reliable and comprehensive information to uncover fecal
biomarkers of diseases, especially metabolic diseases.

Gout is a purine metabolic disorder disease that is
characterized by elevated serum uric acid (UA) and deposition
of urate in and around the joints. Gout patients suffer from
arthritis attacks, severe pain, and degeneration of the first
metatarsophalangeal joint (Rafey et al., 2003). The excretion of
UA plays a significant role in the alleviation of pain. Healthy
humans excrete UA through the kidneys and intestine. Therefore,
metabolites in the intestine may be altered because of UA
excretion. In addition, the intestinal microbiota can participate
in the metabolism of purine and UA, such as Escherichia coli
(Crane et al., 2013), Lactobacillus, and Pseudomonas (Hsieh et al.,
2014). In conclusion, the intestinal fecal signature may be related
with metabolites and microbiota in gout patients.

To explore the fecal signature of gout, 1H NMR and Illumina
Miseq were employed to investigate the metabolic profile and
microbial community of fecal extracts from gout patients and
healthy individuals, respectively. The overall goal of this study
was to ascertain if the combined signatures of microbiome and
metabolome could characterize male gout patients.

MATERIALS AND METHODS

Patient Population
The study protocol was approved by the Ethics Committee
of Zhejiang Chinese Medical University, and written informed
consent was obtained from each participant. A total of 26
male patients with diagnosed gout were recruited from three
hospitals (Zhejiang Provincial Hospital of TCM, The Second
Affiliated Hospital of Zhejiang Chinese Medical University, and
Zhejiang Province People Hospital). All patients had suffered
from gout for at least 12 months and did not receive any
medical treatment within 1 month of study participation. The
patients with comorbid disorders were excluded. The clinical
diagnosis and blood examination reports of all patients were
obtained from the hospitals. Twenty-six male volunteers were
recruited by a routine physical examination. The healthy controls
had no gastrointestinal tract disorders and did not receive
antibiotics within 1 month of this study. In addition, there
were no significant differences among the two groups in terms
of age, smoking history, alcohol intake or dietary intake. The
clinical data such as UA, body mass index (BMI), erythrocyte
sedimentation rate (ESR), blood urea nitrogen (BUN) and serum
creatinine (Cr) were shown in Table 1.

16S rRNA Gene Tag Sequencing
Total DNA was extracted from thawed fecal samples using
the QIAamp R© DNA Stool Mini Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocols. The extracted
products were determined by agarose gel electrophoresis (1% w/v

agarose). Quantification of the DNA yield was carried out using
a NanoDrop2000 spectrophotometer (Thermo Scientific). The
DNA was stored at -20◦C for Illumina Miseq sequencing analysis.

The V3–V4 region of the 16S rRNA genes was amplified
from the diluted DNA extracts with the primers 319f (5′-
ACTCCTACGGGAGGCAGCAG-3′) and 806r (5′-GGACTACH
VGGGTWTCTAAT-3′). PCR amplification was then performed
in a 30 µl mixture containing 0.5 µl of DMSO, 1.0 µl of forward
primer (10 mM), 1.0 µl of reverse primer (10 mM), 5.0 µl of
DNA sample, 7.5 µl of ddH2O and 15.0 µl of Phusion High-
Fidelity PCR Master Mix with HF Buffer (NEB). The reactions
were hot-started at 98◦C for 30 s, followed by 30 cycles of 98◦C
for 15 s, 58◦C for 15 s, and 72◦C for 15 s, with a final extension
step at 72◦C for 1 min. The PCR products were purified using
an agarose gel DNA purification kit (Qiagen, Chatsworth, CA,
USA). The amplicon library was prepared using a TruSeqTM

DNA sample preparation kit (Illumina Inc, San Diego, CA,
USA). The sequencing reaction was conducted using Illumina
MiSeq sequencing (2× 300 bp; Hangzhou Guhe Information and
Technology Co., Ltd., Zhejiang, China).

1H NMR Spectroscopy Measurements
Thawed fecal samples were suspended with Na+/K+
phosphate buffer (K2HPO4–NaH2-PO4, 0.1 M, pH 7.4)
containing 100% D2O and 0.005% sodium 3-trimethylsilyl
[2,2,3,3-d4] propionate (TSP). The suspension was subjected
to freeze-thaw treatment (3 times) with liquid nitrogen
and 20 × ultrasonication cycles (20 s vortex-10 s waiting)
followed by centrifugation (12000 rpm, 4◦C, 15 min). The
supernatants were removed, filtered through 0.2 µm membrane
filters, and 550 µL of each filtrate was transferred to 5 mm
NMR tubes (Norell ST50-7, USA) for NMR spectroscopic
analysis.

High resolution 1H NMR spectra were recorded on a
Bruker Avance III 600 MHz spectrometer (Bruker, Biospin,
Germany) using an inverse detection cryogenic probe. The
sample temperature was controlled at 298 K. One-dimensional
NMR spectra were recorded using a first increment of NOESY
pulse sequence (recycle delay –90◦–t1–90◦–tm–90◦–acquisition),
and water suppression was achieved with weak continuous-wave
irradiation during the recycle delay (2 s) and the mixing time
(100 ms). The 90◦ pulse length was adjusted to approximately
10 µs, and 64 transients were collected into 32 k data points with
a spectral width of 20 ppm.

The spectra were transformed with 1 Hz line broadening
and zero filling, manually phased, and baseline corrected
using the TOPSPIN 2.0 software. Metabolites were identified
using information found in the literature (Saric et al., 2007;
Le Gall et al., 2011) or on the web (Human Metabolome
Database)1 and by use of the 2D-NMR methods including 1H–
1H correlation spectroscopy (COSY), 1H–1H total correlation
spectroscopy (TOCSY), 1H–13C heteronuclear multiple-bond
correlation (HMBC), and 1H–13C heteronuclear single quantum
correlation (HSQC) spectra.

1http://www.hmdb.ca/

Frontiers in Microbiology | www.frontiersin.org 2 February 2017 | Volume 8 | Article 268

http://www.hmdb.ca/
http://www.frontiersin.org/Microbiology/
http://www.frontiersin.org/
http://www.frontiersin.org/Microbiology/archive


fmicb-08-00268 February 17, 2017 Time: 18:4 # 3

Shao et al. Fecal Signatures of Gout

TABLE 1 | Demographic and clinical chemistry characteristics of human subjects.

Characteristics Gout patients Healthy controls p-value FDR

Age mean ± SD [min, max] 43.60 ± 1.98 [25, 66] 39.42 ± 2.33 [20, 67] 0.285 0.2850

BMI (kg/m2) mean ± SD [min, max] 24.28 ± 0.31 [21.30, 27.16] 23.56 ± 0.23 [21.45, 25.89] 0.021 0.0315

ESR (mm/h) ± SD [min, max] 11.21 ± 1.72 [2, 41] 7.04 ± 0.54 [3, 16] 0.020 0.0315

UA (µmol/L) ± SD [min, max] 439.09 ± 13.56 [307, 569] 284.50 ± 11.05 [193, 409] 0.000 0.0000

BUN (mmol/L) ± SD [min, max] 6.21 ± 0.33 [3.25, 8.60] 4.98 ± 0.26 [2.9, 7.3] 0.000 0.0000

Cr (µmol/L) ± SD [min, max] 70.15 ± 4.11 [40.6, 104.3] 64.18 ± 4.35 [32.9, 129.3] 0.193 0.2316

Statistical Analysis
Paired-end reads of sequencing were first merged and
demultiplexed into patient samples using the Quantitative
Insights Into Microbial Ecology (QIIME version 1.9; Caporaso
et al., 2010). Before assembly, sequence reads were first filtered to
remove low-quality or ambiguous reads, including reads lacking
exact matching with the primer, reads containing ambiguous
character (N), and reads with an average quality score <25.
Only two reads with a sequence overlap longer than 20 bp were
assembled. The assembled sequence reads with <400 bp or
>500 bp were discarded. High-quality sequences were binned
into 16S rRNA Operational Taxonomic Units (OTUs) and
defined at ≥97% sequence homology. Chimera detection and
removal were assessed using the GOLD reference database and
uchime (Edgar et al., 2011). The taxonomic affiliation of each
OTU was performed with QIIME against the SILVA database
(Quast et al., 2013). Alpha diversity (Chao1, observed species,
Simpson, Shannon, singles, doubles) was analyzed based on the
OTUs table rarefied to 1000 reads, and 20,000 reads were finally
extracted from each sample for the other analyses.

To test whether gut microbial species could be differentiated
between gout patients and healthy controls, a metric
multidimensional scaling method based on projection known
as principal coordinates analysis (PCoA) was used. Each sample
was mapped based on the overall microbial composition and
assessed for similarities. The online software LefSe (Segata
et al., 2011) was utilized to select and demonstrate differentially
abundant taxonomy based on Kruskal–Wallis test and LDA
(linear discriminant analysis) score.

The statistical processing of 1H NMR data was conducted as
previously described (Shao et al., 2016). After manual corrections
for phase and baseline distortion (Bruker BioSpin), 1H NMR
spectra were referenced to the TSP signal (δ 0.0) and spectral
regions 9.50–0.6 were integrated into regions with an equal width
of 0.004 ppm using the AMIX software package (V3.8, Bruker
BioSpin). The region containing the water resonance (δ 5.16–
4.68) was removed. Each bucket was normalized to the total sum
of the spectral integrals, and then the peak areas of identified
metabolites were extracted to calculate metabolite percentage
concentrations. Total metabolite concentrations were performed
with multivariate data analysis using the SIMCA-P+ software
package (version 11.0, Umetrics, Sweden). In this study, partial
least squares discriminant analysis (PLS-DA) was performed to
attempt to maximize the separation between classified groups of
observations. The validity of the model was assessed with the
R2X and Q2 values, reflecting the explained variables and the

predictability of the model, respectively. The validity of the model
was further evaluated with rigorous permutation tests (n = 200).
Identified metabolite concentrations were calculated according to
1H chemical shifts. Metabolite concentrations within groups were
compared using Mann–Whitney non-parametric test in SPSS
software 16.0.

The correlation network was performed with a Spearman’s
rank correlation coefficient on the discrepant taxonomy and
metabolites in R program, and only connections with a p-value
less than 0.01 were retained. Meanwhile, to correct the results of
this, R-p-adjust method in R program were used to calculate FDR
values.

RESULTS

Intestinal Dysbiosis in Gout Patients
Fifty-two male individuals (26 healthy controls and 26 gout
patients) were enrolled to study microbial profiles of stool
samples. The results of Illumina Miseq sequencing shown
each sample had at least 20,000 valid reads for OTU
analysis. The intestinal microbiota of patients with gout was
significantly different compared to healthy control subjects.
The α diversity indices (Chao1, Observed species, Simpson,
Shannon, Singles and Doubles) of the intestinal microbiota
from the gout group were less than the healthy group
(Supplementary Figure S1), suggesting that gout was associated
with lower microbial diversity. Additionally, three-dimensional
PCoA showed separation between the two groups, indicating
that gout was the primary factor influencing the differences
(Supplementary Figure S2).

Figure 1 showed the discrepant microbial species
with a reduced significance threshold (LDA score >2)
between the two groups. The LefSe method revealed that
the phylum Bacteroidetes and its derivative (Bacteroidia,
Bacteroidales, Bacteroidaceae as well as Bacteroidales S24_7
group and Porphyromonadaceae), the phylum Chloroflexi
and its derivatives (Anaerolineae, Anaerolineales, and
Anaerolineaceae), the order Corynebacteriales and its derivative
(Nocardiaceae and Rhodococcus), the class Erysipelotrichia
and its derivatives (Erysipelotrichales, Erysipelotrichaceae and
Erysipelatoclostridium), and the class Negativicutes and its
derivative (Selenomonadales) were all higher in the intestinal
microbiota from the gout patients. Conversely, the family
Vibrionaceae and its derivatives (Photobacterium and Vibrio),
the genus Coprococcus 3, Lachnospiraceae NC2004 group,
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FIGURE 1 | LefSe identified the most differential genera between gout patients and healthy controls. (A) Cladogram; (B) Histograms. Red and green
represent healthy controls and gout samples, respectively.

Lachnospiraceae UCG_005, Ruminococcaceae NK4A214 group
and Ruminococcaceae UCG_011 were all lower in the intestinal
microbiota from the gout patients.

Discrepancy of Metabolites in Gout
Patients
Typical 1H NMR spectra of fecal extracts of gout and healthy
controls were shown in Supplementary Figure S3. The spectra
of fecal extracts showed 46 targeted metabolites in this study.
The detailed information was provided in Supplementary Table
S1. To maximize class discrimination and discover the gout-
related fecal metabolites, a comparative PLS-DA model was
utilized on the targeted metabolite data from the gout patients
and healthy controls. The values for R2X and Q2 and the results
of permutation tests indicated that the two models were of
reasonable quality (Figure 2A). Figures 2A,B show the PLS-
DA score plots and corresponding loading plots for human fecal
extracts, respectively. Clear separations in the PLS-DA score
plot based on 46 targeted metabolites were observed between
the gout patients and healthy controls (Figure 2A). Differential
metabolites were defined based on the variable importance for
project values (VIP) value of PLS-DA. Metabolites with a VIP

value greater than 1.0 were dispersed from the origin of the
loading plot and were considered as the primary contributors for
classification of the groups (Figure 2B).

According to the PLS-DA model analysis, 15 targeted
metabolites with a VIP above 1.0 were selected and subjected to
a significance test with Mann–Whitney non-parametric test. As
shown in Table 2, 14 of 15 metabolites were significantly different
with p < 0.05. Compared with healthy controls, gout patients
had significantly higher concentrations of alanine, glycine,
taurine, succinate, acetate, α-glucose, β-glucose and α-xylose, and
significantly lower concentrations of valine, asparagine, aspartate,
citrulline, phenylalanine and α-ketoisocaproate. The detailed
concentrations of the 14 significant metabolites were shown in
Supplementary Figure S4.

Correlations of Discrepant Microbial
Taxa and Fecal Metabolites
To further analyze the associations of alterations in fecal
metabolome and microbiome, we conducted the correlation
of 19 discrepant microbial taxa at the family and genera
level and 15 discrepant metabolites using the Spearman’s rank
correlation method. As shown in Figure 3, no associations were
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FIGURE 2 | (A) PLS-DA score plot of gout patients and healthy controls based on the fecal metabolic profiles. The red box and black triangle represent gout and
healthy controls samples, respectively. (B) PLS-DA loading plot. The blue font denotes the metabolites with VIP > 1.0, and the dark red font denotes the metabolites
with VIP < 1.0.

TABLE 2 | Summary of the identified differential metabolites between gout
patients and healthy controls (VIP > 1).

Metabolites δ (ppm) VIP p-value FDR

Valine 2.27 (m) 1.76 0.000 0.0000

Phenylalanine 7.38 (m) 1.70 0.000 0.0000

Citrulline 1.87 (m) 1.64 0.000 0.0000

Inosine 8.34 (s) 1.55 0.076 0.0760

Alanine 3.79 (q) 1.52 0.000 0.0000

Taurine 3.43 (t) 1.47 0.000 0.0000

Aspartate 2.82 (m) 1.40 0.000 0.0000

Acetate 1.92 (s) 1.39 0.001 0.0014

α-ketoisocaproate 2.61(d) 1.38 0.000 0.0000

Succinate 2.41 (s) 1.37 0.001 0.0014

β-glucose 3.50 (t) 1.34 0.000 0.0000

Glycine 4.65 (s) 1.33 0.000 0.0000

α-glucose 3.71 (t) 1.07 0.003 0.0035

Asparagine 2.96 (dd) 1.02 0.002 0.0025

α-xylose 2.14 (m) 1.02 0.021 0.0225

involved in some microbial taxa (Ruminococcaceae NK4A214
group, Rhodococcus, Porphyromonadaceae sp., Nocardiaceae sp.
and Erysipelatoclostridium) and some fecal metabolites (acetate,
asparagine). However, the associations were observed among
most fecal signatures of metabolome and microbiome.

Some gout-enriched microbial taxa were associated with
the gout-enriched metabolites. The positive associations
were observed between Bacteroides and succinate, between
Anaerolineaceae and alanine or α-xylose. The negative
associations were observed between Erysipelotrichaceae sp.
and inosine, between Bacteroidales S24_7 group and alanine or
succinate or taurine. Meanwhile, some gout-enriched microbial
taxa were also associated with the gout-depleted metabolites. The
positive associations were observed between Bacteroidales S24_7
group and valine or phenylalanine.

The gout-depleted microbial taxa were negatively associated
with the gout-enriched metabolites. For example, Photobacterium

was negatively associated with alanine, glycine, taurine, α-glucose
and β-glucose. However, the gout-depleted microbial taxa
were positively associated with the gout-depleted metabolites.
For instance, the positive associations were observed between
Coprococcus 3 or Vibrio and citrulline.

Although the correlation between metabolites and microbial
taxa doesn’t mean that they exhibit any biological interaction,
they have the potential to be a combination of fecal signatures.

DISCUSSION

Accumulating evidence indicates that gut microbiota interact
with gout, which is a concerning strategy for characterizing
and treating gout patients (Kim et al., 2014; Guo et al., 2016).
We used high-throughput sequencing of the V3–V4 region of
the 16S rRNA gene to characterize the fecal microbiome, 1H
NMR spectra assaying of small molecules to characterize the
fecal metabolome. To the best of our knowledge, this is the first
attempt to combine the signatures of gout by integrating the
microbiome and metabolome.

Some alterations of the gut microbiome have the potential
to distinguish gout patients from healthy controls. In
gout, Bacteroides caccae and Bacteroides xylanisolvens are
enriched yet Faecalibacterium prausnitzii and Bifidobacterium
pseudocatenulatum depleted (Guo et al., 2016). Our study
also finds the family Bacteroidaceae sp. and its genera
Bacteroides enriching in male gout patients. Meanwhile, the
enrichment of genera Bacteroides are associated with other
autoimmune diseases, such as rheumatoid arthritis (Zhang
et al., 2015), systemic lupus erythematosus (Hevia et al.,
2014) and diabetes (Davis-Richardson and Triplett, 2015).
Meanwhile, certain Bacteroides species may be considered
as the opportunistic pathogens in the human gut (Bloom
et al., 2011). The gout-enriched Porphyromonadaceae, one
family of opportunistic pathogens, is also found being
higher in ankylosing spondylitis (Costello et al., 2015) and
Crohn’s disease (Mondot et al., 2016). The gout-enriched
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FIGURE 3 | Heatmap of Spearman’s rank correlation coefficients of the relative abundances of different gut microbiota at the family and genera level
and fecal metabolites in healthy controls and gout patients. Circle sizes and color intensity represent the magnitude of correlation. Blue circles = positive
correlations; brown circles = negative correlations. Red text denotes depletion in gout patients; green text denotes enrichment in gout patients.

FIGURE 4 | A schematic diagram showing the main functions of the significantly altered fecal metabolites. Red text denotes depletion in gout patients;
green text denotes enrichment in gout patients. Uric acid (UA) and purine are not shown in the list of identified metabolites in the intestine, but both of them are
involved in gout disease.
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Rhodococcus, is observed being higher in Crohn’s disease
(Guerrero et al., 2015) and SLE disease (He et al., 2016). The
other gout-enriched Erysipelatoclostridium and Anaerolineaceae
are also considered as human opportunistic pathogens in the
human gut (Sibley et al., 2012; Woting et al., 2014). Summary, the
up-regulation of opportunistic pathogens may be the signatures
of gout disease.

The up-regulation of opportunistic pathogens in the human
gut may disturb host’s physical function. The metabolites in
the human gut can be the intermediary of interchange between
gut microbiota and human host. Therefore, this study reveals
some metabolites in the human gut are associated with the
discrepant microbial taxa. As shown in Figure 4, the signatures
of metabolome in male gout patients involve multiple biological
processes during the course of gout, such as UA excretion, purine
metabolic disorder, and inflammatory responses.

Three gout-enriched metabolites involving energy production
(acetate, succinate and glucose) may provide ATP for intestinal
epithelial cells to excrete UA through the ATP-binding cassette
superfamily G member 2 (Hosomi et al., 2012) and the solute
carrier protein 2 family member 9 in male gout patients (Vitart
et al., 2008). The gout-depleted phenylalanine has been reported
as an inhibitor of URAT1 which plays a crucial role in regulating
serum UA levels (Tan et al., 2014). Meanwhile, the gout-
enriched glycine and gout-depleted aspartate may involve purine
nucleoside biosynthesis, which induces disorders of purine
metabolism (Ishikawa et al., 2013; Patel et al., 2016). Briefly, the
discrepant fecal metabolites in gout patients may involve UA
excretion and purine metabolism.

The gout disease is not only a metabolic disease but also an
autoimmune disease. Hence, the disorders of inflammation exist
in gout patients. Some signatures of metabolome in male gout
patients have been reported being involving in inflammation,
such as acetate that regulates T cells, IL-8, TNF-α and 1L-
1β through binding GPR43 (Vieira et al., 2015), succinate that
induces IL-1β through HIF-1α (Tannahill et al., 2013) and
glucose that regulates T cell activation (Jacobs et al., 2008).
The gout-enriched taurine in gout patients can be absorbed
and metabolized into bile acids and taurine haloamines in the
intestine, which both play significant roles in inflammation
(Marcinkiewicz and Kontny, 2014). The gout-enriched alanine
regulates the expression of inflammation factors, such as IL-6, IL-
8, and TNF-α (Raspé et al., 2013). Moreover, the gout-depleted
valine and citrulline may reduce the adaptation and barrier of the
intestine in gout patients (Takada et al., 2006; Batista et al., 2012).

CONCLUSION

The gut microbiome of gout is altered in bacterial taxa with the
enrichment of several opportunistic pathogens. Most altered gut

bacteria in gout has been reported being exhibited up-regulation
in other autoimmune diseases. Simultaneously, the altered
metabolites of gout may involve disorders of inflammation,
purine metabolism, and UA excretion. The signatures of gout in
fecal microbiome and metabolome may indicate potential factors
of gout development.
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