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Abstract: The minimum uncut chip thickness (MUCT), dividing the cutting zone into the shear
region and the ploughing region, has a strong nonlinear effect on the cutting force of micro-milling.
Determining the MUCT value is fundamental in order to predict the micro-milling force. In this
study, based on the assumption that the normal shear force and the normal ploughing force are
equivalent at the MUCT point, a novel analytical MUCT model considering the comprehensive
effect of shear stress, friction angle, ploughing coefficient and cutting-edge radius is constructed to
determine the MUCT. Nonlinear piecewise cutting force coefficient functions with the novel MUCT
as the break point are constructed to represent the distribution of the shear/ploughing force under
the effect of the minimum uncut chip thickness. By integrating the cutting force coefficient function,
the nonlinear micro-milling force is predicted. Theoretical analysis shows that the nonlinear cutting
force coefficient function embedded with the novel MUCT is absolutely integrable, making the
micro-milling force model more stable and accurate than the conventional models. Moreover, by
considering different factors in the MUCT model, the proposed micro-milling force model is more
flexible than the traditional models. Micro-milling experiments under different cutting conditions
have verified the efficiency and improvement of the proposed micro-milling force model.

Keywords: micro-milling; minimum uncut chip thickness; cutting force; cutting force coefficient

1. Introduction

Micro milling is viewed as a promising technology for manufacturing micro devices
because of its high machining accuracy and the ability to cut a variety of materials [1].
The cutting force, which is related to many cutting performances such as the vibration [2],
tool deflection [3], deflection of material [4,5], energy consumption [6,7] and machining
quality [8], plays an important role in the micro-milling process [9]. Constructing an
accurate cutting force model is of great significance to the application and development of
micro-milling technology.

At the beginning of the 21st century, Bao and Tansel [10] first investigated the micro-
milling force model. Over the past decade, different factors such as the tool runout [11],
minimum uncut chip thickness (MUCT) [12], dead metal zone [13], chip thickness accu-
mulation [14], tool wear [15] and elastic recovery [16] were included in the micro-milling
force model, making the micro-milling force model more and more accurate. The MUCT,
one of the most representative characteristics of the micro-cutting process, dividing the
cutting zone into the shear and ploughing regions, has a significant effect on the cutting
force of micro-milling. Determining the MUCT value is of great importance for predicting
the micro-milling force.

Generally, the MUCT value could be obtained in three ways: Inferred from the
measured cutting force and the surface profile, simulated by the finite element method and
determined by an analytic MUCT model. Dib et al. [17] determined the minimum uncut
chip thickness by means of cutting forces from the dynamometer. Skrzyniarz et al. [18]
determined the minimum uncut chip thickness of micro turning from a surface profile
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obtained with a contact profilometer. Vogler et al. [19] found the minimum uncut chip
thickness values in micro-milling ferrite and pearlite materials through finite element
simulations. Due to the high flexibility and good interpretability, the analytic MUCT
model is proven to be an efficient way to determine the MUCT value. Back in the 1970s,
Abdelmoneim and Scrutton [20] constructed an analytical MUCT model for the precision
machining process. With the rise of micro-machining since the 1990s, the analytical MUCT
model has once again become a research hotspot. Liu et al. [21] deduced that the ratio
of MUCT to the cutting-edge radius is a function of the effective flow stress and shear
strength. By assuming that the shear angle is equal to the stagnant angle, Son et al. [22]
expressed the stagnant angle corresponding to the MUCT as a function of the friction angle.
Malekian et al. [23] concluded that the stagnant angle is equal to the friction angle and
verified that the equation holds regardless of whether it is under the minimum cutting
energy principle [24] or the infinite shear strain principle [25].

The studies above reveal that the MUCT value depends on many different factors such
as the friction angle, shear strength and flow stress. However, each study only considered
some of these factors. For a better understanding of the MUCT, a more comprehensive
MUCT model is required. Moreover, the constraint condition, that the stagnant angle
corresponding to the MUCT should be greater than the friction angle, was not taken into
account in the existing MUCT models. As will be demonstrated in Section 2, the stagnant
angle corresponding to the MUCT is a singularity of the shear/ploughing force distribution
function. Without the constraint condition, the force distribution function is not integrable,
leading to an infinite theoretical force and an unstable cutting force model. To obtain a
finite theoretical cutting force and a stable cutting force model, the stagnant angle must be
set greater than the friction angle in the MUCT model.

In this study, based on the assumption that the normal shear force and the normal
ploughing force are equivalent at the MUCT point, a novel analytic MUCT model is
constructed to determine the minimum uncut chip thickness. Nonlinear piecewise cutting
force coefficient functions with the novel MUCT as the break point are constructed to
represent the distribution of the shear/ploughing force under the effect of minimum uncut
chip thickness. Under the proposed assumption, the stagnant angle corresponding to the
MUCT is constantly greater than the friction angle, and the cutting force coefficient function
is absolutely integrable, making the force prediction model more stable than the traditional
models. Moreover, under the proposed equilibrium normal force assumption, different
factors such as the friction angle, shear stress and ploughing coefficient are comprehensively
included in the MUCT model, making the proposed cutting force model more flexible than
the conventional models.

This paper evolves as follows. Section 2 introduces the related works and the prereq-
uisite knowledge of this study. The novel comprehensive MUCT model is proposed in
Section 3. In Section 4, the nonlinear micro-milling force model embedded with the novel
MUCT is constructed. The model parameters are estimated in Section 5. The efficiency of
the proposed model is validated by micro-milling experiments in Section 6.

2. Prerequisite Knowledge and Related Works

The comparability of the cutting-edge radius and the uncut chip thickness, viz. the
cutting-edge radius size effect, leads to a minimum uncut phenomenon in micro-milling.
As Figure 1 shows, under the cutting-edge radius size effect, the cutting region is divided
into the shear region above the MUCT and the ploughing region under the MUCT.
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tive, and the potential range of the shear region on the round edge is broad enough. This 
makes the minimum energy principle more reasonable and flexible to model the shear 
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Figure 1. The distribution of cutting force under cutting edge radius size effect.

There are two classical principles to model the cutting force in the shear region: The
minimum cutting energy principle [24] and the maximum shear stress principle [26]. Under
the minimum cutting energy principle, the distribution of the shear force on the round tool
edge could be represented as:

dFs,c =
τssin(θ − βs)

sin2
(

θ−βs
2

) dhdz (1)

dFs,r =
τscos(θ − βs)

sin2
(

θ−βs
2

) dhdz (2)

where dFs,c is the tangential shear force, dFs,r is the radial shear force, dh is the unit uncut
chip thickness (UCT) and dz is the unit axial cutting depth. τs is the shear stress and βs is
the friction angle in the shear region. Notation θ is the angle corresponding to the UCT
h, as shown in Figure 1. With the maximum shear stress principle, the distribution of the
shear force on the round tool edge could be written as:

dFs,c =

√
2τssin(θ − βs)

sin
(
θ − βs − π

4
) dhdz (3)

dFs,r =

√
2τscos(θ − βs)

sin
(
θ − βs − π

4
) dhdz (4)

In the shear region with a negative rake angle (θs ≤ θ < π
2 ), the chip flows towards

the radial direction, and thus the radial shear force of the tool must be positive (as Figure 1
shows). To fulfill this condition, the stagnant angle should be set θs ≥ π

4 + βs under
the maximum shear stress principle shown in Equation (4). In the shear region on the
round edge, the friction angle is relatively large. Therefore, with the maximum shear stress
principle, the range of the shear region with a negative rake angle may be very narrow
or even nonexistent. This is contradictory to the existing studies, which show that there
exists a relatively broad shear region on the round edge with a negative rake angle. As
Equation (2) shows, with the minimum energy principle, the radial shear force is constantly
positive, and the potential range of the shear region on the round edge is broad enough.
This makes the minimum energy principle more reasonable and flexible to model the shear
process under the edge radius size effect. Therefore, the minimum cutting energy principle
is adopted in this study.

Equations (1) and (2) imply that the friction angle is a singularity of the stress distribu-
tion function. The stress tends to be infinite when the angle θ approximates the friction
angle. Moreover, if the shear region covers the friction angle (the stagnant angle is smaller
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than the friction angle), the stress distribution function is not integrable, and the total
radial shear force

∫
dFr is infinite. This does not match the practical micro-milling process.

Therefore, under the minimum cutting energy principle, the stagnant angle must be set
greater than the friction angle in the MUCT model.

Although Son et al. [22] and Malekian et al. [23] have built friction-angle-included
MUCT models, they do not consider the constraint condition wherein the stagnant angle
should be greater than the friction angle. In this study, a novel MUCT model is derived
by assuming that the normal shear force and the normal ploughing force are equivalent
at the MUCT point. Under this assumption, the constraint condition that the stagnant
angle should be greater than the friction angle is fulfilled. In addition, under the proposed
assumption, the shear stress, friction angle and ploughing coefficient are comprehensively
included in the MUCT model, making the proposed MUCT model more flexible to describe
the edge radius size effect.

3. Novel Minimum Uncut Chip Thickness Model

The proposed assumption that the normal shear force and the normal ploughing force
at the MUCT point are equivalent could be described by the following equation:

τscos(βs)

sin2
(

θs−βs
2

)dhdz = reσmdθdz (5)

The left of Equation (5) is the normal shear force dFs,n above the MUCT point (Figure 2a),
and the right is the normal ploughing force dFp,n under the MUCT point (Figure 2b). Nota-
tion τs is the shear stress. Notation βs is the friction angle in the shear region. Notation θs
is the stagnant angle corresponding to the minimum uncut chip thickness hmin. Notation
re is the cutting-edge radius. Notation σm is the ploughing coefficient.
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Taking 2 sin2(x) = 1− cos(2x) and dh = resin(θs)dθ into Equation (5), there is:

σm

2τscosβs
=

sinθs

1− cos(θs − βs)
(6)

Denoting σs
2τscosβs

as k, Equation (6) could be rewritten as:

sinθs + kcos(θs − βs) = k (7)

Decomposing sinθs into sin(θs − βs)cos(βs) + cos(θs − βs)sin(βs) and dividing both
sides of Equation (7) by cosβs, Equation (7) could be written as:
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sin(θs − βs) + cos(θs − βs)

(
tanβs +

k
cosβs

)
=

k
cosβs

(8)

Denoting tanβs +
σm

2τscos2βs
as tanγ, Equation (8) could be written as:

sin(θs − βs + γ) =
σm√

4τ2
s cos4βs + (τssin2βs + σm)2

(9)

where γ = arctan
{

tanβs +
σm

2τscos2βs

}
.

For Equation (9), there are two solutions near the friction angle, written as:

θs1= arcsin

 σm√
4τ2

s cos4βs + (τssin2βs + σm)2

− arctan
{

tanβs +
σm

2τscos2βs

}
+ βs (10)

θs2 = π − arcsin

 σm√
4τ2

s cos4βs + (τssin2βs + σm)2

− arctan
{

tanβs +
σm

2τscos2βs

}
+ βs (11)

It could be proven that the solution θs1 is smaller than the friction angle, and the
solution θs2 is constantly greater than the friction angle. To fulfill the constraint condition
that the stagnant angle should be greater than the friction angle, the solution θs2 is set as
the theoretical stagnant angle θs = θs2. According to the geometric relationship shown in
Figure 2, the MUCT corresponding to the stagnant angle θs is:

hmin = re (1− cosθs) (12)

According to Equations (11) and (12), it could be concluded that (1) the MUCT value
is determined by the friction angle, the ratio of the ploughing coefficient σm to the shear
stress τs and the cutting edge radius re; (2) the MUCT linearly increases as the cutting
edge radius increases; (3) the MUCT decreases as the ratio σm

τs
increases; (4) if the ratio σm

τs
tends to be infinite, the stagnant angle approximates to the friction angle, and the proposed
MUCT model becomes the model in the study [23].

4. Micro-Milling Force Prediction with the Novel MUCT Model

The MUCT divides the cutting zone into shear and ploughing regions. If the uncut
chip thickness is smaller than the MUCT, the micro-milling force results from the ploughing
effect. Otherwise, the cutting force corresponds to the shear force. In this section, nonlinear
cutting force coefficient functions embedded with the novel MUCT are constructed to
represent the distribution of the shear/ploughing force under the effect of MUCT. The
input of the nonlinear cutting force coefficient function is the uncut chip thickness, and
the output of the nonlinear cutting force coefficient function is the distribution of the
shear/ploughing force. The MUCT is a breakpoint of the nonlinear cutting force coefficient
function and switches the shear/ploughing process.

The modeling flowchart is shown in Figure 3. Firstly, the uncut chip thickness model
considering the tool runout is derived (Section 4.1). Then, nonlinear piecewise cutting force
coefficient functions with the proposed MUCT as the breakpoint are constructed to reveal
the nonlinear variation law of the shear/ploughing force with the uncut chip thickness
(Section 4.2). Finally, the cutting force model is obtained by integrating the nonlinear
cutting force coefficient functions (Section 4.3).
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4.1. Uncut Chip Thickness Model

The equivalent cutting form in a previous study [15] is adopted to model the uncut
chip thickness under tool runout. The UCT of the k− th equivalent radius at the cutting
depth z could be written as:

hk,z(φ) = max
{

minm

[
Rk,z − Rm,z + fzsin(φz

k)
M · ∆θz

m,k

2π

]
, 0
}

(13)

where fz is the feed per tooth, notation Rk,z is the k− th equivalent radius at the cutting
depth z, ∆θz

m,k is the angle that the k − th equivalent radius clockwise leads the m− th
equivalent radius to at the depth z. Notation φ is the reference position angle, φz

k is the
rotation angle of the k − th equivalent radius at the depth z. The detailed process of
determining the equivalent radius Rk,z and the equivalent angles ∆θz

m,k by the tool runout
parameters can be found in reference [15].

4.2. Nonlinear Cutting Force Coefficient Function

Nonlinear cutting force coefficient functions are constructed to represent the distribu-
tion of the shear/ploughing force on the cutting edge. For the convenience of mathematical
representation, the uncut chip thickness h is transformed to the angle θ by transforma-
tion θ = arccos

(
1− h

re

)
(Figure 4a). The ideal rake angel is α. The angle corresponding

to the intersection point of the rake face and the round edge is θlim, determined by the
equation θlim = α + π

2 . The uncut chip thickness corresponding to the angle θlim is
hlim = re − re cosθlim. The angle θlim further divides the shear region into two parts: The
part with ideal rake angle where the cutting coefficients do not vary with the uncut chip
thickness, and the part of interval [θs, θlim] in which the cutting force coefficients vary
with the uncut chip thickness. Including the ploughing region, the whole cutting region
has three parts with different cutting mechanisms (Figure 4b). According to the classical
cutting theory and the ploughing mechanism, the distribution of the shear/ploughing
force, viz. the cutting force coefficient function, could be written as:

Kc(h|re, α, λ) =



τssinθlim − βs

sin2
(

θlim−βs
2

) h ≥ hlim

τssin(θ − βs)

sin2
(

θ−βs
2

) hmin ≤ h < hlim

σm + τmcotθ 0 ≤ h ≤ hmin

(14)
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Kr(h|re, α, λ) =



τscosθlim − βs

sin2
(

θlim−βs
2

) h ≥ hlim

τscos(θ − βs)

sin2
(

θ−βs
2

) hmin ≤ h < hlim

σmcotθ − τm 0 ≤ h ≤ hmin

(15)

Notation Kc is the tangential cutting force coefficient function, and Kr is the radial
cutting force coefficient function. Notation h is the uncut chip thickness in Equation (13).
The mechanical parameters set λ include the shear stress τs, friction angle βs in the shear
region, the ploughing coefficient σm and the friction stress τm in the ploughing region. The
MUCT hmin in Equations (14) and (15) are determined by the analytical MUCT model
proposed in Section 2.
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The distribution form of the cutting force in Equations (14) and (15) is valid for
a ductile material. Due to the brittle–ductile transition phenomenon in cutting brittle
material [27], the cutting force of brittle material is quite different from Equations (14) and
(15). Therefore, the proposed cutting force model cannot be used to predict the cutting force
when micro-milling a brittle material. In addition, the distribution form of the cutting force
in Equations (14) and (15) is derived under an orthogonal cutting assumption. For a better
understanding of the three-dimensional (3-D) micro-milling force, the oblique cutting
assumption should be adopted, and the helix angle should be considered in Equations (14)
and (15). In this study, to reduce the calculation cost, the micro-milling force is predicted by
dividing the cutting part into thin disks along the axial direction, and the cutting process
of each disk is approximated, regarded as orthogonal cutting.

4.3. Micro-Milling Force Model Embed with the Novel MUCT

The mechanical micro-milling force model embedded in the novel MUCT is mathe-
matically represented as:

dFc = Kc(h|re, α, λ) · dh · dz (16)

dFr = Kr(h|re, α, λ) · dh · dz (17)

Notation dh is the differential of the uncut chip thickness, dz is the differential of the
axial cutting depth. Notation dFc is the partial tangential force, while dFr is the partial
radial force. By decomposing the partial forces into X and Y directions and integrating the
partial forces, the theoretical cutting forces in the X-direction and the Y-direction could be
represented as:
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Fx(φ) =
M

∑
k=1

∫ d

z=0

∫ hk,z(φ)

h=0
[Kc(h|re, α, λ) · cos(φz

k) + Kr(h|re, α, λ) · sin(φz
k)] · dh · dz (18)

Fy(φ) =
M

∑
k=1

∫ d

z=0

∫ hk,z(φ)

h=0
[Kc(h|re, α, λ) · sin(φz

k)− Kr(h|re, α, λ) · cos(φz
k)] · dh · dz (19)

where notation d is the axial cutting depth. As the stagnant angle corresponding to the
MUCT is constantly greater than the friction angle, the cutting force coefficient functions
defined in Equations (14) and (15) are absolutely integrable. This means the theoretical
cutting force, viz. the integral of the cutting force coefficient function, is limited, and the
numerical integration calculation process of Equations (18) and (19) is stable. Without
the constraint condition wherein the stagnant angle should be greater than the friction
angle, the conventional nonlinear cutting force coefficient function is not integrable, and
the stability of the numerical integration cannot be guaranteed.

5. Parameters Estimation

The forces in X and Y directions defined in Equations (18) and (19) are adopted to
estimate the model parameters. Table 1 lists the two kinds of parameters to be estimated.
The first one is the mechanical parameter consisting of the shear stress, friction angle,
ploughing coefficient and friction stress in the ploughing region. The second one constitutes
the parameters related to the tool moving trajectory, including the tool runout length, tool
runout angle and the sampling point φ corresponding to the starting reference position
angle 0◦. The seven parameters are denoted as ζ = {φ, ro, γo, βs, σm, τm, τs}. The theoretical
forces in X and Y directions in a shot cutting pass are denoted by the vectors Fx and Fy.
The measured forces in X and Y directions are denoted by the vectors F̂x and F̂y. The
purpose of the parameter estimation is to determine the optimum parameters, such that
the discrepancy between the measured forces and the theoretical forces is smallest. Because
there are many parameters to be estimated, the optimization process is prone to falling
into a locally optimal solution. The genetic algorithm can find the global optimal solution
and overcome the local optimal solution problem by imitating the natural selection and
genetic mechanism. Therefore, the genetic optimization algorithm is adopted to estimate
the model parameters in this study. The genetic optimization-based estimation process is
expressed as:

min
{
‖F̂x − Fx(ζ)‖2 + ‖F̂y − Fy(ζ)‖2

}
ζ = {φ, ro, γo, βs, σm, τm, τs} ∈ Ω
s.t. hmin(βs, σm, τm, τs, re) < 0.5re

(20)

Table 1. Parameters to be estimated.

The Type of Parameters Parameters Notation Unit

mechanical parameters

shear stress τs Gpa
friction angle βs rad

ploughing coefficient σm Gpa
friction stress in ploughing region τm Gpa

parameters related to
cutting trajectory

runout length ro µm
runout angle γo rad

starting point. φ –

The range of the parameters Ω is determined by the lower bound and the upper
bound of the parameters. The detailed setting of the two bounds is presented in the
experimental validation section. The inequality constraint hmin < 0.5re is added to ensure
the range of the shear region with a negative rake angle is broad enough. Since the
proposed stagnant angle θs in Equation (11) is always greater than the friction angle βs,
the inequality constraint βs < θs(βs, σm, τm) is not considered in the optimization-based
estimation process.
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6. Experimental Validation
6.1. Experimental Setup

Micro slot milling experiments are conducted to estimate the model parameters
and verify the proposed micro-milling force model. A total of nine experiments are
conducted with different spindle speeds, axial cutting depths and feeds per tooth. The
cutting conditions of the nine experiments are listed in Table 2. In each experiment, two
3-cm-long slots are machined. The cutting force generated in the first slot is used to estimate
the model parameters, and the cutting force of the second slot is adopted to verify the
prediction accuracy of the model. The machine used in the experiments is the MIKRON
HSM600U (Mikron Group, Agno, Switzerland) vertical milling machine. The tool is CS2008-
0200 (UNION TOOL CO., Tokyo, Japan), whose diameter is 0.8 mm with two flutes. The
helix angle of the tool is 30◦. The cutting-edge radius is 2 µm. Steel AISI4340 is used
as the work-piece material. The cutting force in three orthogonal directions is measured
with a Kistler9119AA2 3-channel dynamometer (Kistler Precision Machinery (Shanghai)
Co., LTD, Shanghai, China). The sampling rate is adaptively set according to the spindle
rotation speed, such that the number of the sampling point in one spindle rotation cycle is
consistent for the experiments with different rotation speeds. In this study, the number of
the sampling point in one spindle rotation cycle is set to 180. The experimental setup is
shown in Figure 5. The profile of the measured cutting force is shown in Figure 6.
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Table 2. Cutting conditions.

Cutting
Condition

Spindle
Speed
(rpm)

Cutting
SPEED
(m/min)

Axial Cutting
Depth
(µm)

Feed
Speed

(mm/min)

Feed Speed
per Tooth

(µm/tooth)

C1 18,000 45.24 60 72 2
C2 18,000 45.24 80 144 4
C3 18,000 45.24 100 216 6
C4 24,000 60.32 80 288 6
C5 30,000 75.40 60 360 6
C6 24,000 60.32 60 192 4
C7 24,000 60.32 100 96 2
C8 30,000 75.40 80 120 2
C9 30,000 75.40 100 240 4

6.2. Parameters Estimation Results

The seven parameters listed in Table 3 are estimated via the genetic optimization
algorithm. The lower bound of the parameter set {φ, ro, γo, βs, σm, τm, τs} in Table 3 is
[1, 0, 0, 0, 0, 0, 0] and the upper bound is

[
180, 3, π, π

4 , 1, 1, 5× 10−3]. Table 3 shows that
the calculated results are between the predefined lower bound and the upper bound.
Therefore, the calibration result is valid.

Table 3 shows that the average shear stress τs under a cutting speed of 18,000 rpm (C1,
C2, C3) is 0.99 Gpa, while the average shear stress τs under a cutting speed of 24,000 rpm
(C4, C6, C7) is 1.01 Gpa and the average value under a cutting speed of 36,000 rpm (C5, C8,
C9) is 1.05 Gpa. This implies the shear stress increases as the cutting speed increases. As
shown in Table 3, the average ploughing coefficient σm under a cutting speed of 18,000 rpm
(C1, C2, C3) is 2.5 Gpa, while the average value under a cutting speed of 24,000 rpm (C4,
C6, C7) is 2.6 Gpa and the average value under a cutting speed of 36,000 rpm (C5, C8, C9)
is 2.9 Gpa. Therefore, it could be concluded that the ploughing coefficient σm also increases
as the cutting speed increasers. The ploughing coefficient σm represents the extrusion
stress of the tool to the workpiece. Micro-milling is an intermittent cutting process, and the
extrusion process can be regarded as the impact of the tool on the workpiece. In this sense,
the ploughing coefficient σm reflects the impact force of the tool on the workpiece. Because
the impact force increases with increasing speed, the ploughing coefficient σm increases as
the cutting speed increases.

The calibrated MUCT value and the corresponding stagnant angle are listed in Table 4.
It could be found that the stagnant angle is greater than the friction angle listed in Table 3.
This is consistent with the analysis in Section 2. The ratio of the MUCT value to the edge
radius is also presented in Table 4. It clearly shows that the ratio of the MUCT value to the
edge radius is in the range of (0.25–0.36). This is consistent with the findings in most of the
previous research, which indicate the ratio is around 0.3 [28,29].

Table 3. Parameter calibration results.

Cutting
Condition φ ro γo βs σm τm τs

C1 30 1.01 2.07 0.52 (29.91◦) 25.00 16.00 0.98
C2 29 1.02 2.05 0.56 (31.91◦) 27.00 26.00 1.02
C3 35 0.09 1.43 0.53 (30.19◦) 23.00 11.00 0.98
C4 124 0.92 0.86 0.50 (28.71◦) 23.00 11.00 0.95
C5 22 0.76 2.16 0.51 (29.45◦) 24.00 17.00 1.02
C6 38 1.17 2.68 0.57 (32.77◦) 32.00 21.00 1.04
C7 123 0.32 0.95 0.44 (25.25◦) 24.00 12.00 1.04
C8 29 0.21 1.69 0.45 (24.98◦) 29.00 14.00 1.05
C9 23 0.36 1.08 0.60 (34.38◦) 35.00 19.00 1.07
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Table 4. Calibrated MUCT value.

C1 C2 C3 C4 C5 C6 C7 C8 C9

θs 48.45◦ 49.74◦ 49.68◦ 48.62◦ 48.42◦ 48.96◦ 43.74◦ 41.53◦ 49.80◦

hmin 0.673 0.7073 0.7061 0.6780 0.6725 0.6868 0.5550 0.5029 0.7092
hmin

re
0.3367 0.3537 0.3530 0.3390 0.3363 0.3434 0.2775 0.2514 0.3546

6.3. Force Prediction Results

The micro-milling force is predicted via the proposed force model embedded with
the novel MUCT model. The relative error listed in the fifth column of Table 5 is adopted
to examine the effectiveness of the model. The average prediction error for experiments
with fz = 2 µm (C1, C7, C8) is 22.90%, while the average prediction error for experiments
with fz = 4 µm (C2, C6, C9) is 21.76% and the average prediction error for experiments
with fz = 6 µm (C3, C4, C5) is 15.57%. This implies that the prediction error increases as
the feed per tooth decreases. The small feed per tooth increases the ploughing time in one
spindle rotation cycle, and enhances the elastic recovery effect and vibration, leading to
a drastically fluctuating force and an increasing force prediction error. This conclusion
could also be verified by Figure 7 where the predicted cutting forces in experiments with
different feed per tooth (C1–C3) are presented. The starting position angle corresponding
to the first sampling point of the predicted force in Figure 7 is 0◦. As discussed in Section 5,
the parameter φ is the sampling point of the measured force corresponding to the starting
position angle 0◦. By optimizing the parameter φ via the genetic optimization algorithm in
Equation (20), the measured cutting force can be aligned with the predicted cutting force.
The optimum φ is listed in the second column of Table 3. As Figure 7 shows, with the
optimum φ, the measured cutting force is well synchronized with the predicted cutting
force.
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Table 5. The cutting force prediction error of different models.

Cutting
Condition

Malekian’s Model
(Average Rake Angle)

Malekian’s Model
(Partial Rake Angle)

Son’s Model
under βs∈(0, π

6 )
Our

Model

C1 36.19% 35.46% 29.36% 26.90%
C2 34.64% 33.55% 26.95% 23.29%
C3 20.78% 21.05% 17.92% 10.16%
C4 24.32% 26.79% 22.45% 15.38%
C5 33.31% 30.95% 24.53% 21.18%
C6 30.09% 29.30% 26.64% 21.17%
C7 26.32% 27.15% 23.77% 18.04%
C8 32.50% 33.76% 26.40% 22.14%
C9 32.88% 31.24% 25.23% 20.81%

Average of
C1–C9 30.11% 29.92% 24.81% 19.10%

6.4. Discussion on the Advantages of the Model

The MUCT models proposed by Son et al. [22] and Malekian et al. [23] are often
utilized to predict the nonlinear micro-milling force. In this section, the model proposed in
this paper is compared to Malekian’s model and Son’s model.

In Malekian’s MUCT model, the stagnant angle equals to the friction angle. As
discussed in Section 2, the stress distribution function (cutting force coefficient function) is
not integrable and the theoretical force is infinite if Malekian’s MUCT model is adopted.
This problem could be addressed by two approaches: (1) Utilizing the average rake angle to
represent the UCT-varying effective rake angle [30]; (2) the partial rake angle with discrete
UCT [31,32]. Because the stress distribution function is a strong nonlinear function of
the effective rake angle, the average rake angle and the simplified average stress cannot
represent the nonlinear stress distribution. Therefore, the average rake angle approach
may have a high prediction error. This could be verified by the prediction results presented
in the second column of Table 5. For the approach of the partial rake angle with discrete
UCT, it is difficult to select a proper discrete UCT dh. Figure 8 shows that the prediction
error varies with dh, and the stability of the numerical calculation with the discrete UCT
approach is poor. In this study, to find the optimal discrete UCT dh for the partial rake
angle approach, the dh is set as a parameter to be estimated. According to the genetic
optimization algorithm, the optimal dh for each experiment is estimated. Then, the partial
rake angle approach with the optimal discrete UCT is adopted to predict the micro-milling
force. The prediction error listed in the third column of Table 5 shows the force prediction
error of the partial rake angle approach with the optimal discrete UCT is still much higher
than the approach proposed in this study.
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Under the minimum cutting energy principle and the assumption that the shear angle
is equal to the stagnation angle, Son et al. [22] derived the stagnant angle as a linear function
of the friction angle. The linear relationship between the stagnant angle and the friction
angle in Son’s model could be represented by the equation θs = π

4 −
βs
2 . To fulfill the

constraint condition wherein the stagnant angle should be greater than the friction angle,
the friction angle should be restricted in the range of βs ∈

(
0, π

6
)

if Son’s model is adopted.
The micro-milling force is also predicted by the cutting force model embedded with Son’s
MUCT under the constraint condition βs ∈

(
0, π

6
)
. The force prediction error is listed in the

third column of Table 5. As the constraint condition is considered, the stability of the force
prediction process could be guaranteed, and the prediction accuracy is improved compared
to Malekian’s model. However, as Son’s MUCT model only considers the friction angle, the
flexibility of the model is lower than the proposed model in this study, and the prediction
error is still higher than the proposed model.

The comparison above clearly shows that the proposed micro-milling force model
embedded with the novel MUCT model is more flexible and more stable than the con-
ventional models. The better flexibility and stability cause the cutting force prediction
accuracy of the proposed model to be higher than the conventional models. As Table 5
shows, the prediction accuracy of the proposed model is improved by 5%–10% compared
to the traditional models.

It should be noticed that all of the MUCT models mentioned above are derived
under the minimum cutting energy principle. As discussed in Section 2, compared to the
maximum shear stress principle, the minimum cutting energy principle is more reasonable
to model the cutting force in the shear region on the round edge. In this section, the MUCT
models with the maximum shear stress principle are also adopted to predict the micro-
milling force. The average errors for different MUCT models with the maximum shear
stress principle are as follows: 35.12% for Malekian’s model, 33.79% for Son’s model and
26.48% for our model. It clearly shows that the prediction error with the minimum cutting
energy principle listed in Table 5 is much lower than the error under the maximum shear
stress principle. This result further implies that the minimum cutting energy principle is
more reasonable to model the cutting force on the round edge.

7. Conclusions

Based on the minimum cutting energy principle and the proposed equilibrium normal
force assumption, a novel MUCT model considering the comprehensive effect of the
shear stress, friction angle, ploughing coefficient and cutting-edge radius is constructed
to determine the minimum uncut chip thickness in micro-milling. A nonlinear cutting
force coefficient function embedded with the novel MUCT is constructed to represent the
distribution of shear/ploughing force under the effect of minimum uncut chip thickness.
By integrating the proposed cutting force coefficient functions, the nonlinear micro-milling
force is accurately predicted. The conclusions are as follows:

• Compared to the maximum shear stress principle, the minimum cutting energy prin-
ciple is more reasonable to model the cutting force in the shear region on the round
edge.

• Under the proposed equilibrium normal force assumption, the stagnant angle corre-
sponding to the MUCT is constantly greater than the friction angle, resulting in an
integrable stress distribution function and a stable cutting force model.

• Embedded with a more flexible and stable MUCT model, the proposed nonlinear
micro-milling force model is more accurate than the conventional models. The pre-
diction accuracy of the proposed model is improved by 5%–10% compared to the
traditional models.

The main contribution of this paper is proposing a novel analytical MUCT model
with high flexibility and stability for predicting the micro-milling force. As more factors
are considered, the proposed MUCT model is more flexible than the traditional models.
Embedded with the novel MUCT, the distribution function of the shear/ploughing force
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is absolutely integrable and the micro-milling force model is numerically stable. In addi-
tion to the prediction of cutting force, the proposed MUCT model and the micro-milling
force model could be further adopted to predict the tool deflection, vibration and energy
consumption in the micro-milling process.
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Nomenclature

hmin Minimum uncut chip thickness (µm)
θs Stagnant angle (rad)
βs Friction angle (rad)
σm Ploughing coefficient (Gpa)
τm Friction stress in ploughing region (Gpa)
τs Shear stress (Gpa)
re Cutting edge radius (µm)
ro Length of tool runout (µm)
γo Angle of tool runout (rad)
Kc Shear-ploughing coefficient function in tangential direction (Gpa)
Kr Shear-ploughing coefficient function in radial direction (Gpa)
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