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Abstract

Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they
are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients
constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the
properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino
acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity,
depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation
was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but
falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with
hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is
suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional
information. In addition, singular vectors may be useful for analyzing and annotating the characteristics of conserved sites in
protein families.
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Introduction

Protein sequence alignment using a position-specific scoring

matrix (PSSM) or sequence profile [1,2] is now a standard tool for

sequence analysis[3,4]. Using a PSSM, it is often possible to detect

very distantly related proteins which cannot be detected by the

standard pairwise alignment based on a position-independent

amino acid substitution matrix (AASM).

An AASM is a 20620 real (usually symmetric) matrix each

element of which reflects the tendency of substitution between

amino acid residues. There have been many kinds of AASMs

developed to date among which the most popular ones include the

PAM [5] and the BLOSUM series [6]. General properties of

AASMs are now well clarified[7,8,9,10]. Tomii and Kanehisa

found that the PAM matrices can be well approximated by the

volume and hydrophobicity of amino acid residues[8]. A similar

result was obtained by Pokarowski et al.[10], but they also pointed

out the importance of the coil preferences of amino acids residues.

Using eigenvalue decomposition, Kinjo and Nishikawa[9] showed

that the most dominant component of AASMs is the relative

mutability[5] for closely related homologs, but it changes to

hydrophobicity below the sequence identity of 30%, and this

transition of dominant modes was related to the so-called twilight

zone of sequence comparison[11,12]. There are also AASMs

specifically optimized to overcome the twilight zone [13,14].

Detection of very distant homologs is often possible by using

PSSM-based sequence alignment methods such as PSI-BLAST[4]

or hidden Markov models[3,15] because a PSSM is specific to a

particular protein family so that some family-specific features can

be exploited. In a PSSM, family-specific features are expressed as

position-dependent substitution scores, and hence a PSSM is an

N620 matrix where N is the length of the protein or protein family

it represents. Since PSSMs can be regarded as an extension of

sequence motifs[15], family-specific features are, to the first

approximation, a pattern of amino acid residues around

functionally or structurally important sites expressed in a

probabilistic manner. In order to further understand the

mechanism by which the effectiveness of PSSMs is realized,

however, it is necessary to elucidate more general characteristics of

PSSMs that are shared across different protein families.

To delineate the general properties of PSSMs, we analyze them

by using singular value decomposition (SVD). By applying SVD, a

PSSM can be decomposed into 20 orthogonal components of

varying importance. Each singular component consists of a

singular value (a scalar), right singular vector (r-SV) and left

singular vector (l-SV). A singular value represents the relative

importance of the component whereas the corresponding r-SV (a

20-vector) represents a property of 20 amino acid types and the l-

SV may be regarded as a one-dimensional (1D) numerical

representation of the amino acid sequence that is ‘‘dual’’ to the

property represented by the r-SV. Since r-SVs can be regarded as

amino acid indices[16,17,8], we can infer their meaning by

comparing them with the entries of the AAindex database[18]

which compiles many amino acid indices published to date. This is
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a natural generalization of a previous work where AASMs were

analyzed by using eigenvalue decomposition [9]. The present

analysis revealed a tendency of PSSMs that is analogous to the

AASMs for close homologs. That is, the first principal component

disfavors any substitutions and potentially functionally important

residues are more severely penalized, and the second component is

highly correlated with sequence and structural properties related

to hydrophobicity. These features are expected to contribute to the

effectiveness of sequence alignment based on PSSMs.

Methods

Singular value decomposition of position-specific scoring
matrix

A position-specific scoring matrix (PSSM) is a real rectangular

matrix of size N620 where N is the length of the amino acid

sequence of a protein (or protein family). We assume N.20

although this condition is not strictly necessary. Each column of a

PSSM corresponds to an amino acid type, whereas each row

corresponds to a site in the amino acid sequence. Let M = (Mij) be

a PSSM. The element Mij represents the score for the amino acid j

at the site i (Fig. 1A). By applying singular value decomposition

[19] (SVD), we have

M~U
X

VT~
X20

a~1

sauavT
a ð1Þ

where U = (u1,…,u20) and V = (v1,…,v20) are N620 and 20620

orthogonal matrices, respectively, that is, uT
a ub~dab and

vT
a vb~dab (dab is Kronecker’s delta). An example of SVD of a

PSSM is given in Fig. 1. The 20-vectors va’s are called right

singular vectors (r-SV, Fig. 1C). Since each element of a right

singular vector numerically represents some property of an amino

acid type, we can regard a right singular vector of a PSSM as an

amino acid index [16,17,8] (possibly specific to the parent PSSM).

The N-vectors ua’s are called left singular vectors (l-SV, Fig. 1C).

Since each element of a left singular vector numerically represents

some property of the corresponding site in the sequence, we can

regard a left singular vector of a PSSM as a generalized 1D

structure. S= diag(s1,…,s20) is a diagonal matrix whose elements

are the singular values of the PSSM, sorted in the decreasing order

(Fig. 1B). Singular values are always non-negative and their

magnitudes represent relative importance of the corresponding

singular components (i.e., the pair of right and left singular

vectors).

Data sets
We analyze two sets of PSSMs. One is a representative set

derived from the Protein Data Bank (PDB)[20] and the other is the

Pfam database[21].

The representative protein chains in the PDB were obtained

from the PISCES server [22] with cutoffs of 25% sequence

identity, 20% R-factor, 2.0Å resolution and sequence length

ranging from 40 to 500. Only the structures determined by X-ray

crystallography were used. Those proteins which were classified as

all-a, all-b, a/b, a+b, multi-domain, or small proteins according

to the SCOP (version 1.71) [23] database were retained. As a

result, we obtained 1096 protein chains. For each of these proteins,

a PSSM was created by running PSI-BLAST against the

UniRef100 protein sequence database (release 12.1) [24] with e-

value cutoff of 0.0005 and 3 iterations.

Although Pfam is a database of hidden Markov models of

protein families[15], we can regard its entries as PSSMs by using

only the scores for matching states. We extracted from Pfam

release 22.0 (July 2007) those proteins whose sequence lengths

were at least 40 residues, resulting in 8869 protein families.

Searching AAindex
As mentioned above, each right singular vector (r-SV) can be

regarded as an amino acid index, a set of numerical values

reflecting some property of amino acid residues. In order to clarify

the meaning of each r-SV, we scanned the AAindex database

[8,18] (Release 9.1, August, 2006) which compiles many amino

acid indices published to date. For a given a ( = 1, 2, …, 20), the

amino acid index that showed the highest correlation to the a-th r-

SV of each PSSM were identified. If the absolute value of the

correlation coefficient between the index and the r-SV is greater

than or equal to 0.6, then the index is counted as significant.

Identified indices are sorted according to the number of times they

are counted as significant. In Table 1, we summarize the

descriptions of the AAindex entries that will be mentioned in the

Results section.

Results

Overview
In order to check to what extent a subset of singular components

can explain the original PSSM, we calculated the accumulative

contribution ratio of each PSSM. The accumulative contribution

ratio up to k-th singular value is defined as

Sk~

Pk

a~1

sa

P20

a~1

sa

: ð2Þ

The averages of Sk for k = 1,…,20 are shown in Fig. 2. We

observe that the first singular value contributes 17% of the total

singular values in the PDB set, and 24% in the Pfam set. Thus, the

contribution of the first singular component is relatively larger in

the Pfam PSSMs than in the PSI-BLAST-generated PSSMs of

PDB entries. This tendency may be related to the higher specificity

of the Pfam hidden Markov models. 50% contributions are made

by first 4 or 5 components in the PDB or Pfam sets, respectively,

whereas 90% contributions are made by the first 15 components

in the both sets. Compared to the case with AASMs where 50%

and 90% contributions are made by first 3 and 10 singular values

(or eigenvalues) [9], the ‘‘compressibility’’ of PSSMs is lower in the

sense that more components are needed to explain the same

fraction (50% or 90%) of the total components. This is a

reasonable result since each PSSM should contain some detailed

information specific to the family to which the protein sequence

belongs, whereas AASMs should contain more general informa-

tion regarding the patterns of amino acid substitutions shared by

many protein families.

In order to glance at the overall characteristics of decomposed

PSSMs, we constructed a partial matrix Mk for each PSSM by

summing the first k components, that is,

Mk~
Xk

a~1

sauavT
a , ð3Þ

and calculated the fraction of positive elements (M20 is identical to

the original PSSM). In both the PDB and Pfam sets, there are

Protein Family Signatures
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Figure 1. Example of singular value decomposition[19] of a PSSM (c.f. Eq. 1). A: The original PSSM (based on the PDB entry 3sdhA [44]); B:
Singular values; C: Pairs of left singular vector (l-SV) ua of N dimensions and right singular vector (r-SV) va of 20 dimensions (a= 1,…,20). The abscissa
indicates residue number for the left singular vectors (l-SV), and amino acid type for the right singular vectors (r-SV). The ordinate shows the vector
elements relative to zero (note that only the relative values, not absolute ones, are meaningful).
doi:10.1371/journal.pone.0001963.g001
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usually more negative elements than positive ones (Fig. 3). This is

an expected behavior for log-odds matrices [7]. However, this

skewed distribution is greatly pronounced for the M1 matrices. In

fact, most substitutions are disfavored by the first singular

component of a PSSM. A typical example is shown in Fig. 1 C

where the contribution of the first component (i.e., s1u1vT
1 ) is

purely negative. Compared to M1, other partial matrices (Mk with

k.1) have more positive elements. This indicates that positive

values in the final PSSM must originate from components other

than the first one.

Characteristics of first singular components
In order to interpret the physicochemical or biochemical

meaning of the first r-SVs (v1 in Eq. 1), we scanned the AAindex

database and identified amino acid indices that frequently show

significant correlations (Table 2).

In the PDB representative set, the most frequently correlated

index was the relative mutability[25] (AAindex: JOND920102)

which is also the fifth most frequent index for the Pfam set. The

relative mutabilities[5] represent the tendency of amino acid

residues to be mutated during molecular evolution, and are not

Table 1. AAindex entries mentioned in the text.

ID Description Reference

AURR980119 Normalized positional residue frequency at helix termini C0’ Aurora and Rose (1998)[41]

BASU050101 Interactivity scale obtained from the contact matrix Bastolla et al. (2005)[32]

BASU050103 Interactivity scale obtained by maximizing the mean of correlation coefficient over pairs of
sequences sharing the TIM barrel fold

Bastolla et al. (2005)[32]

BEGF750103 Conformational parameter of beta-turn Beghin and Dirkx (1975)[27]

BUNA790101 alpha-NH chemical shifts Bundi and Wuthrich (1979)[43]

CHAM830106 The number of bonds in the longest chain Charton and Charton (1983)[62]

FAUJ880106 STERIMOL maximum width of the side chain Fauchere et al. (1988)[63]

FUKS010106 Interior composition of amino acids in intracellular proteins of mesophiles Fukuchi and Nishikawa (2001)[26]

GRAR740102 Polarity Grantham (1974)[33]

JOND920102 Relative mutability Jones et al. (1992)[25]

KLEP840101 Net charge Klein et al. (1984)[42]

KOEP990101 Alpha-helix propensity derived from designed sequences Koehl and Levitt (1999)[38]

KYTJ820101 Hydropathy index Kyte and Doolittle (1982)[28]

LEVM760102 Distance between C-alpha and centroid of side chain Levitt (1976)[64]

LEVM760105 Radius of gyration of side chain Levitt (1976)[64]

MIYS990101 Relative partition energies derived by the Bethe approximation Miyazawa and Jernigan (1999)[31]

OOBM770105 Short and medium range non-bonded energy per residue Oobatake and Ooi (1977)[65]

SNEP660101 Principal component I Sneath (1966)[29]

SNEP660103 Principal component III Sneath (1966)[29]

SWER830101 Optimal matching hydrophobicity Sweet and Eisenberg (1983)[34]

doi:10.1371/journal.pone.0001963.t001
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highly correlated with any other indices [8]. It is thus expected that

some intrinsic characteristics of protein evolution is embedded in

their values. The relative mutability is the most dominant

component in the ordinary (position-independent) AASMs

targeted at closely related proteins[9]. As in the case of AASMs,

the first r-SVs are negatively correlated with the relative mutability

(Recall that all the elements of the first r-SVs are of the same sign

in most cases so that we can make them all positive without losing

generality). An example is shown in Fig. 4 A. Thus, noting that the

first singular components (i.e., partial matrix M1 in Fig. 3) are

mostly negative, we can see that substitutions of those residues with

low mutabilities are more severely penalized.

The interior composition of amino acids in intracellular proteins

of mesophiles[26] (FUKS010106) is another frequently correlated

index, ranked second and sixth in the PDB and Pfam sets,

respectively. As we can see in the example shown in Fig. 4 B, those

residues that are less abundant in protein interior are more

severely penalized. This seems to contradict our intuition that

residues in the protein interior are more conservative than those

on the protein surface. However, many functionally important

residues exist on the surface (ligand binding sites and catalytic sites,

etc.). Thus, these r-SVs should be regarded as representing

potentially functionally important residues. Note, however,

although these residues share some properties common to

conserved residues, most of them are not actually important

(otherwise they should not be penalized).

Other frequently correlated indices shared by both PDB and

Pfam sets are the conformational parameter of b-turn[27]

(BEGF750103) and the hydropathy index of Kyte and Doolit-

tle[28] (KYTJ820101). The most frequently correlated index for

the Pfam set was ‘‘principal component I’’ of Sneath

(SNEP660101) [29]. The name of this index is rather cryptic,

but it is weakly negatively correlated with turn or coil propensities

(data not shown). These indices can be readily related to interior-

Table 2. Amino acid indices most correlated to the first right
singular vectors [frequency (%) in the parentheses].

rank PDB Pfam

1 JOND920102 (10) SNEP660101 (9)

2 FUKS010106 (7) DESM900101 (7)

3 MCMT640101 (6) KYTJ820101 (6)

4 MEEJ810101 (6) WOLS870102 (6)

5 BEGF750103 (5) JOND920102 (6)

6 KYTJ820101 (4) FUKS010106 (5)

7 ROBB790101 (4) BEGF750103 (3)

8 KIDA850101 (3) CORJ870108 (3)

9 ROBB760108 (3) LEVM780106 (2)

10 MIYS990101 (3) AURR980120 (2)

The description of each AAindex ID can be found at http://www.genome.jp/
dbget-bin/www_bfind? aaindex.
doi:10.1371/journal.pone.0001963.t002
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surface propensities: b-turns, coils, and hydrophilic residues tend

to be on the surface of a protein, and so on. The general trend is

that substitutions of those residues that tend to be on the surface

are more severely penalized (Fig. 4C, D). Again, this may be due to

the fact that many (potentially) functionally important residues are

on the protein surface.

It is noted that no single index is overwhelmingly dominant in

the first r-SVs so that different PSSMs are characterized by

different properties. This is a reasonable result since each PSSM is

specific to a particular protein family which is under the influence

of specific evolutionary pressures and biological constraints.

Nevertheless, relative mutability, hydrophobicity, and turn/coil

propensity are the relatively more dominant characteristics of the

first r-SVs.

If the first r-SV of a PSSM represents a property of amino acid

residues that is well-conserved, then the first l-SV is expected to

represent the pattern or extent of conservation of that property

along the amino acid sequence. One such measure is the

information content (also referred to as Kullback-Leibler diver-

gence or relative entropy [30]) which is a kind of distance of the

distribution of amino acid residues at a given site of the sequence

from the background distribution. The information content Di of

site i is defined as

Di~
X

a

Pi að Þlog Pi að Þ=Q að Þ½ � ð4Þ

where Pi(a) is the frequency of amino acid type a at the site i and

Q(a) is the background frequency of amino acid type a. In general,

information content tends to be larger at more conserved sites.

This information is available in the PSSMs created with PSI-

BLAST. A significant correlation was found between the first l-

SVs and information content of PSSMs of the PDB set with

correlation coefficient of 0.543 on average with standard deviation

of 0.218 (P,10217, assuming the average sequence length of 217

residues). The median of the correlation coefficient was 0.601

indicating that the correlation is even higher for many of the

PSSMs. When calculating the correlation coefficient, we converted

the signs of the elements of the l-SV so that most elements become

positive. Thus, a positive correlation implies that a site with a large

value of the first l-SV element usually has high information

content, indicating that substitutions at those sites with more

information content are more severely penalized. An example of

such correlation is shown in Fig. 5. l-SVs other than the first one

did not show high correlations with information content (data not

shown). For those PSSMs whose first r-SVs are highly correlated

with JOND920102 (110 entries), FUKS010106 (74), BEGF750103

(56), KYTJ820101 (49), and SNEP660101 (24) (Table 2), the

average correlation coefficients were 0.646, 0.703, 0.654, 0.536,

and 0.593, respectively. Thus, the high correlation between the

first l-SV and information content is not limited to specific PSSMs

whose first r-SVs are correlated to some particular indices.

Characteristics of second singular components
In the same manner as the first r-SVs, we searched for indices

that are highly correlated with the second r-SVs of the PSSMs

(Table 3). In this case, relative partition energies derived by the

Bethe approximation of Miyazawa and Jernigan [31] (AAindex:

MIYS990101) is the most correlated index: 33% of the PDB set

and 54% of the Pfam set. This index is a kind of hydrophobicity

scale. Furthermore, other frequently correlated indices, such as

interactivity scales of Bastolla et al. [32] (BASU050101,

BASU050103), polarity [33] (GRAR740102), optimal matching

hydrophobicity [34] (SWER830101), and all other indices in

Table 3, are all related to hydrophobicity scales. The ten most

frequently correlated indices alone match 85% and 94% of the

second r-SVs of the PSSMs in the PDB and Pfam sets,

respectively. Therefore, while the first r-SVs are of diverse

characteristics, the second r-SVs are almost exclusively determined

by hydrophobic properties. It is interesting to note that the

hydropathy index of Kyte and Doolittle [28] which was found to

be correlated to some first r-SVs (Table 2) was not found to be the

the index most correlated with the second r-SVs in most cases.

Although the hydropathy index is highly correlated with the

partition energy of Miyazawa and Jernigan (correlation coefficient

of 20.84), there seems to be a meaningful difference between

them.

The correlation between the second r-SVs and hydrophobicity

scales is striking. Therefore, it is expected that the second left

singular vectors (l-SVs) are correlated with some structural

property that is dual to the hydrophobicity. One such structural

property is the contact number [35,36,37], which is the number of

residues in contact with a given residue in a native protein
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Figure 5. Example of the first left singular vector and
information content. Shown are the first l-SV and information
content of the PDB entry 1e6uA[60]. The values of the l-SV elements are
scaled by 20 times to match the information content. The correlation
coefficient is 0.76.
doi:10.1371/journal.pone.0001963.g005

Table 3. Amino acid indices most correlated to the second
right singular vectors [frequency (%) in the parentheses].

rank PDB Pfam

1 MIYS990101 (33) MIYS990101 (54)

2 BASU050101 (12) GRAR740102 (12)

3 BASU050103 (11) BASU050103 (10)

4 GRAR740102 (8) MIYS990102 (7)

5 SWER830101 (7) BASU050101 (6)

6 MIYS990102 (6) SWER830101 (1)

7 ZHOH040103 (2) ZHOH040103 (1)

8 CORJ870102 (2) MIYS990105 (1)

9 KYTJ820101 (2) FAUJ830101 (1)

10 FAUJ830101 (2) CORJ870102 (1)

doi:10.1371/journal.pone.0001963.t003
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structure. We calculated contact numbers of the PDB set (based on

the definition by Kinjo et al. [37]) and their correlations with the

second l-SVs. The average correlation coefficient was 0.511

(standard deviation 0.113) which is highly significant (P,10215)

for the average protein length of 217 residues in the PDB set. Fig. 6

shows an example of the highly correlated second l-SV and

contact numbers.

Recall that the elements of the first r-SVs were of the same sign

in most cases (Fig. 3). Thus, by the orthogonality of singular

vectors, the elements of the second r-SVs should necessarily

contain values of both signs in most cases. The same argument also

applies to l-SVs. Therefore, the contribution from the second

component of a PSSM, namely s2u2vT
2 , contains both positive and

negative elements corresponding to favorable and unfavorable

substitutions, respectively. Now let w represent the relative

partition energy of Miyazawa and Jernigan [31] (MIYS990101),

and n represent the contact number vector of a protein

standardized by subtracting the average value from each element.

We calculated the correlation coefficient between the two matrices

u2vT
2 and wnT for those 361 proteins whose second r-SVs are most

correlated with w. We obtained the average correlation of 20.45

which is highly significant (P,102220) taking into account the

average number of elements (217620). Since hydrophilic and

hydrophobic residues have positive and negative partition

energies, respectively, the negative correlation means that

hydrophobic residues with high contact numbers (buried) and

hydrophilic residues with low contact numbers (exposed) are more

favored compared to hydrophobic residues with low contact

numbers and hydrophilic residues with high contact numbers.

Thus, within the framework developed here, we can consider the

second singular component represents the structural stability of the

protein.

Characteristics of third and other singular components
The indices that are most frequently correlated with the third r-

SVs of the PSSMs are listed in Table 4. In general, the third r-SVs

are correlated with those indices related to the volume or bulkiness

of amino acid residues such as CHAM830106, SNEP660103,

LEVM760102, LEVM760105 and OOBM770105 (see Table 1

for descriptions). Another kind of index common to the PDB and

Pfam sets is the a-helix propensity derived from designed

sequences[38] (KOEP990101) which is actually correlated with

coil propensity (data not shown). This index was also found to be

frequently correlated with the fourth r-SVs. A structural quantity

that may be associated with bulkiness of amino acid residues is the

volume of the ‘‘territory’’ of residues as defined by the Voronoi

tessellation[39,40]. When we compared the Voronoi volumes

calculated from protein structures with the third l-SV, we observed

a significant but weak correlation of 0.345 (P,0.0003). (The

Voronoi volume of a residue was calculated by summing the

Voronoi volumes of the atoms that belong to the residue; only half

of the residues with smaller volumes are used for comparison as

surface residues with [sometimes infinitely] large volumes are not

meaningful.) If we limit the comparison to those proteins whose

third r-SVs are most correlated with CHAM830106 (214 entries),

SNEP660103 (201) or LEVM760102 (137), the correlations were

0.366, 0.251, or 0.479, respectively. Therefore, the correlation of

the third l-SV to the Voronoi volume is significant, but not as

consistent as those of the first and second l-SVs to information

content and contact numbers, respectively.

The propensity of the fourth and fifth r-SVs are not so clearly

characterized as the first three r-SVs, but helix (KOEP990101)

and helix cap propensities [41] as well as some bulkiness

parameters are relatively highly correlated with the fourth r-SVs,

while the net charge (KLEP840101) [42] and a-NH chemical

shifts (BUNA790101) [43] were the indices most correlated with

the fifth r-SVs of more than 30% of the PSSMs in both the PDB

and Pfam sets.

Example: Conserved sites in the globin family
To illustrate the points made above, we now examine the PSI-

BLAST PSSM of a globin (PDB 3sdhA[44], hemoglobin I from

Scapharca inaequivalvis). The globin family is one of the most

extensively studied protein families[45,46]. Ota et al.[47] exam-

ined in detail seven highly conserved residues in globins identified

by Bashford et al.[45] (namely, the sites B10, C2, CD1, CD4, E7,

F4, and F8, according to the numbering scheme of Bashford et

al.[45]), and succeeded in separating structurally important sites

from functionally important sites. Fig. 7 shows the contributions of

various components to the seven highly conserved sites studied

in Ota et al. [47]. The most correlated amino acid indices for the

first 5 r-SVs are BEGF750103, MIYS990101, FAUJ880106,

KOEP990101, and AURR980119 (see Table 1 for their

descriptions).
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Figure 6. Example of the second left singular vector and
contact numbers. Shown are the second l-SV and contact numbers of
the PDB entry 1l2hA[61]. The values of the l-SV elements are shifted and
scaled to match the contact numbers. The correlation coefficient is 0.71.
doi:10.1371/journal.pone.0001963.g006

Table 4. Amino acid indices most correlated to the third right
singular vectors [frequency (%) in the parentheses].

rank PDB Pfam

1 CHAM830106 (20) CHAM830106 (15)

2 SNEP660103 (18) SNEP660103 (15)

3 LEVM760102 (12) LEVM760102 (12)

4 KOEP990101 (8) LEVM760105 (8)

5 OOBM770105 (6) WOLS870102 (5)

6 LEVM760105 (6) FASG760101 (5)

7 MITS020101 (6) KOEP990101 (4)

8 HUTJ700103 (2) CHAM830104 (4)

9 RADA880103 (2) HUTJ700103 (3)

10 CHAM830105 (2) OOBM770105 (3)

doi:10.1371/journal.pone.0001963.t004
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The contributions to those conserved residues that were

identified as functionally important by Ota et al. [47] (namely,

E7 and F8) are mainly from the third and fifth components which

are correlated to bulkiness and helix capping propensity,

respectively. Other conserved residues were identified as structur-

ally important, and their scores consist mainly of the second

singular component which is related to the hydrophobicity, except

for the proline residue at the C2 site to which the helix capping

propensity is the main contributor. These observations are

consistent with the analysis of Ota et al. [47] which was based

on three-dimensional profiles[48,49].

The contributions of the first singular component to these sites

are all negative for all residues (Fig. 7) which is consistent with the

general argument provided above. We now consider the meaning

of the negative contribution of the first singular component. For

simplicity, we first consider the site F8 where the histidine residue

is perfectly conserved. At this site, only the score of histidine should

be positive and all others be negative. Positive contributions to the

score of histidine is made from the third, fifth and other singular

components so that the total contributions from second to

twentieth components are as large as 14. Without the contribution

from the first singular component, the scores of some other

residues such as asparagine and tyrosine are also positive although

not as large as that of histidine. Thus, we can see that the large

positive score of a conserved residue (histidine) is made by

coherent contributions from multiple singular components where-

as the scores of residues that are not conserved may be positive but

small due to incoherent contributions. Nevertheless, positive scores

of non-conserved residues degrades the specificity of a PSSM.

Thus, they should be somehow made negative. Similar arguments

apply to other conserved sites except that different residues may be

conserved at different sites for different reasons. The score of

potentially but falsely functionally important residues at all

conserved sites can be made negative at once by simply subtracting

the scores according to the common properties of amino acid

residues at these sites, and this is the role of the first singular

component. In the present example, the common property

happened to be related to the b-turn propensity.

Note that the shapes of the corresponding components (e.g., m1

for different sites) are similar among different sites. This is because

they are all scalar multiple of the same r-SVs. What distinguishes

different sites is the relative contributions due to the l-SVs.

Discussion

Kinjo and Nishikawa[9] analyzed a set of amino acid

substitution matrices constructed from multiple alignments of

protein families of varying percent sequence identities (%ID). It

was found that, at high %IDs (.35%), the first and second most

dominant components were correlated with relative mutability

and hydrophobicity, respectively, while at low %IDs (,30%), the

order was opposite (hydrophobicity first, and then the relative

mutability). It was suggested that the dominance of the relative

mutability over hydrophobicity patterns is the prerequisite for

reliable detection of homologs. In the case of PSSMs, the

characteristics of the first singular component may vary depending

on the protein (family). Nevertheless, the first singular components

seem to represent some functional constraints which disfavor any

substitutions, and the second (and third) singular components are

predominantly determined by such structural requirements as

hydrophobicity (and packing). Although both functional and

structural constraints are important for distant homolog detection,

the dominance of the former over the latter may be more

influential for the high specificity of sequence alignment methods

based on PSSMs. Noting again that the Pfam PSSMs have larger

first singular values (Fig. 2) and their first components contain

more negative elements (Fig. 3) compared to PSI-BLAST-

generated PSSMs of the PDB set, this view of the first singular

component is consistent with a general observation that Pfam

PSSMs exhibit, on average, higher specificity than those generated

by PSI-BLAST.

As pointed out by Tomii and Kanehisa [8], side-chain volume

and hydrophobicity are the main ingredients of AASMs. In

addition to these two properties, Pokarowski et al.[10] also noted

the importance of the coil propensity. Wrabl and Grishin[50] also

found similar preferences in the study of properties extracted from

multiple sequence alignments. These properties are also found to

be the main ingredients of PSSMs in the present study. Some of

the first r-SVs showed significant correlation to indices related to

coil propensity such as BEGF750103 and SNEP660101 (Table 2);

hydrophobicity is predominant in the second r-SVs; and side-

chain volumes often show high correlation with the third r-SVs.

Bastolla et al.[32] have studied the correlation between the

‘‘interactivity’’ scale of amino acid residues and the principal

eigenvectors of the native contact maps[51]. Their interactivity

scale is a kind of hydrophobicity scale, obtained by eigenvalue

decomposition of a contact potential and subsequent optimiza-

tions. The principal eigenvector of a contact map is known to

contain almost sufficient information for recovering the native

structure itself[51], and is highly correlated with contact number

vector [52]. Bastolla et al.[32] showed that the interactivity scales

aligned along the amino acid sequence of a protein, then averaged

over homologs, were significantly correlated with the principal

eigenvector with the average correlation coefficient of 0.47. Note

that the interactivity scales of Bastolla et al. are found among those

indices that are most correlated with the second r-SVs in Table 3

(BASU050101 and BASU050103), and that the second l-SVs are

correlated with contact number vectors. Thus, the present result is

not only consistent with that of Bastolla et al. [32], but also

demonstrates that some structural information is already embed-

ded in a PSSM, which also explains why contact numbers can be

predicted at high accuracy by using PSSMs[37,53,54,55,56]. The

present finding may be useful for deriving optimized contact

potentials[57].

To summarize, we analyzed PSSMs by decomposing them into

singular components (Table 5). The characteristics of the first right

singular vectors was found to vary depending on protein families,

but the corresponding left singular vectors showed high correlation

with information content. The contributions of the first singular

components to the original PSSMs are usually negative so that the

substitutions of potentially but falsely functionally important

residues at conserved sites are more severely penalized. The

second right singular vectors were almost always related to

hydrophobicity of amino acid residues, and the left singular

vectors are significantly correlated with contact number vectors,

thus demonstrating that the structural information is directly

embedded in the PSSMs. Other structural information seem to be

also included in the PSSMs, although not as significantly as

Figure 7. Decomposed PSSM scores of conserved sites in the globin family. The labels B10, C2, CD1, CD4, E7, F4, and F8 on the top of
panels are site identifiers of the globin family defined by Bashford et al.[45] (in the parentheses is the most conserved residue at each site). Rows of
the partial matrices ma~sauavT

a (a= 1, …, 5) as well as M2m1 are plotted for the selected sites. The PSSM is based on the PDB entry 3sdhA[44].
doi:10.1371/journal.pone.0001963.g007
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hydrophobicity and contact numbers. Therefore, sequence

alignment using PSSMs may be regarded as threading

[58,48,59] supplemented with some functional information. Based

on the present analysis, it may be possible to define a priori measure

of the quality of PSSMs which may lead to a rational strategy for

constructing more effective PSSMs by mixing various functional-

ly/structurally relevant contributions with appropriate singular

values.
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27. Beghin F, Dirkx J (1975) Une méthode statistique simple de prédiction des
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