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Despite considerable improvements in the treatment of myocardial infarction, it is still a
highly prevalent disease worldwide. Novel therapeutic strategies to limit infarct size are
required to protect myocardial function and thus, avoid heart failure progression.
Cardioprotection is a research topic with significant achievements in the context of
basic science. However, translation of the beneficial effects of protective approaches
from bench to bedside has proven difficult. Therefore, there is still an unmet need to study
new avenues leading to protecting the myocardium against infarction. In line with this, the
endothelium is an essential component of the cardiovascular system with multiple
therapeutic targets with cardioprotective potential. Endothelial cells are the most
abundant non-myocyte cell type in the heart and are key players in cardiovascular
physiology and pathophysiology. These cells can regulate vascular tone, angiogenesis,
hemostasis, and inflammation. Accordingly, endothelial dysfunction plays a fundamental
role in cardiovascular diseases, which may ultimately lead to myocardial infarction. The
endothelium is of paramount importance to protect the myocardium from ischemia/
reperfusion injury via conditioning strategies or cardioprotective drugs. This review will
provide updated information on the most promising therapeutic agents and protective
approaches targeting endothelial cells in the context of myocardial infarction.
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INTRODUCTION

Myocardial infarction (MI) is the leading cause of death worldwide (Jayaraj et al., 2018). The primary
clinical treatment consists of the recovery of blood flow to the heart and a phenomenon called reperfusion.
However, reperfusion itself can generate more damage, leading to cardiomyocyte death. This damage
varies between patients but usually leads to some degree of heart failure (Kemp and Conte, 2012). As a
result of significant improvements over the last decades, the current treatment ofMI has certainly reduced
mortality. Nevertheless, to attenuate the severity of post-MI heart failure, adequate protection of the
myocardium is still warranted to reduce infarct size and improve ventricular function recovery after
ischemia/reperfusion (I/R) injury. Several strategies have been studied to activate mechanisms within
cardiac cells to minimize I/R injury. This is the core of the concept called cardioprotection, that can be
understood as “all measures and interventions to prevent, attenuate and repair myocardial injury”
(Heusch, 2020), of which different approaches have been discovered (Garrido et al., 2017; Grilo et al.,
2017; Lefer and Marbán, 2017; Caricati-Neto et al., 2019). Among these, the protection of the
myocardium via endothelial cells (ECs) is an attractive line of action.
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The endothelium is a monolayer of cells that covers the
interior of every major and minor vessel and is the first line of
contact between the lumen and other tissues. It is involved in the
control of vascular permeability, transport logistics, regulation of
the vascular tone, mediators of the immune response,
angiogenesis, hemostasis control, and endocrine and paracrine
communication (Bracamonte-baran and Daniela, 2017). A
healthy endothelium is important for myocardial contraction,
as it improves contractility by increasing the sensitivity of
myofilaments to calcium (Shen et al., 2013). Moreover, ECs
are a crucial target for cardioprotection, given their paramount
importance in preserving the microvasculature after I/R injury
(Bell and Yellon, 2012). Also, the endothelium has been shown to
exert a critical role in conditioning phenomena, given its capacity
to release protective factors and express receptors for pro-survival
molecules (Hernández-Reséndiza et al., 2018). Since
cardioprotective therapies usually focus on the cardiomyocyte,
other cell types are often left in the dark. It is essential to
understand the heart as a community of different cell types.
The sole focus of new therapies in one might explain the
differences in the results of clinical and preclinical studies
(Bell and Yellon, 2012). In this review, we provide an update
on new strategies that aim for the endothelium as a
cardioprotective target.

Cardioprotection: The Long Hard Road to
Translation
Before discussing novel approaches targeting ECs to limit
reperfusion injury, it is important to address the current state
of the cardioprotection field. The study of cardioprotective
strategies in preclinical research has been very successful.
Indeed, protection of the myocardium against I/R injury may
be achieved by a wide variety of drugs and peptides, as well as
conditioning maneuvers (Heusch, 2020). However, the
translation of these findings into a clinical setting has been
challenging and highly disappointing. For example, the
CONDI2/ERIC-PPCI randomized trial showed that remote
ischemic conditioning (RIC) was unable to reduce the infarct
size in ST-elevation myocardial infarction (STEMI) patients who
underwent primary percutaneous coronary intervention (PPCI)
(Hausenloy et al., 2019b). The neutral results reported in this
study, which evaluated more than 5,000 patients, have shaken the
hopes of translating cardioprotection from animal models to
clinical conditions. In this regard, Heusch (Heusch and Gersh,
2020) has provided an interesting analysis addressing this trial,
indicating that besides the presence of comorbidities and
comedications, there are other important variables to consider
in order to understand the results of this study. The mortality of
MI has been significantly reduced throughout the years as a
consequence of effective reperfusion therapy, as well as the use of
cardioprotective pharmacotherapy that can reduce myocardial
remodeling after infarction (Heusch and Gersh, 2020). Moreover,
most of the patients in this trial had no clinical signs of heart
failure at randomization (more than 95% were classified as Killip
class 1), cardiac mortality after 1 year was 2.7% and
hospitalization for heart failure in 1 year was 7.1%. This low

incidence of events may explain why additional protection from
RIC was challenging to observe (Heusch and Gersh, 2020).
However, the RIC-STEMI trial showed in 2018 that RIPC
significantly reduced cardiac mortality and hospitalization for
heart failure after follow-up, despite classifying more than 80% of
patients in Killip class 1 at admission, but this trial had far fewer
patients (less than 600) (Gaspar et al., 2018). Recently, the FIRST
study has reported that RIPC did not reduce major adverse
cardiovascular events as compared with standard care after
90 days follow-up (Cheskes et al., 2020). While this study had
a follow-up of only 3 months, it evaluated 1,667 patients, which is
a larger amount than RIC-STEMI (Cheskes et al., 2020). In light
of these inconsistencies, there are several hypotheses attempting
to explain the disconnection between bench and bedside.

Animal Models Versus the Clinical Context
Preclinical studies provide a somewhat reductionist approach to MI,
given the use of young and healthy animals. Still, these studies can
reveal keymechanistic findings into how cardioprotection elicited by
various compounds or strategies works. Animal models that can
address comorbidities may have more translational value but less
mechanistic assessment (Rossello and Yellon, 2016). Furthermore,
animal models and methodologies to assess cardioprotective
therapies have not been thoroughly standardized, leading to
variable results and low translational value. In order to address
this issue, Bøtker et al. elaborated thorough and extensive practical
guidelines to achieve rigorours and reproducible results in
cardioprotection studies (Bøtker et al., 2018). These guidelines
suggest careful study design, randomization, blinding and
selection of the right statistical anaylsis. Moreover, it also
addressed infarct size assessment in preclinical and clinical
settings, clear establishment of exclusion criteria for Langendorff
perfused hearts, standardized protocols for isolation of adult rat and
mouse ventricular cardiomyocytes, among others (Bøtker et al.,
2018).

Regarding problems with translation, Heusch has previously
highlighted the importance of addressing issues such as: 1) lack of
clarity of how long is the window for protection by reperfusion is
extended by ischemic preconditioning, or what is the maximum
time of ischemia so that postconditioning can still confer
cardioprotection, 2) evaluation of other end points beyond
infarct size, such as assessment of myocardial remodeling and
mortality, 3) problems in the design and conduction of clinical
trials, 4) robustness and reproducibility of data, 4) inadequate
dosing and timing of phase II trials and 5) selection of
cardioprotective strategies with comprehensive preclinical data
to perform clinical trials (Heusch, 2017).

Another problem that needs to be accounted for is that
preclinical models only test the effects of protective treatments
against MI in the short term, which impairs our ability to predict
long-term effects (Heusch, 2018). On the other hand, small trials
may provide a promising proof-of-concept with little mechanistic
evidence. In contrast, large randomized clinical trials have great
translational value but relatively little mechanistic evaluation
(Rossello and Yellon, 2016). Clinical trials also have
limitations. For instance, infarct size is often evaluated by
released biomarkers (such as troponin T) instead of more
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accurate imaging methods (Heusch, 2020). Nonetheless, suitably
designed trials can provide a more precise long-term assessment
of clinical outcomes.

To narrow the gap between these two settings, it has been
proposed that preclinical cardioprotection studies should be
performed in large animals, such as pigs since they more
closely resemble human cardiovascular physiology and
pathophysiology. Moreover, these studies should be
extended for a 1 year follow-up to determine the long-term
effect of cardioprotective strategies (Heusch, 2018), but it’s
important to consider that this may be extremely expensive
and not routinely feasible for all laboratories. Interestingly, a
recent study showed that rats treated with heparin, a platelet
inhibitor and an opioid agonist -mimicking background
treatment of patients-reduced the infarct size, but RIC did
not confer further protection. Nevertheless, treatment with a

caspase inhibitor -which acts via an independent protective
pathway-elicited further infarct size reduction (He et al.,
2020). This study provides an important proof-of-concept
of new models to improve the translational value of
preclinical studies.

Comorbidities and Risk Factors
Obesity, sex, diabetes, aging, and smoking may impair
cardioprotective therapies’ effectiveness (Kleinbongard et al.,
2019). MI patients may often suffer from more than one of
these diseases and risk factors. Thus, it stands to reason to
hypothesize this as a significant reason for the disconnection
between preclinical and clinical studies. Moreover, this obstacle
may be challenging to overcome, given that animal models often
address one comorbidity, instead of a more elaborate setting of
multiple diseases and risk factors.

FIGURE 1 | The current status of cardioprotection: Barriers and opportunities. The road to cardioprotection, while successful in preclinical settings, has been paved
with obstacles and pitfalls that impede adequate clinical protection against myocardial infarction. Thus, the state of cardioprotection research can be likened to a funnel,
whereby the transit of therapeutic strategies -such as remote ischemic conditioning and protective drugs-towards cardioprotection is slowed down by the use of
reductionist models that lack thorough standardization, the presence of comorbidities and comedications that can impair protective therapies and preclinical
models that tend to evaluate only short-term effects. The narrow part of this funnel may be enlarged by performing long-term studies in large animal models that more
closely resemble the infarcted human heart. The use of multi-target approaches, as well as the targeting of other cell types (not just cardiomyocytes) has also been
proposed as potentially effective strategies aimed at improving the translation of cardioprotection effectiveness in clinical contexts.
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Comedications
Comorbidities can impair cardioprotection, and by the same
token, the administration of drugs to treat these conditions
can also mask or abrogate cardioprotection generated by novel
compounds or conditioning phenomena (Kleinbongard et al.,
2019). Moreover, as Heusch has suggested, clinical trials often
assess cardiovascular mortality after one year, as well as heart
failure progression, which may be significantly influenced by the
use of drugs, such as beta-blockers, angiotensin II receptor
antagonists, and angiotensin-converting enzyme inhibitors,
which are drugs known to be protective (Heusch, 2020).
Moreover, anesthetics, such as propofol, can impair the
beneficial effect of RIC, and other drugs, such as P2Y12

inhibitors, may actually induce cardioprotection themselves,
which can mask any added protection conferred by RIPC
(Kleinbongard et al., 2019). The current problems interfering
with translation of cardioprotection to clinical settings and the
potential strategies to enable adequate clinical protection are
summarized in Figure 1. In addition to these considerations,
redundant cell death mechanisms during I/R injury may warrant
the use of a multi-target approach instead of only addressing one
at a time (Davidson et al., 2019). This may involve not only
different therapeutic targets within the cardiomyocyte but also
addressing the complex interplay between cardiomyocytes and
other cardiac cells. While fibroblasts are key cells in many
cardioprotective strategies (Bell and Yellon, 2012), this review
will focus on the targeting of the endothelium to protect the
myocardium from reperfusion-induced cell death.

The Endothelium: A Key Player in
Cardioprotection
ECs are a critical component of multiple therapeutic approaches
to confer protection against I/R injury. This central role is partly
related to their ability to maintain vascular homeostasis. The
endothelium regulates vascular tone by different mechanisms, but
its mechanisms can be simplified by an equilibrium between
vasodilative and vasoconstrictive stimuli. The endothelium can
mediate both kinds of stimuli and produce contraction or
relaxation in vascular smooth muscle cells (VSMC), therefore
controlling vascular tone. On the one hand, the endothelium is
capable of secreting vasodilator molecules, such as nitric oxide
(NO), carbon monoxide (CO), prostacyclin (PGI2), bradykinin,
and adenosine.

ECs can induce vasoconstriction via the release of endothelin-
1, angiotensin II, thromboxane A2, and reactive oxygen species
(ROS) (Krüger-Genge et al., 2019). An imbalance between
vasoconstriction and vasodilatation is related to endothelial
dysfunction. In a dysfunctional state, there is a reduction in
the bioavailability of NO, a lesser response to vasodilators in the
vascular smooth muscle, more sensitivity to vasoconstrictors
substances and a pro-inflammatory state (Steyers and Miller,
2014; Konukoglu and Uzun, 2016; Engin, 2017). A dysfunctional
state of the endothelium may be triggered by an inflammatory
stimulus. This stimulus can be both an innate immune response
and an accumulation of ROS. The innate immune response
triggers the production of TNF-alpha, a master pro-

inflammatory cytokine that can activate the nuclear factor
kappa-light-chain-enhancer of activated B cells (NFkB)
pathway in ECs. This activation leads to the expression of
adhesion molecules such as ICAM-1 or VCAM-1 (Madge and
Pober, 2001). Moreover, it has been reported that TNF-alpha can
potentiate the vasoconstrictive effect of serotonin in the coronary
artery after stenting (Kleinbongard et al., 2011). Also, activation
of the TNF-alpha receptor 1 (TNFR1) can inhibit the endothelial
nitric oxide synthase (eNOS) (Pober, 2002). Importantly, NO also
promotes an anti-thrombotic state, inhibiting platelet aggregation
(Gries et al., 1998; Sylman et al., 2013), and thus, reduced NO
bioavailability is associated with a pro-thrombotic state. The
combined effect of these pro-inflammatory and thrombogenic
states and the exacerbated ROS production ultimately leads to
endothelial dysfunction, which is a key feature of atherosclerosis
and the consequent MI.

Considering that blood-borne factors need to diffuse through
the endothelium to reach the myocardium, ECs are a critical
variable to consider in multiple protective strategies, such as those
that aim at conditioning cardiac tissue (Bell and Yellon, 2012). In
this context, to generate remote ischemic preconditioning-
induced protection, a pro-survival signal needs to be produced
and transported through the nervous and circulatory systems to
the heart. Consequently, signaling pathways are activated in
cardiomyocytes, conferring protection against I/R injury
(Hernández-Reséndiza et al., 2018). Endothelial-derived NO is
a powerful gaseous second messenger that can limit I/R damage.
NO decreases myocardial oxygen consumption, which is a
common pharmacologic effect of organic nitrates used to treat
angina to prevent MI (Münzel et al., 2013). Besides, NO can also
attenuate reperfusion-induced cardiomyocyte death by activating
cyclic GMP-dependent kinase or by directly nitrosylating
proteins (Cohen et al., 2010; Inserte and Garcia-Dorado, 2015).

Regarding cardiac ischemic conditioning, it has been recently
observed in a prospective, randomized clinical trial that the
endothelium may contribute to the protective effects of RIC
(Corcoran et al., 2018). This study was carried out in 60
patients with stable coronary artery disease, and its findings
show that RIC reduced vasoconstriction induced by increasing
intracoronary acetylcholine doses as compared with sham group.
There were no differences in endothelial function parameters
between groups, suggesting that questions about the mechanisms
mediating this effect remain unanswered (Corcoran et al., 2018).
Nonetheless, previous studies have addressed potential pathways
by which RIPC may induce vasodilation. For instance, the gap
junction protein connexin 43 (Cx43) is a highly relevant connexin
in cardiomyocytes, and studies suggest that ECs express this
protein and contributes to endothelial-derived hyperpolarizing
factor-induced vasodilation (Karagiannis et al., 2004). RIPC
restores Cx43 expression and phosphorylation (Brandenburger
et al., 2014), but whether Cx43 is essential for the reduction of
infarct size elicited by RIPC remains to be elucidated.

Regarding the mechanisms mediating RIPC-induced
cardioprotection, there is currently an understanding that
humoral and neuronal pathways are involved in this complex
response (Heusch, 2020). Considering multiple evidence, NO has
been argued to be essential for early and late phase RIPC
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(Aggarwal et al., 2016), highlighting a potentially relevant role for
the endothelium. In line with this, it has been shown that RIPC in
mice promotes the eNOS-dependent production of NO, which is
then oxidized to nitrites. Then, circulating nitrites diffuse into the
myocardium, are subsequently reduced to NO and limit the
infarct size after in vivo I/R (Rassaf et al., 2014). Also, it has
been shown that the reduction of infarct size conferred by RIC
and glyceryl trinitrate in isolated rat hearts subjected to I/R injury
is diminished upon co-administration with NO or ROS
scavengers (Hauerslev et al., 2018). Furthermore, the
individual cardioprotective effect of these therapies is lost
when they are co-administered. This observation was further
confirmed by measuring endothelial function in humans,
obtaining the same results, thereby suggesting an interaction
between these two therapeutic strategies that may involve the
participation of nitric oxide (Hauerslev et al., 2018).

Overall, evidence suggests conditioning maneuvers may not
require the endothelium to directly protect cardiomyocytes (X. Li
et al., 2004; Skyschally et al., 2018) In contrast, the endothelium
plays a critical role in the protection of the coronary circulation
(Hausenloy et al., 2019a; Heusch, 2016, 2019) and as discussed
above, ECs interact with cardiomyocytes to provide protective
signals, thereby indirectly contributing to the effectiveness of
ischemic conditioning strategies. For a more comprehensive
discussion addressing the participation of ECs in ischemic
conditioning phenomena, we encourage the readers to consult
these articles: (Bell and Yellon, 2012), (Hernández-Reséndiza

et al., 2018), (Aggarwal et al., 2016). A general summary of
the classical role of the endothelium in cardioprotection is
presented in Figure 2.

NEW INSIGHTS OF
ENDOTHELIAL-MEDIATED PROTECTION
AGAINST ISCHEMIA-REPERFUSION
INJURY

Endothelial Cell Subpopulations and Their
Role in Cardioprotection
The endothelium is characterized by a prominent
heterogenicity, showing considerable variations in structure,
function, and mechanisms of ECs located in arteries, veins, and
capillaries, as well as their presence in organs such as the brain,
heart, and kidney (Aird, 2007, 2012). Furthermore, single-cell
analysis has gained relevance in the last few years since it has
proven to be a powerful tool to identify new cell populations
and subpopulations. This technique enables the
transcriptomic analysis of individual cells (Chaudhry et al.,
2019). Recently, different sub-populations of ECs in various
tissues have been described. Transcriptome heterogenicity of
ECs from other non-cardiac tissues has been previously
reported and reviewed (Kalucka et al., 2020). In regards to
endothelial progenitor cells (EPC), sub-populations have also

FIGURE 2 | Role of the endothelium in cardioprotection. Ischemia/reperfusion injury is associated with increased reactive oxygen species production and Ca2+

overload, which ultimately leads to cell death (blue diagram). The endothelium has been described to both precipitate and limit ischemia/reperfusion injury, depending on
the physiological state of endothelial cells and/or external stimuli. On the one hand, a healthy endothelium regulates vascular homeostasis, and the production of nitric
oxide has been shown to be a key component of remote ischemic preconditioning, as well as to directly reduce ischemia/reperfusion injury by nitrosylating proteins
or activating cGMP dependent kinase (green diagram). On the other hand, a dysfunctional endothelium is associated with impaired nitric oxide production, increased
vasoconstriction, and reactive oxygen species production, as well as the development of a pro-inflammatory and thrombogenic state, thus favoring the onset of
ischemia/reperfusion injury (red diagram). ROS: reactive oxygen species, NO: nitric oxide, RIPC: remote ischemia preconditioning.
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been identified, and their presence appears to vary in the
context of coronary artery disease (Shaik et al., 2018),
which may shed light on the current problems associated
with the translational value of EPC therapy to treat MI.

A novel study found three different sub-populations of ECs
in the aorta (Kalluri et al., 2019). These ECs had different
localization, functionality, and expression of molecular
markers. One group of ECs expressed genes associated with
extracellular matrix production and cellular adhesion. The
second group expressed genes related to lipoprotein
management and angiogenesis, and the third group
expressed marker associated with lymphatic endothelium
(Kalluri et al., 2019). This suggests the provocative idea of
targeting specific subpopulations of ECs to treat different
diseases. In line with this, the endothelium is required for
the revascularization of damaged tissue by I/R (Miquerol et al.,
2015). Still, more recently, it has been observed that different
types of ECs participate in angiogenesis, such as migratory tip
cells and proliferative stalk cells (Dumas et al., 2020). From a
preventive perspective, quiescent endothelial cells may be a
more appropriate target, due to the fact that this cells regulates
tone and vascular function and dysfunction of this cells can
lead to several cardiovascular diseases such as atherosclerosis,
stroke, MI and others (Kalucka et al., 2018). Interestingly,
these three types of ECs have different metabolic signatures,
which means that these cells can change their metabolism
gene expression depending on the current physiological need
(Dumas et al., 2020; Rohlenova et al., 2020). Therefore, the
interventions that target the metabolism of different types of
ECs may provide therapeutic advantages in pathological
contexts, such as reducing myocardial damage after
infarction.

Single-cell analysis in the cardiovascular system has not
been limited only to physiological settings. The study by Li
et al. performed a transcriptomic analysis of cardiac ECs from
mice subjected to in vivo I/R injury. Their findings determined
that resident ECs elicited neovascularization after infarction,
with no apparent participation from endothelial-to-
mesenchymal(Z. Li et al., 2019b). This study also found ten
different ECs sub-populations in the mice heart, with different
gene expressions between them. Additionally, the authors also
report that the expression of plasmalemma vesicle-associated
protein (PLVAP) was higher in ECs located in the infarct
border zone in the hearts of both mice and humans (Z. Li et al.,
2019b). While this study showed that Plvap is crucial for
in vitro proliferation of ECs, in vivo studies are needed to
confirm this observation and highlight this protein as a
promising therapeutic target to boost neovascularization
after MI.

Despite the encouraging results from single-cell analyses,
which may open the gates to a new research field targeting
specific sub-populations of ECs to protect the heart from I/R
injury, these discoveries are still in infant stages. The number
and type of sub-population of ECs may vary between studies,
and therefore, multiple factors need to be considered, such as
species, sex, age, comorbidities, among others. Thus,
additional research is warranted to confirm the true

potential of endothelial subpopulation-targeted therapies to
exert cardioprotection.

Cellular Therapy for Cardioprotection:
Endothelial Progenitor Cells
Endothelial Progenitor Cells (EPC) contribute to vascular
homeostasis and neovascularization. They are the primary
endogenous vascular repair system, and their dysfunction and
low levels are associated with the progression of CVD (Haider
et al., 2017). Circulating EPC level rise in post-MI patients
(Shintani et al., 2001), and this is associated with their vascular
reparative role and, therefore, its cardioprotective role (Berezin,
2019). Stem/progenitor cell-based therapy has been extensively
studied for angio-myogenic repair of the ischemic heart. Given
their inherent ability to differentiate to mature ECs and release pro-
angiogenic factors, EPC-based therapy is considered one of the most
appropriate for vasculogenesis in the ischemic myocardium (Haider
et al., 2017). Many cardioprotective treatments involving EPC have
been developed. Themain andmost studied ones are transplantation
or injection of autologous EPC, pharmacologic mobilization and
potentiation of EPC, and EPC sequestration in stents (Bianconi et al.,
2018). The limitations and advantages of these therapies are
thoroughly discussed by Bianconi et al., 2018.

From a translational perspective, clinical trials of EPC
injection have shown neutral results, having no beneficial
effects in ventricular function or other clinical outcomes
(Gyöngyösi et al., 2016). The potential problems accounting
for the failure in the translation of cardioprotective effects
have been previously discussed. Autologous EPC expansion is
complex and can lead to the formation of a heterogeneous cell
population that may have reduced angiogenic potential.
Pharmacological EPC mobilization would solve these problems
and potentially help treat inaccessible sites. Still, its therapeutic
role is difficult to study as EPC could not be the only cell type
producing the clinical effect observed in several clinical trials,
such as the ones reviewed by Bianconi et al. (2018). In the case of
EPC sequestration, this therapy is based on placing a stent on the
region of cardiac injury, the stent contains immobilized
antibodies that will capture circulating EPCs to promote their
action there. This is an invasive therapy and is still in need of
more studies. A more profound comprehension of EPC biology is
required in order to improve stent design and consequently
enhance their efficiency (Bianconi et al., 2018).

Recently, studies have aimed to recover the loss of EPC
function observed in pathological conditions, such as coronary
artery disease (Morrone et al., 2018) or diabetes (Fadini et al.,
2006), where numbers of circulating EPC are lower than in
healthy states. Consequently, their reparative capacity after
infarction is reduced. Treatment of EPC with different
molecules such as thymosin beta-4 (Poh et al., 2020) and the
overexpression of Sonic hedgehog (Q. Xiao et al., 2019) recover
the reparative properties of EPC after MI in the context of
diabetes by inducing their mobilization (restoring their
circulating levels) or promoting angiogenesis. Shexiang
Baoxing pills -a traditional Chinese medicine for ischemic
heart disease- causes this same effect of EPC mobilization and

Frontiers in Pharmacology | www.frontiersin.org February 2021 | Volume 12 | Article 6361346

Herrera-Zelada et al. Endothelium and Cardioprotection

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


promotion of angiogenesis when there are no other co-
morbidities, but its capacity to mobilize EPC post-MI in a
diabetic context has not been studied yet (Huang et al., 2017).
One of the most recent attempts to boost the cardioprotective
function of EPC is the use of Danshensu, a soluble compound
from a Chinese traditional medicinal herb called Dashen (Yin
et al., 2017). Danshensu promotes neovascularization in post-MI
rats by improving EPC survival under hypoxic conditions and
accelerating their pro-angiogenic functions (Yin et al., 2017). The
reduction in cell death may be partly mediated by Akt, whereas
the improved angiogenic effect depends on the stromal-derived
factor-1α (SDF-1α)/CXCR4 pathway (Yin et al., 2017).
Additionally, extracts from the antlers of deers (Velvet antler)
trigger EPCmobilization, thereby eliciting angiogenesis, as well as
endothelial repair after MI in rats (Y. Li et al., 2019a).
Nonetheless, while this study provided evidence hinting at a
potential involvement of the Notch pathway, more research is
needed to determine which are the bioactive cardioprotective
molecules from Velvet antlers that generate this protective effect
and the precise mechanism mediating them.

In order to simplify the evidence presented, we have chosen to
use the concept of EPC, but it’s important to consider that at the
moment, the definition of EPC is general, ambiguous and has
been recently challenged (Medina et al., 2017). This research field
evolves rapidly and current paradigms are tested continuously.
An example of this is recent study that showed that unlike
previously thought, intraembryonic endothelial cells are not
originated from erythro-myeloid progenitors (Feng et al.,
2020). Therefore, it’s necessary to have a better understanding
and consensus of what specifically is an EPC and what subtypes of
these are the ones being studied, especially in the contex of
cellular therapy, as has been previously suggested (Medina
et al., 2017). Accordingly, some studies aim to the utilization
of specific subpopulations of EPC to generate cardioprotection. A
recent study showed that treatment with human endothelial
colony-forming cells (huECFC) limited the infarct size,
reduced cardiac remodeling, and increase left ventricle
functional recovery after MI in mice with severe combined
immunodeficiency (Deutsch et al., 2020). Interestingly,
whether huECFC proceeded from diabetic or non-diabetic
patients did not impair their protective effect, suggesting a
therapeutic application for diabetic patients. Still, this
possibility needs to be confirmed experimentally.

To boost EPC stability and pharmacological delivery, new
avenues have been explored. The magnetization of EPC with
nanoparticle enables the direction of these cells using an external
magnetic field to circumscribe their effects, reflected in a decrease
in infarct size and improvement of left ventricular function after
MI in rats (B. fang Zhang et al., 2019). Other alternatives to
increase EPC retention may involve the use of hydrogels, given
that administration of EPC carried by shear-thinning hyaluronic
acid hydrogels was evidenced to increase retention of these cells
in the myocardium as to reduce myocardial remodeling and
improve functional recovery after infarction in rats (Gaffey et al.,
2019). Taken together, the current evidence shows that
endothelial cellular therapy has provided promising results in

the preclinical arena. However, its translation from bench to
bedside still needs fine-tuning before it can be a reality.

Preconditioning by Exercise: Role of the
Endothelium
Exercise is one of the primary means of protection against I/R
injury and heart diseases and is related with reduction of several
associated risk factors (Shephard and Balady, 1999). Throughout
weeks and years, exercise can make structural and functional
changes in the physiology of the heart and vasculature that can
ultimately improve tolerance to cardiovascular events (Thijssen
et al., 2018). This beneficial effect may occur due to the fact that
exercise elicits similar cardioprotective effects to those observed
in ischemic preconditioning (Penna et al., 2020). Thus, exercise is
a multifactorial source of protection that activates multiple
cellular pathways that can reduce cardiomyocyte death
produced by I/R injury (Chowdhury et al., 2019; Penna et al.,
2020). The vasculature is one of the main structures that can
benefit from exercise, and the lack of exercise is correlated to a less
functional endothelium that can lead to heart disease due to a rise
in ROS (Durand and Gutterman, 2014). Exercise can exert a
beneficial effect in endothelial function by improving skin
microcirculation in patients with ischemic heart disease,
highlighting its cardioprotective role as a non-pharmacological
approach (Szyguła et al., 2020). Exercise improves vascular
function in adolescent (Naylor et al., 2016) and adult (Qiu
et al., 2018) patients with type 2 diabetes and reduce blood
pressure in patients with essential hypertension by a
mechanism that involves DNA methylation (Ferrari et al.,
2019). Moreover, another study revealed that aged sedentary
rats developed diastolic dysfunction, impaired endothelial-
dependent vasodilation of coronary arterioles, and increased
aortic stiffness compared to their young counterparts (Hotta
et al., 2017). Still, these parameters were significantly improved
after ten weeks of exercise (Hotta et al., 2017). Furthermore, the
microvascular endothelial function has been shown to be
impaired in obese patients. This effect is mediated by
increased ROS production by NADPH oxidase in skeletal
muscle and eight weeks of aerobic exercise attenuated these
effects (La Favor et al., 2016). These findings suggest the
provocative idea that exercise may restore the effectiveness of
cardioprotective strategies in the context of aging and
comorbidities by an endothelial-dependent mechanism. Thus,
this possibility merits further research.

Interestingly, exercise has also been shown to be protective of
the endothelium against I/R injury (Thijssen et al., 2019). A
recent study was performed on 20 heart failure patients who
underwent 12 weeks of either continuous or high-intensity
interval training. Endothelial function was measured in the
brachial artery before and after exercise-induced ischemia for
5 min, followed by 15 min reperfusion. Both types of exercise
reduced endothelial I/R injury (Thijssen et al., 2019). Although
this study lacks mechanistic insights, it suggests that exercise
preconditioning may preserve endothelial function, potentially
making the coronary endothelium susceptible to effective
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therapeutic targeting and thus, generating protection against
I/R-induced myocardial damage.

One of the main benefits of exercise for ECs is the rise in NO
by inducing shear stress in the vasculature (Rainer et al., 2000).
The mechanisms involved in exercise-induced NO production by
the endothelium have been previously reviewed (Adams et al.,
2017). These mechanisms converge in multiple kinase cascades
that stimulates eNOS activity and increase generation of NO by
shear stress, due to increased blood flow as a product of exercise
(Adams et al., 2017). In addition, exercise can reduce the
myocardial infarct size after in vivo I/R injury by increasing
eNOS activity and coupling, which in turn is mediated by a β3-
adrenergic receptor/AMP-activated protein kinase signaling
pathway (Barr et al., 2017). However, another study showed
that exercise protects the myocardium from MI in obese and
diabetic mice, but while this effect was associated with reduced
inducible nitric oxide synthase (iNOS), it was independent of β3-
adrenergic receptor (Kleindienst et al., 2016), suggesting that
exercise-induced cardioprotection is a complex phenomenon and
much research needs to be performed to altogether remove the
veil covering pro-survival pathways in different physiological or
pathophysiological contexts.

In line with this, the study by Farah et al. was aimed to
elucidate whether eNOS-induced protection against I/R injury
elicited by exercise originated from cardiomyocytes or coronary
ECs, given that both cell types express this enzyme (Farah et al.,
2017). Their work showed that inactivation of coronary ECs
abrogated exercise-induced reduction of infarct size and left
ventricle functional recovery (Farah et al., 2017).

Interestingly, the role of eNOS in exercise-mediated
cardioprotection does not appear to be limited to ECs. In this
context, shear stress generated by exercise also affects other cell
types like red blood cells, which can also produce and carry NO
(Kleinbongard et al., 2006) (Erkens et al., 2017), since these cells
also have a functional eNOS (Cortese-Krott et al., 2012). Red
blood cells sense shear stress and lead the entry of calcium
through the Piezo-1 calcium channel, which activates eNOS in
red blood cells and leads to a rise in the NO levels (Suvorava and
Cortese-Krott, 2018).

NO is not the only product that can be produced by
exercise, the term “exerkine” has been used since 2016 to
address several peptides and nucleic acids that can be
released by many tissues during exercise and wield the
potential to treat metabolic (Safdar et al., 2016) or
cardiovascular diseases (CVD) (Yu et al., 2017). Exerkines
may be released by cardiomyocytes, fibroblasts, and ECs and
include micro RNAs (miRNAs), long non-coding RNAs
(lncRNAs), Brain-derived neurotrophic factor (BDNF),
neuregulin (NRG), among others (Guo et al., 2020). For
instance, Hou et al. reported that four weeks of swim
exercise-induced the release of exosomal miR-342-5p, which
attenuated myocardial I/R injury in rats (Hou et al., 2019).
While this study does not confirm the mechanism, it does show
that this exerkine may reduce I/R-induced apoptosis and
enhance the activation of pro-survival kinase Akt and that
exercise or laminar shear stress increases the synthesis of miR-
342-5p in ECs (Hou et al., 2019). Further investigations are

needed to fully identify, understand, and manipulate exerkines
to harness their full power to achieve cardioprotection.

Sex Differences in Endothelial-Mediated
Cardioprotection
Males and females may express different levels of specific
signaling mechanisms and thus should be thoroughly reported.
Unfortunately, while this vital variable has gained more visibility
in the scientific community in recent years, there is still under-
reporting of sex in cellular studies. A recent meta-analysis
assessed 228 studies made in cultured cells from several
models including human and different animal species,
published in 16 peer-reviewed cardiovascular journals, and sex
was reported in 38.6% of these articles (Vallabhajosyula et al.,
2020). Moreover, 54.5% of the studies used cells from only males,
whereas 32.9% used male and female animals (Vallabhajosyula
et al., 2020).

It has been observed since the 1980s that the incidence of CVD
is markedly different between males and females. Early studies
show that, on average, males are more affected by CVD than
females (Bassuk and Manson, 2010). These differences are
associated with sex hormones since this sex discrepancy is
abrogated when post-menopausal females are compared with
males of the same age (Regitz-Zagrosek and Kararigas, 2017).
This suggested two important caveats to consider in
cardioprotection studies focused on sex differences: age and
sex hormones. There are notable differences in the aged heart
and its cardioprotective response, which have been reviewed by
Boengler et al (Boengler et al., 2009). Females animals have a
known resistance to ischemic damage, even though preclinical
studies were initially focused on the use of only male individuals
to elude hormonal influence in the observed results (Hundscheid
et al., 2018). Estrogens have been considered a concrete source of
cardioprotection in post-menopausal females (Naftolin et al.,
2019). Menopausal hormone therapy is used to treat
symptoms elicited by the cessation of ovulation and the
associated hormonal changes. It is essential to consider that
the cardioprotective effects of the menopausal hormone
therapy depend on the timing of administration of such
treatment (Naftolin et al., 2019).

The vasculature is profoundly influenced by factors related to
sex. Receptors for sexual hormones are expressed in vascular
tissue, and it is usually assumed that estrogens and progesterone
are cardioprotective, whereas androgens are not (Stanhewicz
et al., 2018). Nonetheless, extensive research in this field has
revealed in the past decades a more complex landscape than
initially thought (Stanhewicz et al., 2018).

Estrogens can signal via three different receptors: Erα, ERβ,
and G protein-coupled estrogen receptor (GPER). The first two
are considered to act through a slow genomic response, whereas
GPER exerts a rapid, non-genomic response. Studies show that
the use of 17-β-estradiol induces vasodilation (Mügge et al., 1993;
Stanhewicz et al., 2018). In this context, estrogens trigger an
increase in the mRNA of eNOS and induce its activation
(Hishikawa et al., 1995; MacRitchie et al., 1997). Accordingly,
estradiol induces endothelial-dependent vasodilation and
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increases the sensitivity of the endothelium to other vasodilators,
such as acetylcholine and prostaglandins (Miller and Mulvagh,
2007; Usselman et al., 2016). Mechanistically, it has been
observed that estradiol reduces the expression and release of
ET-1 in ECs, explaining at least in part, the protective effects of
estrogens in the vasculature (Bilsel et al., 2000). Also, estrogens
may counter-regulate the harmful effects of the renin-angiotensin
system (RAS), thereby reducing blood pressure (Roesch et al.,
2010; Xue et al., 2018). Evidence in humans is not as strong as in
preclinical models, and there is conflicting evidence in the effects
of angiotensin II (Ang II) in males and females. Toering et al.
showed that male humans have more sensitivity to Ang II than
females (Toering et al., 2015). These results contradict Bowyer
et al., which showed no differences in response to Ang II infusions
(Ovize et al., 2001). This discrepancy can be attributed to the
different doses of Ang II used in both studies. In preclinical
models, it has been shown that angiotensin receptor type 2
(AT2R) is downregulated in male rats vs. female rats (Mishra
et al., 2016). This is related to studies that suggest that
testosterone amplifies the RAS increasing the Ang II levels (Y.
F. Chen et al., 1992; Ellison et al., 1989). Extensive reviews have
been written about the relationship between sex and RAS (Fischer
et al., 2002; Sullivan, 2008), and there is a lack of evidence that can
relate the role of the endothelium, sex differences, and the RAS in
humans.

Androgens, mainly testosterone, act via androgen receptors,
which are expressed in ECs (Torres-Estay et al., 2015). The
administration of testosterone has been reported to improve
endothelial-mediated vasodilation of rat thoracic aortas
(Montaño et al., 2008). Testosterone regulates the endothelial
function of the coronary circulation in hypertensive rats by a
bradykinin/NO-dependent pathway (Arapa-Diaz et al., 2020).
However, the effects of testosterone in the endothelium are still a
matter of debate. Hypogonadal men treated with androgens have
shown reduced NO bioavailability (Bernini et al., 2006).
Furthermore, treatment of transgender men with testosterone
was associated with endothelial dysfunction (Gulanski et al.,
2020), which is a significant risk factor for MI. Therefore,
further research is needed to establish the role of androgens in
endothelial function, and additional mechanistic insights may
help to develop therapies that can counter these potentially
deleterious effects and thus avoid the impairment of other
cardioprotective strategies.

Current knowledge about the cardioprotective potential of
progesterone is less abundant as compared to estrogens, but there
is evidence suggesting that progesterone may present relevant
effects in the vasculature. For instance, progesterone increases
vasodilation mediated by augmenting eNOS activity (Selles et al.,
2001). However, in contrast to progesterone, the use of synthetic
progesterone appears to be unable to induce NO production in
ECs (Simoncini et al., 2004). Therefore, our understanding of the
role of progesterone in endothelial-mediated cardioprotection is
still in the early stages and requires more research, especially in
I/R settings.

Recently, the group of Lieder et al. found that in Lewis rats, sex
is not determinant in the cardioprotection achieved by ischemic
preconditioning and remote ischemic preconditioning,

challenging the role of sex in conditioning therapies (Lieder
et al., 2019). It is important to note that other studies showed
a better resistance to I/R damage in female hearts and that this
resistance can be improved by preconditioning strategies
(Ferdinandy et al., 2014). Taken together, the mentioned
studies highlight the crucial role of sex differences in MI.
Thus, thorough reporting of animal sex in all preclinical
research is of utmost importance to accurately assess the real
cardioprotective effects of different therapies. Moreover, the
relationship between sex hormones and endothelial function is
straightforward. A thorough understanding of this complex
regulation may also enable or even boost other protective
approaches to exert their beneficial effects on the damaged
myocardium after infarction. To address this, it has been
suggested that no only sex needs to be accounted for, but also
comorbidities, as well as their treatments, thereby integrating
preclinical, translational and clinical research (Perrino et al.,
2020). A thorough analysis and recommendations to improve
translational research associated to sex-specific comorbidities in
cardioprotection has been reviewed by Perrino et al. (Perrino
et al., 2020). Nonetheless, despite the increasing interest in sex
differences in cardioprotection, there is still an important gap that
needs to be addressed in terms of the influence of sex in
endothelial-mediated cardioprotection and future research
should focus in this particular aspect to harness the full
therapeutic potential of ECs.

Effect of Circadian Rhythm in
Cardioprotection Mediated by the
Endothelium
Circadian rhythms are 24 h oscillations in the behavior of
organisms, in which their biological functions are coordinated
with cycles of day and night. In mammals, this circadian rhythm
is controlled by the circadian clock, which is divided into a master
and peripheral circadian clock. The master clock is in the
suprachiasmatic nucleus, whereas the peripheral clock is in
almost every tissue that can respond to a specific stimulus (Du
Pré et al., 2014; R.; Zhang et al., 2014). The light enters through
the retina where it’s received by photosensors, converting light
into information via the retinohypothalamic tract to the master
clock, which in turn communicates with the peripheral clock by
neurohumoral pathways (Du Pré et al., 2014; Crnko et al., 2019).
This allows the body to regulate molecular pathways via
transcriptional-translational loops that can reprogram cellular
functions by expressing or inhibiting several genes (Wiesner et al.,
2012). Circadian clocks can regulate the cardiovascular system,
modifying the function of cardiomyocytes, fibroblasts, and ECs,
thereby controlling blood pressure and heart rate, among other
functions (Crnko et al., 2019). Besides, any disturbance in the
24 h circadian rhythms by environmental factors, such as
pollution, ambient noise, tobacco, diet, physical activity, or
endogenous factors such as anxiety, stress, and depression can
lead to impaired vascular and cardiac function, inducing CVD
such as heart failure, MI and arrhythmias (Crnko et al., 2018,
2019). Interestingly, circadian rhythmsmay affect the tolerance to
myocardial infarction (Durgan et al., 2010). Moreover,
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cardioprotection may be achieved by treating intense light, and
the endothelium seems to be an essential component in this
therapy.

Period 2 (PER2) is a light-regulated circadian core protein (Oyama
et al., 2017) that regulates endothelial function (Viswambharan et al.,
2007). PER2 regulates miR-21 (Oyama et al., 2017), a microRNA that
can bind to several proteins, decreasing cardiomyocyte apoptosis
(J. Xiao et al., 2016) inflammation (Oyama et al., 2017), and
increasing phosphofructokinase activity, leading to a higher
glycolytic function that can limit the infarct size (Bartman et al., 2017).

A recent study elegantly showed that intense light generates PER2
amplitude enhancement, conferring protection against in vivo I/R
injury in mice (Oyama et al., 2019). Furthermore, the authors
showed that intense light-mediated cardioprotection is exerted by
an adenosine and hypoxia-inducible factor 1⍺ (HIF1A) dependent
mechanism. Also, tissue-specific studies with transgenic mice
revealed that endothelial PER2 is responsible for reducing infarct
size induced by intense light. This study also showed that intense
light-induced increase in PER2 levels promotes transcriptional
reprogramming of the endothelium and endothelial PER2 plays a
crucial role in metabolism and barrier function. While the authors
confirmed part of their findings by showing that intense light
increases PER2-dependent metabolism, the real impact of this
cardioprotective therapy in humans remains to be demonstrated.
However, this work wields high translational value, and its
implications are potentially groundbreaking (Oyama et al., 2019).

Overall, circadian rhythms can regulate endothelial function,
and therefore, therapies such as light therapy, sleep therapy, or
pharmacological chronotherapy targeting the regulation of clock
genes expression may be a powerful cardioprotective strategy
(Crnko et al., 2018) and thus, future randomized controlled
clinical trials should confirm these promising findings.

Mitochondrial Transplantation: A Role in
Endothelial Cells?
In recent years, the transplant of organelles as a treatment for
multiple diseases, including cancer (Elliott et al., 2012), Parkinson
(Chang et al., 2016), and MI (Masuzawa et al., 2013; Kaza et al.,
2017) has been gaining relevance. This interesting therapeutic
approach was confirmed in humans byMcCully et al., which have
developed a novel procedure to transplant autologous
mitochondria to human damaged myocardium. This protective
strategy has shown no auto-immune response and improved left
ventricular function in pediatric patients with cardiac I/R injury
(Emani et al., 2017). The protocol to isolate mitochondria is rapid,
simple, and can be performed in less than 30 min (Preble et al.,
2014). Mitochondria can then be directly injected in the damaged
area of the myocardium or through vascular delivery via coronary
arteries (McCully et al., 2017). Interestingly, mitochondria
injected by vascular delivery accumulates in cardiomyocytes
and blood vessels, but the exact mechanisms by which this
occurs and how does mitochondria uptake takes place remains
to be studied (Cowan et al., 2016; McCully et al., 2017). This
therapeutic strategy opens the gates to a large number of
possibilities and new questions. For instance, is it possible to
transplant other organelles to other tissues and organs? Can we

modify organelles in the laboratory to enhance their function and
then transplant it into a patient? From an endothelial perspective,
there are currently no studies showing mitochondrial
transplantation. Would this therapy restore endothelial
metabolism and, thereby, its function in I/R injury?

Nevertheless, mitochondrial transplantation is currently the
subject of active debate, given it’s still unclear how mitochondria
can survive to the initial overload of calcium in the extracellular
environment, how extracellular mitochondria can supply ATP for
myofilament contraction and how mitochondria enters the
cardiomyocyte (Bertero et al., 2018). In a rabbit and a pig
model, only a few mitochondria entered cardiomyocytes
(Cowan et al., 2016; Kaza et al., 2017), and thus, it is thought
that it may be unlikely that this few mitochondria make a
significative effect to contribute to the total ATP-production in
the heart. A recent study challenged the mitochondrial
transplantation showing that mitochondrial cannot survive the
ionic environment of blood or extracellular space (Bertero et al.,
2020). As Bertero et al. suggests, perhaps its is not the
mitochondria itself that provides the beneficial effect, but the
content of permeabilized mitochondria may be the one that does
(Bertero et al., 2020). Therefore, thorough functional and
mechanistic preclinical studies are required to explore the full
potential and safety of mitochondrial transplantation.

Endothelial Small Extracellular Vesicles as a
Potential Cardioprotective Therapy
Small extracellular vesicles (sEV) are released by most cell types
and have emerged as critical mediators of intercellular
communication and exert multiple therapeutic effects on
damaged hearts (Davidson and Yellon, 2018). Cardiac cells
can release sEV that may regulate different cell functions by
delivering signals, such as proteins or non-coding RNAs, to
other cells (Barile et al., 2017). In line with this, it has been
reported that endothelial cells produce functional sEV
(Riquelme et al., 2020).

The cardioprotective potential of sEV has gained increasing
attention as they may be an alternative to cellular therapy that
may exert the same or evenmore beneficial effects. In this context,
sEV isolated from rat plasma may protect from I/R injury in
different experimental models (Vicencio et al., 2015).
Interestingly, the concentration of these plasma sEV was
increased after RIC in both rats and humans (Vicencio et al.,
2015), which has been recently confirmed in another independent
study with patients (Frey et al., 2019). Frey et al., showed that RIC
not only increases sEV, but also changes their miRNA profile,
which included an increased expression of miR-21 -a
cardioprotective miRNA-thus suggesting that sEV may
contribute to the protective effects of RIC (Frey et al., 2019).

Regarding the endothelium as a source of protective sEV,
Davidson et al. showed that endothelial sEV might attenuate
adult rat cardiomyocyte damage after hypoxia/reoxygenation.
Moreover, this study also reported that high concentrations of
glucose seem to impair this effect, highlighting the potential role
of comorbidities as key factors that can abolish the protective
effects of endothelial sEV in I/R injury (Davidson et al., 2018).
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However, these observations need to be confirmed using robust
myocardial infarction models.

While the protective effects of endothelial sEV are starting to be
explored, the possibility that sEV derived from other cell types may
also generate a beneficial impact on the endothelium has also been
addressed. In line with this, sEV isolated from cells, such as EPC,
mesenchymal stem cells (MSC), cardiac progenitor cells (CPC), and
vascular progenitor cells (VPC), maybe cardioprotective by targeting
the endothelium. An interesting study showed that EPC-derived
extracellular vesicles loaded in a shear-thinning gel that triggers
angiogenesis, as well as a marked recovery of hemodynamic
parameters after in vivo I/R injury in rats. These vesicles were
shown to be uptaken by ECs, thereby generating an angiogenic
response, suggesting that using shear-thinning gel as a vehicle for
sEV may provide better delivery and localization of these nanosized
vesicles, therefore improving the efficacy and efficiency of their
protective effects (C. W. Chen et al., 2018). In addition, studies have
aimed to enhance the cardioprotective effects of sEV by increasing
the concentrations of specific miRNAs within these vesicles to target
other cells. Accordingly, sEV isolated from EPC were loaded with
miR-210, which is involved in modulating the endothelial response
to hypoxic conditions. Treatment with these extracellular vesicles
reduced cell death, and improved angiogenesis of ECs subjected to
hypoxia-reoxygenation, and these effects may be at least partly
mediated by improving mitochondrial function (Ma et al., 2018).
Additionally, sEV isolated from CPC promote angiogenesis in the
mouse infarcted heart when loaded withmiR-322 (Youn et al., 2019)
by a Nox2-dependent mechanism (Ma et al., 2018). Furthermore,
sEV isolated from MSC overexpressing SDF-1 reduced cell death
and increased production of ECs post-MI inmice (Gong et al., 2019).
Interestingly, sEV derived from human amniotic fluidmesenchymal
stromal cells reduced the infarct size in acute MI in mice but could
not mitigate cell death of adult rat cardiomyocytes after hypoxia/
reoxygenation or high concentrations of H2O2 (Takov et al., 2020).
Moreover, these vesicles did not trigger angiogenesis, but induced
marked migration of EC, suggesting a partial effect in endothelial
regeneration (Takov et al., 2020).

The use of endothelial sEV (or other sEV that act in the
endothelium) may be a powerful cardioprotective approach.
However, multiple methodological pitfalls need to be
accounted for, such as the need for more pure populations of
sEV, greater yields, increased stability, or directed targeting and
delivery to the heart or a specific cell type in this organ.

Pharmacological Targeting of the
Endothelium
Pharmacological cardioprotection has also been described to require
the endothelium to exert its beneficial effects in MI. Isoflurane can
protect against cardiac ischemia/reperfusion. Interestingly, Leucker
et al. showed that isoflurane reduced HL-1 cell death after hypoxia/
reoxygenation. Still, the co-culture of these cells with human EC
provided a further reduction of cell death by a NO-mediated
mechanism (Leucker et al., 2011). Moreover, dexmedetomidine,
an α2 adrenergic receptor agonist, is used as a sedative in the
perioperative context exerts protection after ischemia/reperfusion
in liver, brain, kidney, and heart. This drug can activate the

reperfusion injury salvage kinase (RISK) pathway in whole
isolated rat hearts (Ibacache et al., 2012). Interestingly,
dexmedetomidine protects the myocardium through an eNOS-
NO-PKG dependent pathway (Riquelme et al., 2016). These
findings also showed that this drug was unable to reduce cell
death of adult rat cardiomyocytes subjected to hypoxia-
reoxygenation. Still, stimulation of human umbilical vein
endothelial cells (HUVEC) with dexmedetomidine and
subsequent co-culture with cardiomyocytes protected them from
hypoxia/reoxygenation, highlighting a pivotal role for the
endothelium in pharmacological cardioprotection (Riquelme
et al., 2016). Additionally, the chemokine SDF-1α confers
cardioprotection (Davidson et al., 2013), but recently, a study
revealed more insights about its mechanisms. SDF-1α exerts its
effects through the CXCR4 receptor, and this study showed that this
chemokine was unable to reduce the infarct size in endothelial-
specific CXCR4-knock out mice (Bromage et al., 2019). Moreover,
the authors propose that SDF-1α may protect from I/R injury by
activating the risk pathway in the endothelium, but this was only
tested in HUVEC (Bromage et al., 2019). Therefore, cause-effect
experiments using these transgenic mice are required to confirm this
possibility.

Overall, while drug-mediated protection against MI has often
been disappointing (Heusch, 2020), pharmacological targeting of
the endothelium may be a new and potent coadjutant treatment
to boost other cardioprotective therapies, which is in accordance
to the previously suggested multi-target approach to protect the
heart from I/R injury (Davidson et al., 2019). Thus, new agents
(or old ones with new purposes) should be at the center of
cardioprotection research.

CONCLUSIONS AND FUTURE
PERSPECTIVES

Over the last decades, significant advances have been made in the
field of cardioprotection. However, the fact that many promising
therapies have not been able to cross from bench to bedside has
prompted the scientific community towards new horizons that
may usher a new era of effective and potent cardioprotection.
While many cardioprotective strategies have been focused on
cardiomyocytes, the paradigm has shifted in the last few years.
Other cardiac cells, such as ECs have been in the spotlight as
potential therapeutic targets.

The endothelium has gained significant importance in the
cardioprotection field in the last few years, given its crucial role
in cardiovascular physiology. Endothelial dysfunction may
impact cardiomyocyte and fibroblast function. Thus,
impaired endothelial integrity is linked to the development
of multiple CVD, and this may partly account for the loss of
cardioprotection in the presence of comorbidities. A better and
more thorough understanding of the metabolism, intercellular
communication, impact of sex differences, and heterogenicity
of the EC populations has been achieved. Therefore, a broad
range of studies has developed multiple approaches to regulate
and improve endothelial function in the context of MI.
Moreover, new insights in the transcriptomic and circadian
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regulation of ECs have shed light on new therapeutic targets, or
how to adapt old ones, opening a new branch in the
cardioprotection field. Thus, novel therapies, such as
treatment with sEV, exercise, drugs or EPC have arisen as
viable and potentially powerful cardioprotective approaches
(Figure 3). The challenge today is to push this scientific
evidence forward towards the clinical context. To achieve
this, methodological issues and standardization of protocols
still need to be addressed. For example, the safety of
mitochondrial transplantation needs to be confirmed, as
well as its relevance in endothelial I/R injury. The
purification methods of endothelial-derived sEV need to be
perfected in order to accurately attribute them the potential
protective effects observed so far. A precise protocol to
establish effective endothelial-dependent cardioprotection
using circadian regulation in patiens is also an important
future task. In addition, reproducibility in long-term large
animal models must be demonstrated before many of the
protective strategies addressed in this review can be
translated from bench to bedside. Despite these current
barriers, the endothelium is a heavyweight player in
cardioprotection, and its targeting may provide potent and
effective protection of the myocardium from I/R injury.
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FIGURE 3 | New strategies targeting the endothelium to achieve cardioprotection. Sex differences must be considered when it comes to research associated
with endothelium targeting to protect against myocardial infarction. Evidence suggests the need to start acknowledging the endothelium as a differential component of
both sexes by observing that sex hormones can influence endothelial function. While its role in cardioprotection is still underexplored, sex differences may be an
important variable to take into account in order to harness the protective effects of endothelial cells. Mitochondria transplant to endothelial cell injury may be a
promising therapy to improve the endothelial function in the context of ischemia/reperfusion context. While compelling evidence has been produced in preclinical models,
the endothelium’s role in this protective approach still needs to be established. Exercise is an effective therapy to improve the endothelial function, protecting against
ischemia/reperfusion injury by nitric oxide-dependent mechanisms. More recently, the exerkines, molecules that are released during exercise, have shown beneficial
effects against reperfusion-induced cardiac damage.Circadian rhythms can regulate endothelial function, and therefore, therapies that target the molecular machinery
of the circadian rhythms can be a potent cardioprotective strategy. Recent studies show protection against cardiac ischemia/reperfusion injury by light-induced
endothelial PER2 protein, highlighting the endothelium’s role in circadian cardioprotection. Endothelial small extracellular vesicles (sEV) can limit cardiomyocytes
cell death induced by ischemia/reperfusion. However, these findings need to be confirmed using in vivo models of myocardial infarction. Moreover, there are many
methodological difficulties in the study of sEV that need to be accounted for, such as improvement in the purity of isolation methods, as well as to identify specific
functions of different extracellular vesicles. Endothelial cell subtypes have been recently identified in the aorta by single-cell analysis. This finding suggests the
interesting possibility that targeting specific subpopulations of endothelial cells may improve revascularization after myocardial ischemia/reperfusion injury, given there
are subpopulations of endothelial cells more prone to angiogenesis than others. Thus, this hypothesis merits further research to explore a potential role for specific
targeting of different endothelial cells. New or old drugs have been shown to protect the myocardium from ischemia/reperfusion injury by targeting the endothelium.
While pharmacological cardioprotection has been less effective than other therapeutic approaches, it may be a powerful addition to other therapeutic agents targeting
cardiomyocytes and/or fibroblasts.
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